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Lecture 14: Kinetic Theory

The Gravothermal Catastrophy,

the Fokker-Planck Approximation
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The Gravothermal Catastrophy

Positive vs. negative feedback

In a self-gravitating system, the emission of energy means in-

crease of temperature (and decrease of size), which results in

more intensive emission of energy, which in turn further increases

the temperature (and decreases size), and so on, until the system

collapses!

In the context of star formation, the fusion will eventually start at

some temperature and its energy input will halt the contraction.

Only a temporary delay!
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The collisonless Boltzmann Equation
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All these forms say the same thing:

Df

Dt
= 0 (4)

If collisions are taken into account, then

Df

Dt
= Γ(f) (5)

where Γ is the collison term. This form is called the master

equation. How do we get Γ?
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The Collison Term Γ

Define the probability density that a star with the 6D coordinate

w is scattered to the position w + ∆w: Ψ(w, ∆w).

The change of the distribution function for an infinitesimal vol-

ume with the 6D coordinate w is the number of stars scattered

into this volume minus the number of stars scattered out of

this volume:

Γ(f) =
∫

[Ψ(w −∆w),∆w)f(w −∆w)−Ψ(w,∆w)f(w)] d3∆w

(6)

This is all very pretty, but where do we get Ψ(w, ∆w)?
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The Fokker-Planck Approximation

Most of the gravitational scattering is due to weak counters with

|∆w| << w. Therefore, can expand Ψ f in a Taylor series, and

truncate after the second term:

Γ(f) = Ψ(w −∆w),∆w)f(w −∆w)−Ψ(w,∆w)f(w) = (7)

−
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where

D(∆wi) ≡
∫

∆wiΨ(w,∆w)d3∆w (9)

are diffusion coefficients, and represent the expectation values

for the change of wi.
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The Fokker-Planck Equation

When (8), (6) and (5) are combined, we get the Fokker-Planck

equation:
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But, where do we get D?

In most applications D are taken to be constant, and either

computed using dynamical considerations, or simply postulated.

NB A similar approximation is used in radiation transfer analysis,

including areas other than astronomy; e.g. models of cancer cell

irradiation
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