Astr 509: Astrophysics III: Stellar Dynamics
Winter Quarter 2005, University of Washington, Zeljko Ivezic¢

Lecture 14: Collisions I

Tidal Tails, Dynamical Friction



Collisions, Encounters, Tidal tails, etc.

Andromeda is coming overhere at 100 km/s — expect fire-
works 1010 years from now!

Two regimes for galaxy encounters: fast, voo > v (elastic
behavior, galaxies affect each other but do not merge, e.q.
tidal tails) and slow vs < vy (inelastic behavior — galaxies
merge), where v iS the relative velocity, and vy IS some
critical velocity that depends on detailed structure of inter-
acting galaxies.

In the fastest encounters (voo >> vf), stars do not signifi-
cantly change their positions — impulse approximation

During the not-so-fast encounters, the orbital (kinetic) en-
ergy can be transferred to the internal energy (galaxies are
not point masses — better described as viscous fluid that
absorbs energy when deformed)



Fast Galaxy Encounters

e Impulse approximation: the potential energy doesn’t change
during the encounter, but the internal kinetic energy changes
by, say, AK. This change of the kinetic (and total) energy
takes the system out of virial equilibrium! What is the final
equilibrium state? (before the encounter: EF = FE, and K =
Ko, with B, = —K,)

e After the encounter, and before returning to the equilibrium:
Ki = Ko+ AK (= —E,+ AK) and E1 = E, + AK (note
that it is NOT true that £ = —K7).

e After returning to the equilibrium: FE, = FE4, and it must
be true that K> = —F»> because of virial theorem. Hence,
Ko = —-F1 = —Fy— AK = K1 —2AK! During the return
to virial equilibrium, the system loses 2A K of Kinetic en-
ergy (which becomes potential energy because energy is con-
served). Therefore, the (self-gravitating) system expands!
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Slow Galaxy Encounters

e Need N-body numerical simulations for the full treatment

e In a special case when galaxies are very different in size,
analytic treatment is possible to some extent

e Dynamical friction: a compact body of mass M (small galaxy)
passes through a population of stars with mass m (large
galaxy). The net effect is a steady deceleration parallel to
the velocity vector (just like ordinary friction).



NGC 4676: When Mice Collide

Model from Toomre, A. & Toomre, J. 1972, Galactic Bridges
and Tails, Apd, 178, 623
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Fic, 22 —Madel of NGC 4676, In this reconstruction, two equal disks of radius 0.TE,
experienced an ¢ = (0.6 elliptic encounter, having begun flat and circular at the time ¢ » —16.4
of the last apocenter. As viewed [rom either disk, the adopied node-to-peri angles w, = wy = —90°
were identical, but the inclinations differed considerably: iy = 157, iy = 607, The resulting com-
posite object at ¢ = 6086 (cf. fig. 18) is shown projected onto the orbit plane in the upper diagram.
It is viewed nearly edge-on to the same—Irom A, = 180°, 8, = B3 ar A, = ¥, fp = 160°—in the
lower diagram meant to simulate pur actual view of that pair of galaxies. The filled and open
symbaols distinguish particles originally from disks A and B, respectively.



Colliding Galaxies NGC 4038 and NGC 4039 HST « WFPC2
PRC97-34a » ST Scl OPO » October 21, 1997 » B, Whitmore (ST Scl) and NASA

Another example: Antennae Galaxy



Galaxies NGC 4038 and NGC 4039 « Details HST « WFPC2
PRCY7-34b « ST Scl OPO « October 21, 1997 « B, Whitmore (ST Scl) and NASA
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Fic. 23.—Symmetric model of NGC 4038/9. Here two identical disks of radius 075K,
suffered an ¢ = 0.5 encounter with orbil angles iy, = i, = 60° and wy = wy = — 30" that appeared
the same to both, The above all-inclusive views of the debris and remnants of these disks have been
drawn exactly normal and edge-on (o the orbit plane; the latter viewing direction is itself 307
from the line connecting the two pericenters. The viewing time is ¢ = 15, or slightly past apocenier,
The filled and open symbols again disclose the original lovalties of the various test particles.



Dynamical Friction

A compact body of mass M passes through a see of objects with
mass m.

First solve for the effect of one body, and then add the effects
of successive encounters.

If the radius vector between the two bodies is r = xy, — x4, and
V =r, then

mM 7 .. GMm
[—] = — er (1)
m + M r2
Looks like a potential of a body with mass (m + M) — reduced
mass

Since

Avm — Avy = AV (2)
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and (the center of mass is unaffected by the encounter)

mAvVy, + MAvy; =0 (3)
we get
m
A = —|———| AV. 4
Y M [m n M] (4)

Once we find AV, we can compute Avyy.

How do we get AV? We need to solve the equations of motions,
but we already know the solution (this is a two-body problem,
BT eq. 3-21)

u(W) =Ccos(V — WV, + GL—]\; (5)

where v = 1/r and L is the angular momentum.

Here, L. = bVy,, and C and W, are determined by the initial
conditions.



Dynamical Friction

We get
bV 2
tan(W,) = — 9 : 6
(Vo) = = G (6)
which also determines the deflection angle
ed — QWO — TT. (7)
The change of each velocity component are
2pV3 prvA 17!
AV, = V,sin(thetay) = 9 1 9
| perp| o ( € ad) G(M + m) [ + GQ(M -+ m)2]
(8)
prvE 17!
Aljural = Vi1 = Cos(iheta)) = 2V |1+ o 1700l (9)
and, finally, for the parallel component of v,
—1
2mV, b2V A
A — 1 9 10
Y™ [m—I—M] +G2(M—|—m)2] (10)
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Dynamical Friction

When M moves through many m, the perpendicular component
of Avy, will sum to zero. How do we sum the parallel compo-
nents?

The overall change of Av,; per unit time is equal to the change
due to one m star times the number of encounters per unit time,
dN/dt.

AN/dt = f(vm)dV/dt, where dV = 2mb db V, di (11)
Hence,
dVM 3 bmaz

Here bhqr 1S 'the largest relevant” impact parameter — in practice
it is determined by the behavior of f(vy,).

The intergral over b can be (easily!) performed to get
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dv (Vin — Vs)

M — orin(1 + A2)G2m(M 4+ m) f(Vin)d3Vin (13)
dt Vi — V|3
Here
. bma:vVQQ
In(A) = GOM + m) (14)

is the so-called Coulomb logarithm (n.b. typically A >> 1).

For an isotropic distribution of stellar velocities (note the inte-
gration limit!)

d M 2.d
% = —1672 In(A)G?m(M + m)=9 f<vn§)vm Uva (15)
v
M

which is the famous Chandrasekhar dynamical friction for-
mula.



Dynamical Friction

For small vy, (compared to typical velocities of m particles, i.e.
their velocity dispersion),

dVM

— X —V 16
X TVM (16)
For large vy,
VM oYM (17)
dt Uiy

Applications: e.g. decay of globular cluster orbits — what a
beautiful problem for the final exam!
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