Astr 509: Astrophysics III: Stellar Dynamics

Winter Quarter 2005, University of Washington, Željko Ivezić

Lecture 5: The Orbits of Stars

Static Spherical Potentials

Orbits in Static Spherical Potentials

The problem: given the initial conditions $\mathrm{x}\left(t_{o}\right)$ and $\dot{\mathbf{x}}\left(t_{o}\right)$, and the potential $\Phi(r)$, find $\mathbf{x}(t)$.

Orbits in spherical potentials are easy to consider and lead to some important concepts.

- Some general considerations
- Example 1: Spherical harmonic oscillator: $\Phi(r)=A+B r^{2}$
- Example 2: Point mass potential: $\Phi(r)=\frac{-G M}{r}$
- Example 3: Isochrone potential: $\Phi(r)=\frac{-G M}{b+\sqrt{b^{2}+r^{2}}}$

General considerations

The initial conditions are 6-dimensional and thus a general solution includes six orbital parameters. (aka constants of motion)

The equation of motion in a spherical potential is:

$$
\begin{equation*}
\ddot{\mathbf{r}}=F(r) \widehat{\mathbf{e}}_{r} \tag{1}
\end{equation*}
$$

i.e. the force is always radial!

Crossing through by \mathbf{r}, we show that the angular momentum vector, $\mathbf{L} \equiv \mathbf{r} \times \dot{\mathbf{r}}$ is conserved:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}}(\mathbf{r} \times \dot{\mathbf{r}})=\frac{\mathrm{d} \mathbf{r}}{\mathrm{dt}} \times \frac{\mathrm{d} \mathbf{r}}{\mathrm{dt}}+\mathbf{r} \times \frac{\mathrm{d}^{2} \mathbf{r}}{\mathrm{dt}^{2}}=F(r) \times \widehat{\mathbf{e}}_{r}=0 \tag{2}
\end{equation*}
$$

Therefore, the motion is constrained to the plane perpendicular to \mathbf{L}, and can be fully described in cylindrical coordinate system, r and $\psi\left(\mathbf{v}=\dot{r} \widehat{\mathbf{e}}_{r}+r \dot{\psi} \widehat{\mathbf{e}}_{\psi}\right)$

General considerations

The equations of motion in the plane are

$$
\begin{aligned}
\ddot{r}-r \dot{\psi}^{2} & =F(r) \\
2 \dot{r} \dot{\psi}+r \ddot{\psi} & =0 .
\end{aligned}
$$

The second equation comes from $r^{2} \dot{\psi}=L=$ const. (note that this is the second Kepler's law!)
$\dot{\psi}$ can be eliminated using $\dot{\psi}=L / r^{2}$, leading to a one-dimensional equation of motion:

$$
\begin{equation*}
\ddot{r}-L^{2} / r^{3}=F(r) . \tag{3}
\end{equation*}
$$

This equation motivates a definition of an effective potential

$$
\begin{equation*}
-\nabla \Phi_{\mathrm{eff}} \equiv F(r)+L^{2} / r^{3}, \tag{4}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\Phi_{\text {eff }}(r) \equiv \Phi(r)+\frac{L^{2}}{2 r^{2}} . \tag{5}
\end{equation*}
$$

General considerations

The energy per unit mass is

$$
\begin{equation*}
E=\frac{1}{2} v^{2}+\Phi(r)=\frac{1}{2}\left(\dot{r}^{2}+r^{2} \dot{\psi}^{2}\right)+\Phi(r)=\frac{1}{2}\left(\dot{r}^{2}+\Phi_{\mathrm{eff}}(r)\right) . \tag{6}
\end{equation*}
$$

For bound orbits r oscillates between an inner radius, or pericenter $\left(r_{\text {min }}\right)$, and an outer radius, or apocenter ($r_{\text {max }}$). The radial period is

$$
\begin{equation*}
T_{r}=2 \int_{r_{\min }}^{r_{\max }}\left(\sqrt{2\left[E-\Phi_{\mathrm{eff}}(r)\right]}\right)^{-1} d r \tag{7}
\end{equation*}
$$

The pericenter and apocenter are the solutions of $\Phi_{\text {eff }}(r)=E$.

General considerations

The azimuthal period is

$$
\begin{equation*}
T_{\psi}=\frac{2 \pi}{\Delta \psi} T_{r} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \psi=2 L \int_{r_{\text {min }}}^{r_{\text {max }}}\left(r^{2} \sqrt{2\left[E-\Phi_{\mathrm{eff}}(r)\right]}\right)^{-1} d r \tag{9}
\end{equation*}
$$

The orbit is closed only for $\Delta \psi=k(2 \pi)$ - in general case, the orbit forms a rosette.

The orbital precession rate:

$$
\begin{equation*}
\Omega_{p}=\frac{\Delta \psi-2 \pi}{T_{r}} \tag{10}
\end{equation*}
$$

General considerations

If we eliminate t rather than ψ, then we have an equation for the orbit's shape. In terms of the variable $u \equiv 1 / r$

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \psi^{2}}+u=-\frac{F(u)}{L^{2} u^{2}} \Rightarrow \frac{\mathrm{~d}^{2} u}{\mathrm{~d} \psi^{2}}=\zeta(u) \tag{11}
\end{equation*}
$$

This is a second order differential equation for $u(\psi)$, where $\zeta(u)$ and the initial conditions are presumably specified.

Let's now look at specific examples.

The harmonic potential

$$
\begin{equation*}
\Phi=\Phi_{0}+\frac{1}{2} \Omega^{2} r^{2} \tag{12}
\end{equation*}
$$

Generated by homogeneous density distribution.

The motion decouples in cartesian co-ordinates to $\ddot{x}=-\Omega^{2} x$ and $\ddot{y}=-\Omega y$, and the solution is:

$$
\begin{equation*}
x=X \cos \left(\Omega t+\phi_{x}\right), \quad y=Y \sin \left(\Omega t+\phi_{y}\right) \tag{13}
\end{equation*}
$$

where X, Y, ϕ_{x} and ϕ_{y} are arbitrary constants (determined from initial conditions).

This is the equation for an ellipse centered on the origin.

Orbits are closed since the periods for x and y oscillations are identical.

Point mass (Keplerian) potential

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \psi^{2}}+u=\frac{G M}{L^{2}} \Rightarrow u=\frac{G M}{L^{2}}\left[1+e \cos \left(\psi-\psi_{0}\right)\right] \tag{14}
\end{equation*}
$$

This is the equation for an ellipse with one focus at the origin and eccentricity e (the first Kepler's law). The semi-major axis is $a=L^{2} / G M\left(1-e^{2}\right)$.

The motion is periodic in ψ with period 2π. This gives a closed orbit with

$$
\begin{equation*}
T_{r}=T_{\psi}=2 \pi \sqrt{\frac{a^{3}}{G M}}=2 \pi G M(2|E|)^{-3 / 2} \tag{15}
\end{equation*}
$$

Note that $T^{2} \propto a^{3}-$ the third Kepler's law!

Isochrone Potential

$$
\begin{equation*}
\Phi(r)=\frac{-G M}{b+\sqrt{b^{2}+r^{2}}} \tag{16}
\end{equation*}
$$

More extended than point mass, less extended than harmonic potential.
T_{r} same as for the Keplerian case ($T_{r}=2 \pi G M(2|E|)^{-3 / 2}$).
However,

$$
\begin{equation*}
\Delta \psi=\pi\left[1+\frac{L}{\sqrt{L^{2}+4 G M b}}\right] \tag{17}
\end{equation*}
$$

i.e. $\pi<\Delta \psi<2 \pi$, and hence the orbits are not closed.

