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Lecture 2: Potential Theory I

Spherical Systems and Potential—Density Pairs



Potential Theory I

If we know the mass distribution, how do we find the gravi-
tational potential?

If we know the gravitational potential, how do we find the
mass distribution?

Gauss' theorems

Some famous potential-density pairs



Poisson’s equation

Gravitational force (F = GMm/r?):

F(x) = GMm ’f/ = (1)

X" —x[3

To calculate the force on a unit mass (M=1) at a point x, we
sum over all the contributions from each element §3x’:

x' — x x' — x

SF(x) =G Sm(x') = |3p(X N&3x'. (2)

x/ — x3 “I -

This gives

X—X

F(x) = G/ x |3,0(X N3/ (3)




Poisson’s equation

Introduce the gravitational potential, defined as:

/
D (x) = —G/ P(X) g3y (4)
x" — x|
note that
1 x — x
V = , 5
X(\X’—X|> x' — x|3 (5)
(so Vx® looks like F) we have
/
F(x) = v/ GrxX) 3y = v, (6)
x" — x|



Poisson’s equation

F(x) =V | Gr(X) g3y — v, (7)

x — x|
Deriving the force from a potental field has several advantanges:

e It constrains the force field to be conservative. (The work
required to get a mass from one position to another is in-

dependent of the path, or [Fdx is path independent.) Also
note that we can’'t choose an arbitrary F.

e [ he scalar field, ® is easier to visualize than a vector field.

e A scalar field is often easier to calculate than a vector field.

(1/3 the work).



Poisson’s equation

The divergence of the force is:

x' —x
Vx - -F(x) = G/VX : <|X/ — X|3> p(x")d3x’. (8)
But (from the product rule)
x' —x 3 3(x' —x) - (x' —x)
V(o) et e ©

which is 0 for x’ = x. So we can restrict the volume of integration
to an arbitrarily small sphere (of radius h) about x.



Poisson’s equation

We can take p(x’) out of the integral and we have

/_
Gp(x) Vi - <| = >d3x’

Ix'—x|<h x/ — X|3

x —x
G V- d3x’
Px) x'—x|<h X (IX’ - XI3> 8
(x' — x) - d28’

|x'—x|=h |X’ — X|3

Vx - F(x)

= —Gp(x)

Y

where we have replaced a divergence with respect to x with a
divergence with respect to x/, and used the divergence theorem
to replace a volume integral with a integral over the enclosing
surface. Now on the surface, we have |x' — x| = h and d28’ =
(x' —x)hd2Q2. So

Vy - F(x) = —Gp(x) / 420 = —4rGp(x). (10)



Poisson’s equation

Substituting —V® for F we have Poisson’s equation: Hoorray!!

V2P = 47Gp. (11)

The derivation of the Poisson’s equation stems from the facts
that

1. the gravitational force is conservative (so we can define a @)
and

2. the central 1/r2 nature of the force between two mass ele-
ments, so that the divergence of the force is zero in a vac-
cuum.



Poisson’s equation

Integrating Poisson’s equation over an arbitrary volume gives

47rG/pd3X — 47GM = /v2¢d3x — /VCD .ds. (12)

where the divergence theorem is used.

This is Gauss’s theorem: the integral of the normal compo-

nent of V&® over any closed surface equals 4G times the mass
contained within that surface.



The Potential Energy

The force between two point masses is conservative, so the total
work required to assemble a configuration of mass, p(x) is
independent of the path taken to assemble it, and is defined as
the potential energy. That is, for any p(x), there exists a well
defined W, the work required to assemble that distribution, and
IS given by

_ 1 2 3 3
W= [IVePd’x =3 /p(x)cb(x)d (13)

When discussing equilibrium models of stellar systems, relating
observed velocity dispersions to the mass distribution of a model
will involve a tensor

= [ o200 axk (14)

known as the Chandrasekhar potential energy tensor.
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The Potential Energy Tensor

It is “easy’” to show that

(@ =) (2, — ) 5,
Wi = ——G//p(x)p(x) ‘X]_ X/T?’ d3x'd3x. (15)
i.e., W is symmetric.
Note that
_ p(x') 3,/43
trace(W) = ——G/p(x)/| 0P
= 2 / o(x) P (z)d3x.

i.e. trace(W) is W, the gravitational potential energy.
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The Potential Energy Tensor

For spherical matter distribution:

W = —47TG/,0M(7“)7“d7“. (16)

Allows a definition of a characteristic size of a system that does
not have a sharp boundary:

_ GM?
T — .
T W

(17)

Also note that for a spherical system ij is diagonal ( ij =0
for 7 = k), and isotropic:

W, - (18)
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Spherical Systems — Newton’s theorems

Newton's first theorem: A body that is inside a spherical shell of
matter experiences no net gravitational force from that shell.

Newton's second theorem: The gravitational force on a body
that lies outside a closed spherical shell of matter is the same
as it would be if all the shell’'s matter were concentrated into a

point at its center.

Since the potentials add linearly, we can easily calculate the po-
tential at any point in a spherical density distribution by sep-
arately calculating contributions from the interior and exterior

parts:
d(r) = —4nG E /OT o(rr'2dr! + /OO p(r’)r’dr’] : (19)

The first term is the interior mass taken to be at the center, and
the second is a sum over the potentials due to exterior shells.
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Spherical Systems — Important Quantities

The velocity of a test particle on a circular orbit is the circular
speed, v.. Setting the centripetal acceleration equal to the force
we get

dod GM
v2 =r— =r|F| = (T) (20)

dr r

So the circular speed is a measure of the mass interior to r. Now
we have something we can use:. if you tell me what v, is as a
function of r» for a galaxy, and I can assume it is spherical, I can
tell you what the mass is as a function of r. (Not the case for a
non-spherical distribution.)

Another important quantity is the escape speed, v., defined by

ve(r) = /2|P(r)]. (21)

This definition comes from setting the kinetic energy of a star
equal to the abolute value of its potential energy. That is, stars
with positive total energy are not bound to the system. In order
for a star to escape from from the gravitational field represented
by &, it is necessary that its speed be greater than v.. This can
be used to get the local & of the galaxy.
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Spherical Systems — Simple Examples

Point mass:

Cb(r)z—GTM  ve(r) = GTM ; ve(’r)=\/2GTM. (22)

Whenever the circular speed declines as r1/2 it is referred to as
Keplerian. It usually implies that there is no significant mass at
that radius.

Homogeneous sphere:

4

ArG
M:§7T7“3,0 . Ve = P

3

The equation of motion for a particle in such a body is
d2r _ GM(r)  4nGp
dt2 r2 B 3

which describes a harmonic oscillator with period

3T
= E (25)
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Spherical Systems — Simple Examples

Independent of r, if a particle is started at r, it will reach the

center in a time
T 37
t = — = ; 26
dyn 4 \/ 16Gp (26)

known as the dynamical time. Although this result is only true
for a homogeneous sphere, it is common practice to use this
definition with any system of density p.

By integrating the density for a homogeneous sphere, we can get
the potental:

—27Gp(a? — %TQ), r<a
= 3
—47T§7f)a , T > a.

One would expect the center of a galaxy to have a potential of
this type if there is no cusp in the central density (implying a
linear rise in wve).
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Spherical Systems — Simple Examples

Isochrone potential:

GM
b+ /b2 + 12
This has the nice property of going from a harmonic oscillator in

the middle to a Keplerian potential at large r, with the transition
occurring at a scale b.

d(r) = — (27)

The circular speed is

G Mr?
2
= : 28
C (b _I_ CL)QG, ( )
where a = /b2 + r2.
Using Poisson’s equation, we can find the density:
1 d/ ,do 3(b+ a)a? — r2(b + 3a)
(1) = 2 ar (r dr) [ 47(b + a)3a3 (29)
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So the central density is
3M

0) = : 30
p(0) = - (30)
and the asymptotic density is
bM
~ : 31
P~ (31)

See also modified Hubble profile and power-law profile.



Potential—-Density Pairs

Simple models can be used to illustrate the dynamics of axisy-
metric galaxies.

Plummer’s (1911) model: spherically symmetric

Kuzmin’s (1956) model: infinitely thin disk (aka Toomre’s
model 1)

Plummer—Kuzmin models’: introduced by Miyamoto & Nagai
(1975), smooth transition from Plummer’'s to Kuzmin's models

Logarithmic potentials: the circular speed is a constant at
large radii
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~_ Simple Models
| ' e Very different models (top: thin
and thick disk without halo; mid-
dle: single disk and halo, bot-
tom: the difference) can produce
the same p(z|R = Rp)
” n=> e Observationally, p(z|R = Rg) is
*' well fit by a sum of double expo-
nential (thin and thick disk) and
power-law profiles.
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Plummer—Kuzmin models

GM

VR + (a2 122

For a = 0O, this reduces to a Plummer model. For b = O, it
reduces to the Kuzmin disk. By varying the ratio b/a we have a
series of models that go from a thin disk to a spherical model.
Using Poisson’s equation to calculate p, we have

(R, 2) <b2M> aR2 4 (a+ 322+ b)) (a+ /22 + b2)2
p L, z) =
[R2 + (a+ /22 +6%)215/2(:2 + 12)3/2.
For b/a = 0.2, this density is qualitatively the same as disk galax-

ies, but the asymptotic behaviour is different: p falls off like 1/r3
whereas in real disks, the light falls off exponentially.

®(R,2) = — (32)
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Logarithmic potentials

If ve = wvg is a constant , then d®/dR x 1/R, and therefore
P xv3InR+ C. So consider

1 2
b = Evo In <R2 + R + 5 > + constant. (34)
4o

where g4 < 1 for oblate potentials. Poisson’s equation gives:
- < v3 ) (2q3% + 1)RZ 4+ R? + 2(1 — 3¢3°)#2
ArGag (rg + R2 + 22q4,°)?

The density asymptotes to R~2 or z—2. Note that this implies
an infinite mass.

(35)

This potential also gives a drastic example of a general phe-
nomenon: the density distribution is much flatter than the po-
tential distribution. In this case, the density can even go negative
if g < 1/4/2 (giving unphysical ®).
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Poisson’s equation for thin disks

In an axisymetric system Poisson’s equation is

1 0 oD 2P
" R = 47 Gp. 36
ROR <8R) T o2 = AmGe (36)

Note that if the density is concentrated in the plane, both p
and the second derivative w.r.t. z will get very large while the
second derivative w.r.t R remains well behaved. For a thin disk,

therefore, Poisson’s equation simplifies to

02D (R, 2)
022

= 47Gp(R, 2). (37)

So in the thin disk approximation one can first determine the
potential in the plane of the disk ®(R,0), and then at each
radius solve for the vertical structure.
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