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Lecture 2: Potential Theory I

Spherical Systems and Potential–Density Pairs
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Potential Theory I

• If we know the mass distribution, how do we find the gravi-

tational potential?

• If we know the gravitational potential, how do we find the

mass distribution?

• Gauss’ theorems

• Some famous potential-density pairs
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Poisson’s equation

Gravitational force (F = GMm/r2):

F(x) = GMm
x′ − x

|x′ − x|3
(1)

To calculate the force on a unit mass (M=1) at a point x, we

sum over all the contributions from each element δ3x′:

δF(x) = G
x′ − x

|x′ − x|3
δm(x′) = G

x′ − x

|x′ − x|3
ρ(x′)δ3x′. (2)

This gives

F(x) = G
∫ x′ − x

|x′ − x|3
ρ(x′)δ3x′. (3)
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Poisson’s equation

Introduce the gravitational potential, defined as:

Φ(x) = −G
∫

ρ(x′)

|x′ − x|
d3x′, (4)

note that

∇x

(
1

|x′ − x|

)
=

x′ − x

|x′ − x|3
, (5)

(so ∇xΦ looks like F) we have

F(x) = ∇
∫

Gρ(x′)

|x′ − x|
d3x′ = −∇Φ. (6)
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Poisson’s equation

F(x) = ∇
∫

Gρ(x′)

|x′ − x|
d3x′ = −∇Φ. (7)

Deriving the force from a potental field has several advantanges:

• It constrains the force field to be conservative. (The work
required to get a mass from one position to another is in-
dependent of the path, or

∫
Fḋx is path independent.) Also

note that we can’t choose an arbitrary F.

• The scalar field, Φ is easier to visualize than a vector field.

• A scalar field is often easier to calculate than a vector field.

(1/3 the work).
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Poisson’s equation

The divergence of the force is:

∇x · F(x) = G
∫
∇x ·

(
x′ − x

|x′ − x|3

)
ρ(x′)d3x′. (8)

But (from the product rule)

∇x ·
(

x′ − x

|x′ − x|3

)
= −

3

|x′ − x|3
+

3(x′ − x) · (x′ − x)

|x′ − x|5
. (9)

which is 0 for x′ 6= x. So we can restrict the volume of integration

to an arbitrarily small sphere (of radius h) about x.
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Poisson’s equation

We can take ρ(x′) out of the integral and we have

∇x · F(x) = Gρ(x)
∫
|x′−x|≤h

∇x ·
(

x′ − x

|x′ − x|3

)
d3x′

= −Gρ(x)
∫
|x′−x|≤h

∇x′ ·
(

x′ − x

|x′ − x|3

)
d3x′

= −Gρ(x)
∫
|x′−x|=h

(x′ − x) · d2S′

|x′ − x|3
,

where we have replaced a divergence with respect to x with a

divergence with respect to x′, and used the divergence theorem

to replace a volume integral with a integral over the enclosing

surface. Now on the surface, we have |x′ − x| = h and d2S′ =

(x′ − x)hd2Ω. So

∇x · F(x) = −Gρ(x)
∫

d2Ω = −4πGρ(x). (10)
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Poisson’s equation

Substituting −∇Φ for F we have Poisson’s equation: Hoorray!!

∇2Φ = 4πGρ. (11)

The derivation of the Poisson’s equation stems from the facts

that

1. the gravitational force is conservative (so we can define a Φ)

and

2. the central 1/r2 nature of the force between two mass ele-

ments, so that the divergence of the force is zero in a vac-

cuum.

8



Poisson’s equation

Integrating Poisson’s equation over an arbitrary volume gives

4πG
∫

ρd3x = 4πGM =
∫
∇2Φd3x =

∫
∇Φ · d2S. (12)

where the divergence theorem is used.

This is Gauss’s theorem: the integral of the normal compo-

nent of ∇Φ over any closed surface equals 4πG times the mass

contained within that surface.
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The Potential Energy

The force between two point masses is conservative, so the total

work required to assemble a configuration of mass, ρ(x) is

independent of the path taken to assemble it, and is defined as

the potential energy. That is, for any ρ(x), there exists a well

defined W , the work required to assemble that distribution, and

is given by

W = −
1

8πG

∫
|∇Φ|2d3x =

1

2

∫
ρ(x)Φ(x)d3x. (13)

When discussing equilibrium models of stellar systems, relating

observed velocity dispersions to the mass distribution of a model

will involve a tensor

Wjk = −
∫

ρ(x)xj
∂Φ

∂xk
d3x, (14)

known as the Chandrasekhar potential energy tensor.
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The Potential Energy Tensor

It is “easy” to show that

Wjk = −
1

2
G
∫ ∫

ρ(x)ρ(x′)
(x′j − xj)(x

′
k − xk)

|x− x′|3
d3x′d3x. (15)

i.e., W is symmetric.

Note that

trace(W) = −
1

2
G
∫

ρ(x)
∫

ρ(x′)

|x− x′|
d3x′d3x

=
1

2

∫
ρ(x)Φ(x)d3x.

i.e. trace(W) is W , the gravitational potential energy.
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The Potential Energy Tensor

For spherical matter distribution:

W = −4πG
∫

ρM(r)rdr. (16)

Allows a definition of a characteristic size of a system that does

not have a sharp boundary:

rg ≡
GM2

|W |
. (17)

Also note that for a spherical system Wjk is diagonal ( Wjk = 0

for j 6= k), and isotropic:

Wjk =
1

3
Wδjk. (18)
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Spherical Systems – Newton’s theorems

Newton’s first theorem: A body that is inside a spherical shell of

matter experiences no net gravitational force from that shell.

Newton’s second theorem: The gravitational force on a body

that lies outside a closed spherical shell of matter is the same

as it would be if all the shell’s matter were concentrated into a

point at its center.

Since the potentials add linearly, we can easily calculate the po-

tential at any point in a spherical density distribution by sep-

arately calculating contributions from the interior and exterior

parts:

Φ(r) = −4πG

[
1

r

∫ r

0
ρ(r′)r′2dr′ +

∫ ∞
r

ρ(r′)r′dr′
]
. (19)

The first term is the interior mass taken to be at the center, and

the second is a sum over the potentials due to exterior shells.
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Spherical Systems – Important Quantities

The velocity of a test particle on a circular orbit is the circular
speed, vc. Setting the centripetal acceleration equal to the force
we get

v2
c = r

dΦ

dr
= r|F| =

GM(r)

r
. (20)

So the circular speed is a measure of the mass interior to r. Now
we have something we can use: if you tell me what vc is as a
function of r for a galaxy, and I can assume it is spherical, I can
tell you what the mass is as a function of r. (Not the case for a
non-spherical distribution.)

Another important quantity is the escape speed, ve, defined by

ve(r) =
√

2|Φ(r)|. (21)

This definition comes from setting the kinetic energy of a star
equal to the abolute value of its potential energy. That is, stars
with positive total energy are not bound to the system. In order
for a star to escape from from the gravitational field represented
by Φ, it is necessary that its speed be greater than ve. This can
be used to get the local Φ of the galaxy.
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Spherical Systems – Simple Examples

Point mass:

Φ(r) = −
GM

r
; vc(r) =

√
GM

r
; ve(r) =

√
2GM

r
. (22)

Whenever the circular speed declines as r1/2 it is referred to as
Keplerian. It usually implies that there is no significant mass at
that radius.

Homogeneous sphere:

M =
4

3
πr3ρ ; vc =

√
4πGρ

3
r. (23)

The equation of motion for a particle in such a body is

d2r

dt2
= −

GM(r)

r2
= −

4πGρ

3
r, (24)

which describes a harmonic oscillator with period

T =

√
3π

Gρ
. (25)
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Spherical Systems – Simple Examples

Independent of r, if a particle is started at r, it will reach the

center in a time

tdyn =
T

4
=

√
3π

16Gρ
, (26)

known as the dynamical time. Although this result is only true

for a homogeneous sphere, it is common practice to use this

definition with any system of density ρ.

By integrating the density for a homogeneous sphere, we can get

the potental:

Φ =

 −2πGρ(a2 − 1
3r2), r < a

−4πGρa3

3r , r > a.

One would expect the center of a galaxy to have a potential of

this type if there is no cusp in the central density (implying a

linear rise in vc).
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Spherical Systems – Simple Examples

Isochrone potential:

Φ(r) = −
GM

b +
√

b2 + r2
. (27)

This has the nice property of going from a harmonic oscillator in

the middle to a Keplerian potential at large r, with the transition

occurring at a scale b.

The circular speed is

v2
c =

GMr2

(b + a)2a
, (28)

where a ≡
√

b2 + r2.

Using Poisson’s equation, we can find the density:

ρ(r) =
1

4πGr2
d

dr

(
r2

dΦ

dr

)
= M

[
3(b + a)a2 − r2(b + 3a)

4π(b + a)3a3

]
. (29)
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So the central density is

ρ(0) =
3M

16πb3
, (30)

and the asymptotic density is

ρ(r) ≈
bM

2πr4
. (31)

See also modified Hubble profile and power-law profile.



Potential–Density Pairs

Simple models can be used to illustrate the dynamics of axisy-

metric galaxies.

Plummer’s (1911) model: spherically symmetric

Kuzmin’s (1956) model: infinitely thin disk (aka Toomre’s

model 1)

Plummer–Kuzmin models’: introduced by Miyamoto & Nagai

(1975), smooth transition from Plummer’s to Kuzmin’s models

Logarithmic potentials: the circular speed is a constant at

large radii

18



Simple Models
• Very different models (top: thin

and thick disk without halo; mid-

dle: single disk and halo, bot-

tom: the difference) can produce

the same ρ(z|R = R�)

• Observationally, ρ(z|R = R�) is

well fit by a sum of double expo-

nential (thin and thick disk) and

power-law profiles.
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Plummer–Kuzmin models

Φ(R, z) = −
GM√

R2 + (a +
√

z2 + b2)2
. (32)

For a = 0, this reduces to a Plummer model. For b = 0, it

reduces to the Kuzmin disk. By varying the ratio b/a we have a

series of models that go from a thin disk to a spherical model.

Using Poisson’s equation to calculate ρ, we have

ρ(R, z) =

(
b2M

4π

)
aR2 + (a + 3

√
z2 + b2)(a +

√
z2 + b2)2

[R2 + (a +
√

z2 + b2)2]5/2(z2 + b2)3/2
. (33)

For b/a = 0.2, this density is qualitatively the same as disk galax-

ies, but the asymptotic behaviour is different: ρ falls off like 1/r3

whereas in real disks, the light falls off exponentially.
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Logarithmic potentials

If vc = v0 is a constant , then dΦ/dR ∝ 1/R, and therefore

Φ ∝ v2
0 lnR + C. So consider

Φ =
1

2
v2
0 ln

(
R2

c + R2 +
z2

q2Φ

)
+ constant. (34)

where qΦ ≤ 1 for oblate potentials. Poisson’s equation gives:

ρ =

(
v2
0

4πGq2Φ

)
(2q2Φ + 1)R2

c + R2 + 2(1− 1
2q−2

Φ )z2

(r2c + R2 + z2q−2
Φ )2

. (35)

The density asymptotes to R−2 or z−2. Note that this implies

an infinite mass.

This potential also gives a drastic example of a general phe-

nomenon: the density distribution is much flatter than the po-

tential distribution. In this case, the density can even go negative

if qΦ < 1/
√

2 (giving unphysical Φ).
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Poisson’s equation for thin disks

In an axisymetric system Poisson’s equation is

1

R

∂

∂R
R

(
∂Φ

∂R

)
+

∂2Φ

∂z2
= 4πGρ. (36)

Note that if the density is concentrated in the plane, both ρ

and the second derivative w.r.t. z will get very large while the

second derivative w.r.t R remains well behaved. For a thin disk,

therefore, Poisson’s equation simplifies to

∂2Φ(R, z)

∂z2
= 4πGρ(R, z). (37)

So in the thin disk approximation one can first determine the

potential in the plane of the disk Φ(R,0), and then at each

radius solve for the vertical structure.

22


