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Lecture 9: Equilibria

of Collisionless Systems. III

Applications of the Jeans Eqs., the Virial Theorem
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The Jeans Equations

Assuming axially symmetric system in a steady state:

∂(νv2
R)

∂R
+

∂νvRvz

∂z
+ ν

v2
R − v2

φ

R
+

∂Φ

∂R

 = 0,

∂(νvRvφ

∂R
+

∂(νvφvz)

∂z
+

2ν

R
vφvR = 0, (1)

∂(νvRvz)

∂R
+

∂(νv2
z )

∂z
+

νvRvz

R
+ ν

∂Φ

∂z
= 0.

2



Some Applications of the Jeans Equations

• Asymmetric drift

• The local mass density

• The shape of local velocity ellipsoid

• Spheroidal components with isotropic velocity dispersion
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Asymmetric drift

From the vR Jeans equation at z = 0, with an assumed symmetry

around the equatorial plane, ∂ν/∂z = 0, and definitions σ2
φ =

v2
φ − vφ

2 and v2
c = R(∂Φ/∂R):
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How large is each of these terms?
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Asymmetric drift
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1. We know that locally v2
z /v2

R ≈ σ2
φ/v2

R ≈ 0.45

2. R(∂(vRvz)/∂z)/v2
R is somewhere between 0 and 0.55

3. The largest term is ∂ ln(νv2
R)/∂ lnR ≈ 2(∂ ln ν/∂ lnR) ≈ R�/Rd ≈

2.4, where it was assumed that v2
R ∝ ν and that ν(R) ∝

exp(−R/Rd).
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Asymmetric drift

Hence,

ζ = 0.45− 1− 4.8− x = −5.35− x (5)

where 0 < x < 0.55. That is, ζ is uncertain to within only 10%.

These arguments can be inverted, and the measured value of ζ

(from asymmetric drift slope) can be used to infer R�/Rd (or,

more generally, ∂ ln ν/∂ lnR).

If there were no density gradient, there would be no asymmetric

drift!
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The Local Mass Density

The vz Jeans equation (steady-state):
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Drop the first and third terms because they are a factor of ≈
z2/(RRd) smaller than the second and fourth terms:

1

ν

∂(νv2
z )

∂z
= −

∂Φ

∂z
(6)

Near the plane of a highly flattened system, Poisson’s equation
becomes

∂2Φ

∂z2
= 4πGρ (7)
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The Local Mass Density

∂

∂z

1
ν
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 = −4πGρ (8)

If we can measure ν and v2
z (as functions of z), then we can

determine the local mass density ρ, which also includes dark

matter component, if any. This ρ is called the Oort limit.

Oort (1932) estimated ρ(R�, z = 0) = 0.15 M�/pc3.

Bahcall (1984) estimated ρ(R�, z = 0) = 0.18 ± 0.03 M�/pc3.

This appeared as a significant result because the local density of

the luminous matter (stars, gas and white dwarfs) is estimated

at 0.11 M�/pc3, and thus suggests the existence of dark matter

in the disk (the halo dark matter contribution to local ρ is less

than 0.01 M�/pc3).
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However, Kuijken & Gilmore (1989, MNRAS 239, 651) showed

that previous samples and analysis were flawed: there is no ev-

idence that the dynamical mass density is larger than the local

density of the luminous matter – both are around 0.10 M�/pc3.

The shape of local velocity ellipsoid: multiply the collisionless

Boltzmann equation by vRvφ and assume that the velocity el-

lipsoid is aligned with the azimuthal direction: can show that

σ2
φ σ2

R = −B/(A−B) ≈ 0.45, which was used to derive the asym-

metric drift equation.

Spheroidal components with isotropic velocity dispersion: con-

nect the ellipticity of the surface brightness distribution and ro-

tational velocity. The measured rotation speed of giant elliptical

galaxies is much smaller than predicted by assuming isotropic ve-

locity dispersion, while they agree for low-luminosity spheroidal

galaxies.



The Virial Theorem

Zwicki’s derivation: (Ap. J. 1937, 86, 217)

mi
d2~xi

dt2
= ~Fi (9)

where ~Fi is the total forces on galaxy i.

Scalar multiplication with ~xi gives:

1

2
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(
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)2

(10)

Summing over all cluster members gives the virial theorem. For

Newtonian gravity only, the virial can be converted into the po-

tential energy of the system.
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The Virial Theorem

In a steady state,

1

2

d2

dt2
(mix

2
i ) = 0, (11)

and, for self-gravitating system,

2K + Φ = 0 (12)

where K = M < v2 > is the kinetic energy. Thus,

E = K + Φ = −K =
1

2
Φ (13)

If a system collapses from infinity, half of the potential energy

will end up in kinetic energy, and the other half will be disposed

of!

Self-gravitating systems have negative heat capacity!
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