Astr 509: Astrophysics III: Stellar Dynamics

Winter Quarter 2005, University of Washington, Željko Ivezić

Lecture 2: Potential Theory I

Spherical Systems and Potential-Density Pairs

Potential Theory I

- If we know the mass distribution, how do we find the gravitational potential?
- If we know the gravitational potential, how do we find the mass distribution?
- Gauss' theorems
- Some famous potential-density pairs

Poisson's equation

Gravitational force ($F=G M m / r^{2}$):

$$
\begin{equation*}
\mathrm{F}(\mathrm{x})=G M m \frac{\mathrm{x}^{\prime}-\mathrm{x}}{\left|\mathrm{x}^{\prime}-\mathrm{x}\right|^{3}} \tag{1}
\end{equation*}
$$

To calculate the force on a unit mass $(M=1)$ at a point x, we sum over all the contributions from each element $\delta^{3} \mathbf{x}^{\prime}$:

$$
\delta \mathbf{F}(\mathrm{x})=G \frac{\mathrm{x}^{\prime}-\mathrm{x}}{\left|\mathrm{x}^{\prime}-\mathrm{x}\right|^{3}} \delta m\left(\mathrm{x}^{\prime}\right)=G \frac{\mathrm{x}^{\prime}-\mathrm{x}}{\left|\mathrm{x}^{\prime}-\mathrm{x}\right|^{3}} \rho\left(\mathrm{x}^{\prime}\right) \delta^{3} \mathrm{x}^{\prime}
$$

This gives

$$
\begin{equation*}
\mathrm{F}(\mathrm{x})=G \int \frac{\mathrm{x}^{\prime}-\mathrm{x}}{\left|\mathrm{x}^{\prime}-\mathrm{x}\right|^{3}} \rho\left(\mathrm{x}^{\prime}\right) \delta^{3} \mathrm{x}^{\prime} . \tag{3}
\end{equation*}
$$

Poisson's equation

Introduce the gravitational potential, defined as:

$$
\begin{equation*}
\Phi(\mathrm{x})=-G \int \frac{\rho\left(\mathrm{x}^{\prime}\right)}{\left|\mathrm{x}^{\prime}-\mathrm{x}\right|} \mathrm{d}^{3} \mathrm{x}^{\prime} \tag{4}
\end{equation*}
$$

note that

$$
\begin{equation*}
\nabla_{\mathrm{x}}\left(\frac{1}{\left|\mathrm{x}^{\prime}-\mathrm{x}\right|}\right)=\frac{\mathrm{x}^{\prime}-\mathrm{x}}{\left|\mathrm{x}^{\prime}-\mathrm{x}\right|^{3}} \tag{5}
\end{equation*}
$$

(so $\nabla_{\mathrm{X}} \Phi$ looks like F) we have

$$
\begin{equation*}
\mathbf{F}(\mathrm{x})=\nabla \int \frac{G \rho\left(\mathrm{x}^{\prime}\right)}{\left|\mathrm{x}^{\prime}-\mathrm{x}\right|} \mathrm{d}^{3} \mathrm{x}^{\prime}=-\nabla \Phi \tag{6}
\end{equation*}
$$

Poisson's equation

$$
\begin{equation*}
\mathrm{F}(\mathrm{x})=\nabla \int \frac{G \rho\left(\mathrm{x}^{\prime}\right)}{\left|\mathrm{x}^{\prime}-\mathrm{x}\right|} \mathrm{d}^{3} \mathrm{x}^{\prime}=-\nabla \Phi . \tag{7}
\end{equation*}
$$

Deriving the force from a potental field has several advantanges:

- It constrains the force field to be conservative. (The work required to get a mass from one position to another is independent of the path, or $\int \mathbf{F d} \mathbf{x}$ is path independent.) Also note that we can't choose an arbitrary \mathbf{F}.
- The scalar field, Φ is easier to visualize than a vector field.
- A scalar field is often easier to calculate than a vector field. (1/3 the work).

Poisson's equation

The divergence of the force is:

$$
\begin{equation*}
\nabla_{\mathrm{x}} \cdot \mathbf{F}(\mathrm{x})=G \int \nabla_{\mathrm{x}} \cdot\left(\frac{\mathrm{x}^{\prime}-\mathrm{x}}{\left|\mathrm{x}^{\prime}-\mathrm{x}\right|^{3}}\right) \rho\left(\mathrm{x}^{\prime}\right) \mathrm{d}^{3} \mathrm{x}^{\prime} . \tag{8}
\end{equation*}
$$

But (from the product rule)

$$
\begin{equation*}
\nabla_{\mathrm{x}} \cdot\left(\frac{\mathrm{x}^{\prime}-\mathrm{x}}{\left|\mathrm{x}^{\prime}-\mathrm{x}\right|^{3}}\right)=-\frac{3}{\left|\mathrm{x}^{\prime}-\mathrm{x}\right|^{3}}+\frac{3\left(\mathrm{x}^{\prime}-\mathrm{x}\right) \cdot\left(\mathrm{x}^{\prime}-\mathrm{x}\right)}{\left|\mathrm{x}^{\prime}-\mathrm{x}\right|^{5}} \tag{9}
\end{equation*}
$$

which is 0 for $\mathrm{x}^{\prime} \neq \mathrm{x}$. So we can restrict the volume of integration to an arbitrarily small sphere (of radius h) about \mathbf{x}.

Poisson's equation

We can take $\rho\left(\mathrm{x}^{\prime}\right)$ out of the integral and we have

$$
\begin{aligned}
\nabla_{\mathrm{x}} \cdot \mathbf{F}(\mathrm{x}) & =G \rho(\mathrm{x}) \int_{\left|\mathrm{x}^{\prime}-\mathrm{x}\right| \leq h} \nabla_{\mathrm{x}} \cdot\left(\frac{\mathrm{x}^{\prime}-\mathrm{x}}{\left|\mathrm{x}^{\prime}-\mathrm{x}\right|^{3}}\right) \mathrm{d}^{3} \mathrm{x}^{\prime} \\
& =-G \rho(\mathrm{x}) \int_{\left|\mathrm{x}^{\prime}-\mathrm{x}\right| \leq h} \nabla_{\mathrm{x}^{\prime}} \cdot\left(\frac{\mathrm{x}^{\prime}-\mathrm{x}}{\left|\mathrm{x}^{\prime}-\mathrm{x}\right|^{3}}\right) \mathrm{d}^{3} \mathrm{x}^{\prime} \\
& =-G \rho(\mathrm{x}) \int_{\left|\mathrm{x}^{\prime}-\mathrm{x}\right|=h} \frac{\left(\mathrm{x}^{\prime}-\mathrm{x}\right) \cdot \mathrm{d}^{2} \mathbf{S}^{\prime}}{\left|\mathrm{x}^{\prime}-\mathrm{x}\right|^{3}}
\end{aligned}
$$

where we have replaced a divergence with respect to x with a divergence with respect to x^{\prime}, and used the divergence theorem to replace a volume integral with a integral over the enclosing surface. Now on the surface, we have $\left|\mathrm{x}^{\prime}-\mathrm{x}\right|=h$ and $\mathrm{d}^{2} \mathbf{S}^{\prime}=$ $\left(\mathrm{x}^{\prime}-\mathrm{x}\right) h \mathrm{~d}^{2} \Omega$. So

$$
\begin{equation*}
\nabla_{\mathrm{x}} \cdot \mathbf{F}(\mathrm{x})=-G \rho(\mathrm{x}) \int \mathrm{d}^{2} \Omega=-4 \pi G \rho(\mathrm{x}) \tag{10}
\end{equation*}
$$

Poisson's equation

Substituting $-\nabla \Phi$ for \mathbf{F} we have Poisson's equation: Hoorray!!

$$
\begin{equation*}
\nabla^{2} \Phi=4 \pi G \rho \tag{11}
\end{equation*}
$$

The derivation of the Poisson's equation stems from the facts that

1. the gravitational force is conservative (so we can define a Φ) and
2. the central $1 / r^{2}$ nature of the force between two mass elements, so that the divergence of the force is zero in a vaccuum.

Poisson's equation

Integrating Poisson's equation over an arbitrary volume gives

$$
\begin{equation*}
4 \pi G \int \rho \mathrm{~d}^{3} \mathrm{x}=4 \pi G M=\int \nabla^{2} \Phi \mathrm{~d}^{3} \mathrm{x}=\int \nabla \Phi \cdot \mathrm{d}^{2} \mathrm{~S} . \tag{12}
\end{equation*}
$$

where the divergence theorem is used.

This is Gauss's theorem: the integral of the normal component of $\nabla \Phi$ over any closed surface equals $4 \pi G$ times the mass contained within that surface.

The Potential Energy

The force between two point masses is conservative, so the total work required to assemble a configuration of mass, $\rho(\mathrm{x})$ is independent of the path taken to assemble it, and is defined as the potential energy. That is, for any $\rho(\mathrm{x})$, there exists a well defined W, the work required to assemble that distribution, and is given by

$$
\begin{equation*}
W=-\frac{1}{8 \pi G} \int|\nabla \Phi|^{2} \mathrm{~d}^{3} \mathrm{x}=\frac{1}{2} \int \rho(\mathrm{x}) \Phi(\mathrm{x}) \mathrm{d}^{3} \mathrm{x} . \tag{13}
\end{equation*}
$$

When discussing equilibrium models of stellar systems, relating observed velocity dispersions to the mass distribution of a model will involve a tensor

$$
\begin{equation*}
W_{j k}=-\int \rho(\mathbf{x}) x_{j} \frac{\partial \Phi}{\partial x_{k}} \mathrm{~d}^{3} \mathbf{x}, \tag{14}
\end{equation*}
$$

known as the Chandrasekhar potential energy tensor.

The Potential Energy Tensor

It is "easy" to show that

$$
\begin{equation*}
W_{j k}=-\frac{1}{2} G \iint \rho(\mathbf{x}) \rho\left(\mathbf{x}^{\prime}\right) \frac{\left(x_{j}^{\prime}-x_{j}\right)\left(x_{k}^{\prime}-x_{k}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{3}} \mathrm{~d}^{3} \mathbf{x}^{\prime} \mathrm{d}^{3} \mathbf{x} \tag{15}
\end{equation*}
$$

i.e., \mathbf{W} is symmetric.

Note that

$$
\begin{aligned}
\operatorname{trace}(\mathbf{W}) & =-\frac{1}{2} G \int \rho(\mathbf{x}) \int \frac{\rho\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \mathrm{d}^{3} \mathrm{x}^{\prime} \mathrm{d}^{3} \mathbf{x} \\
& =\frac{1}{2} \int \rho(\mathbf{x}) \Phi(x) \mathrm{d}^{3} \mathbf{x}
\end{aligned}
$$

i.e. trace (\mathbf{W}) is W, the gravitational potential energy.

The Potential Energy Tensor

For spherical matter distribution:

$$
\begin{equation*}
W=-4 \pi G \int \rho M(r) r \mathrm{~d} r . \tag{16}
\end{equation*}
$$

Allows a definition of a characteristic size of a system that does not have a sharp boundary:

$$
\begin{equation*}
r_{g} \equiv \frac{G M^{2}}{|W|} . \tag{17}
\end{equation*}
$$

Also note that for a spherical system $W_{j k}$ is diagonal ($W_{j k}=0$ for $j \neq k$), and isotropic:

$$
\begin{equation*}
W_{j k}=\frac{1}{3} W \delta_{j k} . \tag{18}
\end{equation*}
$$

Spherical Systems - Newton's theorems

Newton's first theorem: A body that is inside a spherical shell of matter experiences no net gravitational force from that shell.

Newton's second theorem: The gravitational force on a body that lies outside a closed spherical shell of matter is the same as it would be if all the shell's matter were concentrated into a point at its center.

Since the potentials add linearly, we can easily calculate the potential at any point in a spherical density distribution by separately calculating contributions from the interior and exterior parts:

$$
\begin{equation*}
\Phi(r)=-4 \pi G\left[\frac{1}{r} \int_{0}^{r} \rho\left(r^{\prime}\right) r^{\prime 2} \mathrm{~d} r^{\prime}+\int_{r}^{\infty} \rho\left(r^{\prime}\right) r^{\prime} \mathrm{d} r^{\prime}\right] \tag{19}
\end{equation*}
$$

The first term is the interior mass taken to be at the center, and the second is a sum over the potentials due to exterior shells.

Spherical Systems - Important Quantities

The velocity of a test particle on a circular orbit is the circular speed, v_{c}. Setting the centripetal acceleration equal to the force we get

$$
\begin{equation*}
v_{c}^{2}=r \frac{\mathrm{~d} \Phi}{\mathrm{~d} r}=r|\mathbf{F}|=\frac{G M(r)}{r} . \tag{20}
\end{equation*}
$$

So the circular speed is a measure of the mass interior to r. Now we have something we can use: if you tell me what v_{c} is as a function of r for a galaxy, and I can assume it is spherical, I can tell you what the mass is as a function of r. (Not the case for a non-spherical distribution.)

Another important quantity is the escape speed, v_{e}, defined by

$$
\begin{equation*}
v_{e}(r)=\sqrt{2|\Phi(r)|} . \tag{21}
\end{equation*}
$$

This definition comes from setting the kinetic energy of a star equal to the abolute value of its potential energy. That is, stars with positive total energy are not bound to the system. In order for a star to escape from from the gravitational field represented by Φ, it is necessary that its speed be greater than v_{e}. This can be used to get the local Φ of the galaxy.

Spherical Systems - Simple Examples

Point mass:

$$
\begin{equation*}
\Phi(r)=-\frac{G M}{r} \quad ; \quad v_{c}(r)=\sqrt{\frac{G M}{r}} \quad ; \quad v_{e}(r)=\sqrt{\frac{2 G M}{r}} \tag{22}
\end{equation*}
$$

Whenever the circular speed declines as $r^{1 / 2}$ it is referred to as Keplerian. It usually implies that there is no significant mass at that radius.

Homogeneous sphere:

$$
\begin{equation*}
M=\frac{4}{3} \pi r^{3} \rho \quad ; \quad v_{c}=\sqrt{\frac{4 \pi G \rho}{3}} r . \tag{23}
\end{equation*}
$$

The equation of motion for a particle in such a body is

$$
\begin{equation*}
\frac{\mathrm{d}^{2} r}{\mathrm{~d} t^{2}}=-\frac{G M(r)}{r^{2}}=-\frac{4 \pi G \rho}{3} r, \tag{24}
\end{equation*}
$$

which describes a harmonic oscillator with period

$$
\begin{equation*}
T=\sqrt{\frac{3 \pi}{G \rho}} \tag{25}
\end{equation*}
$$

Spherical Systems - Simple Examples

Independent of r, if a particle is started at r, it will reach the center in a time

$$
\begin{equation*}
t_{d y n}=\frac{T}{4}=\sqrt{\frac{3 \pi}{16 G \rho}} \tag{26}
\end{equation*}
$$

known as the dynamical time. Although this result is only true for a homogeneous sphere, it is common practice to use this definition with any system of density ρ.

By integrating the density for a homogeneous sphere, we can get the potental:

$$
\Phi= \begin{cases}-2 \pi G \rho\left(a^{2}-\frac{1}{3} r^{2}\right), & r<a \\ -\frac{4 \pi G \rho a^{3}}{3 r}, & r>a\end{cases}
$$

One would expect the center of a galaxy to have a potential of this type if there is no cusp in the central density (implying a linear rise in v_{c}).

Spherical Systems - Simple Examples

Isochrone potential:

$$
\begin{equation*}
\Phi(r)=-\frac{G M}{b+\sqrt{b^{2}+r^{2}}} . \tag{27}
\end{equation*}
$$

This has the nice property of going from a harmonic oscillator in the middle to a Keplerian potential at large r, with the transition occurring at a scale b.

The circular speed is

$$
\begin{equation*}
v_{c}^{2}=\frac{G M r^{2}}{(b+a)^{2} a} \tag{28}
\end{equation*}
$$

where $a \equiv \sqrt{b^{2}+r^{2}}$.

Using Poisson's equation, we can find the density:

$$
\begin{equation*}
\rho(r)=\frac{1}{4 \pi G r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{2} \frac{\mathrm{~d} \Phi}{\mathrm{~d} r}\right)=M\left[\frac{3(b+a) a^{2}-r^{2}(b+3 a)}{4 \pi(b+a)^{3} a^{3}}\right] \tag{29}
\end{equation*}
$$

So the central density is

$$
\begin{equation*}
\rho(0)=\frac{3 M}{16 \pi b^{3}}, \tag{30}
\end{equation*}
$$

and the asymptotic density is

$$
\begin{equation*}
\rho(r) \approx \frac{b M}{2 \pi r^{4}} . \tag{31}
\end{equation*}
$$

See also modified Hubble profile and power-law profile.

Potential-Density Pairs

Simple models can be used to illustrate the dynamics of axisymetric galaxies.

Plummer's (1911) model: spherically symmetric

Kuzmin's (1956) model: infinitely thin disk (aka Toomre's model 1)

Plummer-Kuzmin models': introduced by Miyamoto \& Nagai (1975), smooth transition from Plummer's to Kuzmin's models

Logarithmic potentials: the circular speed is a constant at large radii

Simple Models

- Very different models (top: thin and thick disk without halo; middle: single disk and halo, bottom: the difference) can produce the same $\rho\left(z \mid R=R_{\odot}\right)$
- Observationally, $\rho\left(z \mid R=R_{\odot}\right)$ is well fit by a sum of double exponential (thin and thick disk) and power-law profiles.

Plummer-Kuzmin models

$$
\begin{equation*}
\Phi(R, z)=-\frac{G M}{\sqrt{R^{2}+\left(a+\sqrt{z^{2}+b^{2}}\right)^{2}}} . \tag{32}
\end{equation*}
$$

For $a=0$, this reduces to a Plummer model. For $b=0$, it reduces to the Kuzmin disk. By varying the ratio b / a we have a series of models that go from a thin disk to a spherical model. Using Poisson's equation to calculate ρ, we have

$$
\begin{equation*}
\rho(R, z)=\left(\frac{b^{2} M}{4 \pi}\right) \frac{a R^{2}+\left(a+3 \sqrt{z^{2}+b^{2}}\right)\left(a+\sqrt{z^{2}+b^{2}}\right)^{2}}{\left[R^{2}+\left(a+\sqrt{z^{2}+b^{2}}\right)^{2}\right]^{5 / 2}\left(z^{2}+b^{2}\right)^{3 / 2}} \tag{33}
\end{equation*}
$$

For $b / a=0.2$, this density is qualitatively the same as disk galaxies, but the asymptotic behaviour is different: ρ falls off like $1 / r^{3}$ whereas in real disks, the light falls off exponentially.

Logarithmic potentials

If $v_{c}=v_{0}$ is a constant, then $\mathrm{d} \Phi / \mathrm{d} R \propto 1 / R$, and therefore $\Phi \propto v_{0}^{2} \ln R+C$. So consider

$$
\begin{equation*}
\Phi=\frac{1}{2} v_{0}^{2} \ln \left(R_{c}^{2}+R^{2}+\frac{z^{2}}{q_{\Phi}^{2}}\right)+\text { constant } \tag{34}
\end{equation*}
$$

where $q_{\Phi} \leq 1$ for oblate potentials. Poisson's equation gives:

$$
\begin{equation*}
\rho=\left(\frac{v_{0}^{2}}{4 \pi G q_{\Phi}^{2}}\right) \frac{\left(2 q_{\Phi}^{2}+1\right) R_{c}^{2}+R^{2}+2\left(1-\frac{1}{2} q_{\Phi}^{-2}\right) z^{2}}{\left(r_{c}^{2}+R^{2}+z^{2} q_{\Phi}^{-2}\right)^{2}} \tag{35}
\end{equation*}
$$

The density asymptotes to R^{-2} or z^{-2}. Note that this implies an infinite mass.

This potential also gives a drastic example of a general phenomenon: the density distribution is much flatter than the potential distribution. In this case, the density can even go negative if $q_{\Phi}<1 / \sqrt{2}$ (giving unphysical Φ).

Poisson's equation for thin disks

In an axisymetric system Poisson's equation is

$$
\begin{equation*}
\frac{1}{R} \frac{\partial}{\partial R} R\left(\frac{\partial \Phi}{\partial R}\right)+\frac{\partial^{2} \Phi}{\partial z^{2}}=4 \pi G \rho \tag{36}
\end{equation*}
$$

Note that if the density is concentrated in the plane, both ρ and the second derivative w.r.t. z will get very large while the second derivative w.r.t R remains well behaved. For a thin disk, therefore, Poisson's equation simplifies to

$$
\begin{equation*}
\frac{\partial^{2} \Phi(R, z)}{\partial z^{2}}=4 \pi G \rho(R, z) \tag{37}
\end{equation*}
$$

So in the thin disk approximation one can first determine the potential in the plane of the disk $\Phi(R, 0)$, and then at each radius solve for the vertical structure.

