Astr 509: Astrophysics III: Stellar Dynamics Winter Quarter 2005, University of Washington, Željko Ivezić

Lecture 2: Potential Theory I

Spherical Systems and Potential—Density Pairs

Potential Theory I

- If we know the mass distribution, how do we find the gravitational potential?
- If we know the gravitational potential, how do we find the mass distribution?
- Gauss' theorems
- Some famous potential-density pairs

Gravitational force $(F = GMm/r^2)$:

$$\mathbf{F}(\mathbf{x}) = GMm \frac{\mathbf{x}' - \mathbf{x}}{|\mathbf{x}' - \mathbf{x}|^3} \tag{1}$$

To calculate the force on a **unit mass** (M=1) at a point \mathbf{x} , we sum over all the contributions from each element $\delta^3 \mathbf{x}'$:

$$\delta \mathbf{F}(\mathbf{x}) = G \frac{\mathbf{x}' - \mathbf{x}}{|\mathbf{x}' - \mathbf{x}|^3} \delta m(\mathbf{x}') = G \frac{\mathbf{x}' - \mathbf{x}}{|\mathbf{x}' - \mathbf{x}|^3} \rho(\mathbf{x}') \delta^3 \mathbf{x}'. \tag{2}$$

This gives

$$\mathbf{F}(\mathbf{x}) = G \int \frac{\mathbf{x}' - \mathbf{x}}{|\mathbf{x}' - \mathbf{x}|^3} \rho(\mathbf{x}') \delta^3 \mathbf{x}'.$$
 (3)

Introduce the **gravitational potential**, defined as:

$$\Phi(\mathbf{x}) = -G \int \frac{\rho(\mathbf{x}')}{|\mathbf{x}' - \mathbf{x}|} d^3 \mathbf{x}', \tag{4}$$

note that

$$\nabla_{\mathbf{x}} \left(\frac{1}{|\mathbf{x}' - \mathbf{x}|} \right) = \frac{\mathbf{x}' - \mathbf{x}}{|\mathbf{x}' - \mathbf{x}|^3},\tag{5}$$

(so $\nabla_{\mathbf{x}}\Phi$ looks like \mathbf{F}) we have

$$\mathbf{F}(\mathbf{x}) = \nabla \int \frac{G\rho(\mathbf{x}')}{|\mathbf{x}' - \mathbf{x}|} d^3 \mathbf{x}' = -\nabla \Phi.$$
 (6)

$$\mathbf{F}(\mathbf{x}) = \nabla \int \frac{G\rho(\mathbf{x}')}{|\mathbf{x}' - \mathbf{x}|} d^3 \mathbf{x}' = -\nabla \Phi.$$
 (7)

Deriving the force from a potental field has several advantanges:

- It constrains the force field to be conservative. (The work required to get a mass from one position to another is independent of the path, or $\int \mathbf{F} d\mathbf{x}$ is path independent.) Also note that we can't choose an arbitrary \mathbf{F} .
- The scalar field, Φ is easier to visualize than a vector field.
- A scalar field is often easier to calculate than a vector field.
 (1/3 the work).

The divergence of the force is:

$$\nabla_{\mathbf{x}} \cdot \mathbf{F}(\mathbf{x}) = G \int \nabla_{\mathbf{x}} \cdot \left(\frac{\mathbf{x}' - \mathbf{x}}{|\mathbf{x}' - \mathbf{x}|^3} \right) \rho(\mathbf{x}') d^3 \mathbf{x}'.$$
 (8)

But (from the product rule)

$$\nabla_{\mathbf{x}} \cdot \left(\frac{\mathbf{x}' - \mathbf{x}}{|\mathbf{x}' - \mathbf{x}|^3} \right) = -\frac{3}{|\mathbf{x}' - \mathbf{x}|^3} + \frac{3(\mathbf{x}' - \mathbf{x}) \cdot (\mathbf{x}' - \mathbf{x})}{|\mathbf{x}' - \mathbf{x}|^5}.$$
 (9)

which is 0 for $x' \neq x$. So we can restrict the volume of integration to an arbitrarily small sphere (of radius h) about x.

We can take $\rho(\mathbf{x}')$ out of the integral and we have

$$\nabla_{\mathbf{x}} \cdot \mathbf{F}(\mathbf{x}) = G\rho(\mathbf{x}) \int_{|\mathbf{x}' - \mathbf{x}| \le h} \nabla_{\mathbf{x}} \cdot \left(\frac{\mathbf{x}' - \mathbf{x}}{|\mathbf{x}' - \mathbf{x}|^3}\right) d^3 \mathbf{x}'$$

$$= -G\rho(\mathbf{x}) \int_{|\mathbf{x}' - \mathbf{x}| \le h} \nabla_{\mathbf{x}'} \cdot \left(\frac{\mathbf{x}' - \mathbf{x}}{|\mathbf{x}' - \mathbf{x}|^3}\right) d^3 \mathbf{x}'$$

$$= -G\rho(\mathbf{x}) \int_{|\mathbf{x}' - \mathbf{x}| = h} \frac{(\mathbf{x}' - \mathbf{x}) \cdot d^2 \mathbf{S}'}{|\mathbf{x}' - \mathbf{x}|^3},$$

where we have replaced a divergence with respect to \mathbf{x} with a divergence with respect to \mathbf{x}' , and used the divergence theorem to replace a volume integral with a integral over the enclosing surface. Now on the surface, we have $|\mathbf{x}' - \mathbf{x}| = h$ and $d^2\mathbf{S}' = (\mathbf{x}' - \mathbf{x})hd^2\Omega$. So

$$\nabla_{\mathbf{x}} \cdot \mathbf{F}(\mathbf{x}) = -G\rho(\mathbf{x}) \int d^2\Omega = -4\pi G\rho(\mathbf{x}). \tag{10}$$

Substituting $-\nabla \Phi$ for F we have **Poisson's equation**: Hoorray!!

$$\nabla^2 \Phi = 4\pi G \rho. \tag{11}$$

The derivation of the Poisson's equation stems from the facts that

- 1. the gravitational force is conservative (so we can define a Φ) and
- 2. the central $1/r^2$ nature of the force between two mass elements, so that the divergence of the force is zero in a vaccuum.

Integrating Poisson's equation over an arbitrary volume gives

$$4\pi G \int \rho d^3 \mathbf{x} = 4\pi G M = \int \nabla^2 \Phi d^3 \mathbf{x} = \int \nabla \Phi \cdot d^2 \mathbf{S}.$$
 (12)

where the divergence theorem is used.

This is **Gauss's theorem**: the integral of the normal component of $\nabla \Phi$ over any closed surface equals $4\pi G$ times the mass contained within that surface.

The Potential Energy

The force between two point masses is conservative, so the **total** work required to assemble a configuration of mass, $\rho(\mathbf{x})$ is independent of the path taken to assemble it, and is defined as the **potential energy**. That is, for any $\rho(\mathbf{x})$, there exists a well defined W, the work required to assemble that distribution, and is given by

$$W = -\frac{1}{8\pi G} \int |\nabla \Phi|^2 d^3 \mathbf{x} = \frac{1}{2} \int \rho(\mathbf{x}) \Phi(\mathbf{x}) d^3 \mathbf{x}.$$
 (13)

When discussing equilibrium models of stellar systems, relating observed velocity dispersions to the mass distribution of a model will involve a tensor

$$W_{jk} = -\int \rho(\mathbf{x}) x_j \frac{\partial \Phi}{\partial x_k} d^3 \mathbf{x}, \qquad (14)$$

known as the Chandrasekhar potential energy tensor.

The Potential Energy Tensor

It is "easy" to show that

$$W_{jk} = -\frac{1}{2}G \int \int \rho(\mathbf{x})\rho(\mathbf{x}') \frac{(x'_j - x_j)(x'_k - x_k)}{|\mathbf{x} - \mathbf{x}'|^3} d^3\mathbf{x}' d^3\mathbf{x}.$$
 (15)

i.e., \mathbf{W} is symmetric.

Note that

trace(W) =
$$-\frac{1}{2}G\int \rho(\mathbf{x})\int \frac{\rho(\mathbf{x}')}{|\mathbf{x} - \mathbf{x}'|} d^3\mathbf{x}' d^3\mathbf{x}$$

 = $\frac{1}{2}\int \rho(\mathbf{x})\Phi(x)d^3\mathbf{x}$.

i.e. trace(\mathbf{W}) is W, the gravitational potential energy.

The Potential Energy Tensor

For spherical matter distribution:

$$W = -4\pi G \int \rho M(r) r dr. \tag{16}$$

Allows a definition of a characteristic size of a system that does not have a sharp boundary:

$$r_g \equiv \frac{GM^2}{|W|}. (17)$$

Also note that for a spherical system W_{jk} is diagonal ($W_{jk}=0$ for $j\neq k$), and isotropic:

$$W_{jk} = \frac{1}{3} W \delta_{jk}. \tag{18}$$

Spherical Systems – Newton's theorems

Newton's first theorem: A body that is inside a spherical shell of matter experiences no net gravitational force from that shell.

Newton's second theorem: The gravitational force on a body that lies outside a closed spherical shell of matter is the same as it would be if all the shell's matter were concentrated into a point at its center.

Since the potentials add linearly, we can easily calculate the potential at any point in a spherical density distribution by separately calculating contributions from the interior and exterior parts:

$$\Phi(r) = -4\pi G \left[\frac{1}{r} \int_0^r \rho(r') r'^2 dr' + \int_r^\infty \rho(r') r' dr' \right].$$
 (19)

The first term is the interior mass taken to be at the center, and the second is a sum over the potentials due to exterior shells.

Spherical Systems – Important Quantities

The velocity of a test particle on a circular orbit is the **circular** speed, v_c . Setting the centripetal acceleration equal to the force we get

$$v_c^2 = r \frac{\mathrm{d}\Phi}{\mathrm{d}r} = r|\mathbf{F}| = \frac{GM(r)}{r}.$$
 (20)

So the circular speed is a measure of the mass interior to r. Now we have something we can use: if you tell me what v_c is as a function of r for a galaxy, and I can assume it is spherical, I can tell you what the mass is as a function of r. (Not the case for a non-spherical distribution.)

Another important quantity is the **escape speed**, v_e , defined by

$$v_e(r) = \sqrt{2|\Phi(r)|}. (21)$$

This definition comes from setting the kinetic energy of a star equal to the abolute value of its potential energy. That is, stars with positive total energy are not bound to the system. In order for a star to escape from from the gravitational field represented by Φ , it is necessary that its speed be greater than v_e . This can be used to get the local Φ of the galaxy.

Spherical Systems – Simple Examples

Point mass:

$$\Phi(r) = -\frac{GM}{r} \quad ; \quad v_c(r) = \sqrt{\frac{GM}{r}} \quad ; \quad v_e(r) = \sqrt{\frac{2GM}{r}}. \quad (22)$$

Whenever the circular speed declines as $r^{1/2}$ it is referred to as **Keplerian**. It usually implies that there is no significant mass at that radius.

Homogeneous sphere:

$$M = \frac{4}{3}\pi r^3 \rho$$
 ; $v_c = \sqrt{\frac{4\pi G\rho}{3}}r$. (23)

The equation of motion for a particle in such a body is

$$\frac{d^2r}{dt^2} = -\frac{GM(r)}{r^2} = -\frac{4\pi G\rho}{3}r,$$
 (24)

which describes a harmonic oscillator with period

$$T = \sqrt{\frac{3\pi}{G\rho}}. (25)$$

Spherical Systems – Simple Examples

Independent of r, if a particle is started at r, it will reach the center in a time

$$t_{dyn} = \frac{T}{4} = \sqrt{\frac{3\pi}{16G\rho}},\tag{26}$$

known as the **dynamical time**. Although this result is only true for a homogeneous sphere, it is common practice to use this definition with any system of density ρ .

By integrating the density for a homogeneous sphere, we can get the potental:

$$\Phi = \begin{cases} -2\pi G \rho (a^2 - \frac{1}{3}r^2), & r < a \\ -\frac{4\pi G \rho a^3}{3r}, & r > a. \end{cases}$$

One would expect the center of a galaxy to have a potential of this type if there is no cusp in the central density (implying a linear rise in v_c).

Spherical Systems – Simple Examples

Isochrone potential:

$$\Phi(r) = -\frac{GM}{b + \sqrt{b^2 + r^2}}. (27)$$

This has the nice property of going from a harmonic oscillator in the middle to a Keplerian potential at large r, with the transition occurring at a scale b.

The circular speed is

$$v_c^2 = \frac{GMr^2}{(b+a)^2a},\tag{28}$$

where $a \equiv \sqrt{b^2 + r^2}$.

Using Poisson's equation, we can find the density:

$$\rho(r) = \frac{1}{4\pi G r^2} \frac{d}{dr} \left(r^2 \frac{d\Phi}{dr} \right) = M \left[\frac{3(b+a)a^2 - r^2(b+3a)}{4\pi (b+a)^3 a^3} \right]. \quad (29)$$

So the central density is

$$\rho(0) = \frac{3M}{16\pi b^3},\tag{30}$$

and the asymptotic density is

$$\rho(r) \approx \frac{bM}{2\pi r^4}.\tag{31}$$

See also modified Hubble profile and power-law profile.

Potential-Density Pairs

Simple models can be used to illustrate the dynamics of axisymetric galaxies.

Plummer's (1911) model: spherically symmetric

Kuzmin's (1956) model: infinitely thin disk (aka *Toomre's model 1*)

Plummer–Kuzmin models': introduced by Miyamoto & Nagai (1975), smooth transition from Plummer's to Kuzmin's models

Logarithmic potentials: the circular speed is a constant at large radii

Simple Models

- Very different models (top: thin and thick disk without halo; middle: single disk and halo, bottom: the difference) can produce the same $\rho(z|R=R_{\odot})$
- Observationally, $\rho(z|R=R_{\odot})$ is well fit by a sum of double exponential (thin and thick disk) and power-law profiles.

Plummer-Kuzmin models

$$\Phi(R,z) = -\frac{GM}{\sqrt{R^2 + (a + \sqrt{z^2 + b^2})^2}}.$$
 (32)

For a=0, this reduces to a Plummer model. For b=0, it reduces to the Kuzmin disk. By varying the ratio b/a we have a series of models that go from a thin disk to a spherical model. Using Poisson's equation to calculate ρ , we have

$$\rho(R,z) = \left(\frac{b^2 M}{4\pi}\right) \frac{aR^2 + (a + 3\sqrt{z^2 + b^2})(a + \sqrt{z^2 + b^2})^2}{[R^2 + (a + \sqrt{z^2 + b^2})^2]^{5/2}(z^2 + b^2)^{3/2}}.$$
 (33)

For b/a=0.2, this density is qualitatively the same as disk galaxies, but the asymptotic behaviour is different: ρ falls off like $1/r^3$ whereas in real disks, the light falls off exponentially.

Logarithmic potentials

If $v_c=v_0$ is a constant , then $\mathrm{d}\Phi/\mathrm{d}R\propto 1/R$, and therefore $\Phi\propto v_0^2\ln R+C$. So consider

$$\Phi = \frac{1}{2}v_0^2 \ln \left(R_c^2 + R^2 + \frac{z^2}{q_\Phi^2} \right) + \text{constant.}$$
 (34)

where $q_{\Phi} \leq 1$ for oblate potentials. Poisson's equation gives:

$$\rho = \left(\frac{v_0^2}{4\pi G q_{\Phi}^2}\right) \frac{(2q_{\Phi}^2 + 1)R_c^2 + R^2 + 2(1 - \frac{1}{2}q_{\Phi}^{-2})z^2}{(r_c^2 + R^2 + z^2 q_{\Phi}^{-2})^2}.$$
 (35)

The density asymptotes to R^{-2} or z^{-2} . Note that this implies an infinite mass.

This potential also gives a drastic example of a general phenomenon: the density distribution is much flatter than the potential distribution. In this case, the density can even go negative if $q_{\Phi} < 1/\sqrt{2}$ (giving unphysical Φ).

Poisson's equation for thin disks

In an axisymetric system Poisson's equation is

$$\frac{1}{R}\frac{\partial}{\partial R}R\left(\frac{\partial\Phi}{\partial R}\right) + \frac{\partial^2\Phi}{\partial z^2} = 4\pi G\rho. \tag{36}$$

Note that if the density is concentrated in the plane, both ρ and the second derivative w.r.t. z will get very large while the second derivative w.r.t R remains well behaved. For a thin disk, therefore, Poisson's equation simplifies to

$$\frac{\partial^2 \Phi(R,z)}{\partial z^2} = 4\pi G \rho(R,z). \tag{37}$$

So in the thin disk approximation one can first determine the potential in the plane of the disk $\Phi(R,0)$, and then at each radius solve for the vertical structure.