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Lecture 3: Potential Theory II

Multipole Expansion, Potential of Disks
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Multipole Expansions

How do we solve Poisson’s equation for a general density distri-

bution?

Poisson’s equation is a linear equation – find a complete set of

orthogonal functions ψn such that

∇2ψn = λnψn, (1)

where orthogonal means∫
ψ∗nψmw(x) d3x = δnm, (2)

and w(x) is some weight function.

This is an eigenvalue problem and the potential for any arbitrary

mass distribution is easily found. The density is decomposed into

a sum over the eigenfunctions:

ρ(x) =
∑
n
Cnψn(x), (3)
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where

Cn =
∫
ψ∗n(x)ρ(x)d3x. (4)

The potential is now just

Φ(x) = 4πG
∑
n

Cn

λn
ψn(x). (5)

and we are done.

For example, in cartesian coordinates,

ψk(x) = ρke
i(kxx+kyy+kzz) (6)

are eigenfunctions of the Laplacian, with eigenvalues −|k|2. So

that if we decompose the density field into its Fourier modes,

ρ(k), then the potential is just

Φ =
∑
k

−
4πGρ(k)ei(kxx+kyy+kzz)

k2
. (7)



Multipole Expansions

This procedure is practical only if the given density distribution

can be approximated by a small number of eigenfunctions.

It works well for nearly spherical mass distributions:
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Using the method of separation of variables we can split this up

into three equations, one in each of the independent variables.

To do this we assume ψ will be a product of eigenfunctions of

the individual equations.

ψ(r, θ, φ) = R(r)P (θ)Q(φ). (9)

Substituting this in, we have
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The left side of the equation does not depend on φ, and the right
side does not depend on r or θ, so both sides must be equal to
a constant which we will, with foresight, guess as m2. So

d2Q

dφ2
= −m2Q, (11)

whose eigenfunctions are easily seen as

Q(φ) =
∑
m
eimφ. (12)

Where m must be an integer for single valued functions.

Rewriting the other side of the equation, we have
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. (13)

Again, we can set both sides equal to a constant, l(l + 1). In
terms of x ≡ cos θ, we have

d

dx

[
(1− x2)

dP

dx

]
−

m2

1− x2
P = −l(l+ 1)P, (14)

the eigenfunctions of which are associated Legendre functions,
P
|m|
l , with eigenvalues, l(l + 1). The combination of Legendre



functions and circular functions are referred to as spherical har-

monics, Y ml (θ, φ), where∫ π

0
sin θdθ

∫ 2π

0
dφY m∗l (θ, φ)Y m

′
l′ (θ, φ) = δll′δmm′. (15)

The eigenfunctions of the radial equation are spherical Bessel

functions, jl(kr) with eigenvalues −k2.

In practice, the radial eigenfunctions are rarely used since they

do a very poor job of representing the radial density distribution

of a galaxy, but since many galaxies are nearly spherical, the

spherical harmonics can be of considerable practical use.



Multipole Expansions

A more practical way to proceed is to consider the potential of

a spherical shell. In this case, everywhere except on the shell,

we have Laplace’s equation: ∇2Φ = 0. The solution to this

equation is very similar to Poisson’s equation except that the

radial equation is now:

d

dr

(
r2

dR

dr

)
− l(l+ 1)R = 0. (16)

The simplest solutions of which are

R(r) = Arl and Br−(l+1). (17)

Note that spherical bessel functions reduce to these in the limit

of large k.

Now we expect the potential for a thin shell to be finite in its

interior so it should be comprised of terms that look like:

Φint(r, θ, φ) = ArlY ml (θ, φ). (18)
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On the other hand externally, the field should fall to zero. So

Φext(r, θ, φ) = Dr−(l+1)Y ml (θ, φ). (19)

The interior and the exterior solutions can be matched at the
shell by requiring that the potential be continuous and matching
the gradient of the potential using Gauss’s theorem on a small
volume around the shell. We can therefore find the potential at
any point by summing the exterior potentials of all shells interior
to that point, and summing the interior potentials of all shells
exterior to that point:

Φ(r, θ, φ) = −4πG
∑
l,m

Y ml (θ, φ)

2l+ 1

[
1

r(l+1)

∫ r

0
ρlm(r′)r′(l+2)

dr′

+rl
∫ ∞

r
ρlm(r′)

dr′

r′(l−1)

]
.

Note in particular the exterior potential: the monopole declines
as 1/r, the dipole (l = 1) as 1/r2 and the quadrapole (l = 2)
as 1/r3. If we expand about the center of mass, the dipole will
be zero, and the correction to the monopole potential gets very
small with increasing r. Direct analogy with E&M!



Potentials of Disks

Multipoles don’t do well for disks because of the wrong coordi-

nate system.

Consider a thin disk such that ρ = 0 for z 6= 0. Laplace’s equation

in cylindrical coordinates (ignoring φ) is

1
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+
∂2Φ

∂z2
= 0. (20)

Just as in the spherical case, we can use separation of variables

to find solutions of this equation:

Φ(R, z) = J(R)Z(z). (21)

This gives

1

J(R)R

d

dR
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=

−1

Z(z)

d2Z

dz2
= −k2, (22)

with k an arbitrary constant.
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So we have

d2Z

dz2
− k2Z = 0, (23)

1

R

d

dR

(
R

dJ

dR

)
+ k2J(R) = 0. (24)

The potential is therefore

Φk(R, z) = e−k|z|J0(kR). (25)

where J0(kR) is a Bessel function.

If we match the solutions at z = 0, from Gauss’s theorem we

have

Σk(R) = −
k

2πG
J0(kR). (26)



Potentials of Disks

Thus we can find the potential of a disk with surface density
Σ(R) if we can find a function S(k) such that

Σ(R) =
∫ ∞

0
S(k)Σk(R)dk = −

1

2πG

∫ ∞

0
S(k)J0(kR)kdk. (27)

This is a Hankel transform, (which is completely analogous to
the Fourier transform) and the inverse gives

S(k) = −2πG
∫ ∞

0
J0(kR)Σ(R)RdR. (28)

The potential is

Φ(R, z) = −2πG
∫ ∞

0
dke−k|z|J0(kR)

∫ ∞

0
Σ(R′)J0(kR

′)R′dR′,

(29)

and the circular speed (R times centripetal force) is

v2c = R

(
∂Φ

∂R

)
z=0

= −R
∫ ∞

0
S(k)J1(kR)kdk. (30)
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Potentials of Disks – Examples

Mestel’s disk where

Σ(R) =
Σ0R0

R
. (31)

In this case

S(k) = −
2πGΣ0R0

k
(32)

and

v2c (R) = 2πGΣ0R0R
∫ ∞

0
J1(kR)dk = 2πGΣ0R0, (33)

which is constant!

This is the same as a spherical mass distribution with M(r) ∼ r.

If the disk had a sharp edge, there would be greater than keplerian

fall off.
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Potentials of Disks – Examples

Exponential disk where

Σ(R) = Σ0 exp
−R
Rd

. (34)

In this case

S(k) = −
2πGΣ0R

2
d

(1 + k2R2
d)

3/2
(35)

and (after some integration and algebra)

v2c (R) = 4πGΣ0Rd ly
2 [I0(y)K0(y)− I1(y)K1(y)], (36)

where y = R/(2Rd), and I and K are modified Bessel functions

of the first and second kinds.

vc increases to y ∼ 1 and then decreases (slightly faster than

Keplerian, see fig. 2-17).
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Potentials of Disks – Examples

In both examples disks are infinitely thin – what about “real”

disks, say exponential disk

ρ(R) = ρ0 exp
−R
Rd

exp−|z|/H? (37)

The solution is given in Kuijken & Gilmore (1989, MNRAS, 239,

571).

9



Potentials of Disks

Can we determine Σ(R) from a given vc(R)?

In principle, yes (see eq. 2-174). Σ(R) can be inferred from the

value of the gradient of v2c in the neighborhood of R.

However, in practice this is a very noisy method and more robust

Σ(R) is obtained by fitting a model to the vc curve.
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