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Lecture 11:

A note on Solar System Dynamics,

The Isothermal Sphere and Slab,

King Models, the Jeans Instability
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A note on Solar System
Dynamics

• For example, main belt aster-

oids (top osculating elements,

bottom proper elements): rich

structure (note resonances, e.g.

Kirkwood gaps) – perturbations

by planets and other asteroids

are important.

• Binney’s notes on Solar System

dynamics are linked to the class

web page.

• Modern developments: modeling

of potentially hazardous aster-

oids, non-radial forces (so-called

Yarkovsky effect), etc. Currently

very active field!
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Distribution functions, f(E)

One can either assume f and solve for Φ (which also gives ρ),

or assume Φ (or ρ) and solve for f .

It will be convenient to define the relative potential and the

relative energy by

Ψ ≡ −Φ + Φ0 and E ≡ −E + Φ0 = Ψ−
1

2
v2. (1)

Φ0 is chosen to be the value of Φ at the edge of the galaxy,

where f = 0, and so Ψ = 0, too.

In spherical symmetry:

If f = f(E) = f(Ψ−1
2v2) then the velocity dispersion in the radial

direction is given by

v2
r =

∫
v2
r f(x,v)d3v∫

fd3v
=

1

ρ

∫
v2
r f [Ψ−

1

2
(v2

r +v2
θ +v2

φ)]dvrdvθdvφ. (2)
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Likewise we have for v2
θ :

v2
θ =

1

ρ

∫
v2
θ f [Ψ−

1

2
(v2

r + v2
θ + v2

φ)]dvrdvθdvφ. (3)

Note that these only differ by the labeling of the variables. We

can therefore conclude that v2
r = v2

θ = v2
φ. In other words, the

velocity dispersion tensor is everywhere isotropic.

Using spatial spherical symmetry as well, Poisson’s equation be-

comes

1

r2
d

dr

(
r2

dΨ

dr

)
= −16π2G

∫ √2Ψ

0
f(Ψ−

1

2
v2)v2dv

= −16π2G
∫ Ψ

0
f(E)

√
2Ψ− EdE

Now we are talking: give me f(E) and I give you ρ and velocity

distribution!



Example 1: the Isothermal Sphere

Assume that DF is given by

f(E) =
ρ1

(2πσ2)3/2
eE/σ2

. (4)

where ρ1 and σ are constants. The parameter σ sets the systems

“temperature” according to σ2 = kBT/m. Since σ is assumed to

be a constant, the solution is called “the isothermal sphere”.

What ρ and velocity distribution correspond to this DF?

The distribution of velocities is everywhere Maxwellian (∝ exp(−v2)).

The mean-square speed of stars is

v2 =

∫∞
0 exp

(
Ψ−1

2v2

σ2

)
v4dv

∫∞
0 exp

(
Ψ−1

2v2

σ2

)
v2dv

= 2σ2
∫∞
0 e−x2

x4dx∫∞
0 e−x2dx

= 3σ2 = const.
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Integrating over velocities, we find

ρ = ρ1eΨ/σ2
, (5)

and Poisson’s equation can be written

d

dr

(
r2

dΨ

dr

)
= −4πGρ1r2eΨ/σ2

. (6)

This can be put into dimensionless form by defining the King

radius by

r0 ≡

√√√√ 9σ2

4πGρ0
(7)

and scaling ρ̃ ≡ ρ/ρ0 and r̃ ≡ r/r0. We then have

d

dr̃

(
r̃2

d ln ρ̃

dr̃

)
= −9r̃2ρ̃, (8)

which can be solved numerically. For large r the solution asymp-

totes to

ρ(r) =
σ2

2πGr2
, (9)

known as the singular isothermal sphere.



This provides a very good fit to dark halos since the circular

velocity is constant.

Unfortunately, it has infinite density in the center, and an infinite

total mass.

The problem of infinite density in the center can be fixed: start

integrating (numerically) from the center. The resulting density

profile (see Fig. 4-7 in BT) is well behaved, and approaches

ρ(r) ∝ r−2 for large r. For small r, ρ(r) ∝ (1 + r2)−3/2.

However, the total mass is still infinite.



King Models

We can fix up the isothermal sphere by truncating it at finite
radius. A natural way to do this in terms of the DF is to “lower”
f :

f(E) =

{
ρ1(2πσ2)−3/2

(
eE/σ2 − 1

)
E > 0;

0 E ≤ 0.
(10)

This defines King models (a subset of Michie models, see 4.4-
4b) or lowered isothermal spheres. The spatial structure can
be determined by integrating over v, then numerically integrating
starting from r = 0 with dΨ

dr = 0 and a given Ψ(0). At some
point the density will drop to zero. This is the tidal radius. The
concentration is defined by

c ≡ log10(rt/r0). (11)

King models can also be paramaratized by Ψ(0)/σ2.

In summary, King models are parametrized by one free dimen-
sionless parameter (and physical scales, of course) and have finite
mass. This makes them much more useful for fitting profiles of
globular clusters and galaxies than isothermal sphere solution.
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Dying globular cluster Pal 13 (Siegel et al. 2001, AJ
121, 935)

6



Example 2: the Isothermal Slab

For studying local vertical dynamics of a disk, assume that it

is a) self-gravitating, b) velocity distribution is Gaussian, and c)

the disk is stratified in layers parallel to its plane, so everything

is a function of the vertical coordinate, z, only.

These assumptions lead to (verify this at home):

ρ = ρ0 sech2(z/2z0), with z0 =

√√√√ σ2

8πGρ0
(12)

For large r, ρ(r) ∝ exp(−z/z0). Note: sech is hyperbolic secant

of an angle:

sech(x) =
1

cosh(x)
, (13)

where

cosh(x) =
ex + e−x

2
(14)
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0 Isothermal vs. Exponential
Disk

• Top: isothermal (solid blue) vs.

exponential (solid red) compari-

son. Green: added 1% of thick

disk with 4 times larger scale

height. Dashed blue: isothermal

scaled to match exponential for

large z. Dashed red: exponen-

tial matched to fit the isother-

mal (requires 10% larger scale

height). Conclusion: it is hard

to distinguish exponential from

isothermal profile!

• Bottom: SDSS observations –

favor exponential over isothermal

profile with the same population

(and provide the best measure-

ment ever of thick disk parame-

ters). 8



Eddington inversion

Given a ρ(r) (and hence, a Ψ(r)), can we find an f that generates

it? Since Ψ is a monotonic function of r we can write the density

as

1√
8π

ρ(Ψ) = 2
∫ Ψ

0
f(E)

√
Ψ− EdE. (15)

If we differentiate both sides, we have an Abel integral equation,

which has the solution

f(E) =
1√
8π2

d

dE

∫ E
0

dρ

dΨ

dΨ√
E −Ψ

=
1√
8π2

[∫ E
0

d2ρ

dΨ2

dΨ√
E −Ψ

+
1√
E

(
dρ

dΨ

)
Ψ=0

]

In order for the DF to be physical, the integral has to be a

monotonically increasing function of E.
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The Jeans Instability

Will a self-gravitating dynamical system collapse if slightly per-

turbed? Fly apart? Does the answer depend on the rotational

state? Chemical composition?

Important for a wide variety of astrophysical environments, from

star and planet formation, to the formation of galaxy clusters

and large-scale structure.

Intuitive answer: Large systems are more likely to collapse, ro-

tation can help against collapsing.

Analysis and results similar to self-gravitating gaseous spheres.
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The Jeans Instability

Basic result: a self-gravitating dynamical system will be unstable

if

k2 < k2
J =

4πGρ0

σ2
, (16)

where ρ0 is unperturbed density, and σ is the velocity dispersion.

That is, is the characteristic size of pertubation is larger than

the critical value called Jeans length, λJ = 2π/kJ.

Very similar result is obtained for a self-gravitating gaseous sphere

k2
J =

4πGρ0

v2
s

, (17)

where vs is the speed of sound.
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The Jeans Instability: the works!

We wish to study perturbations in an infinite homogeneous self-

gravitating system.

Problem: There is no equilibrium configuration for such a sys-

tem.

Poisson’s equation says:

∇2Φ = 4πGρ (18)

but by translational invarience, both ρ and Φ must be constant.

Hence, ⇒ ρ = 0.

Therefore, we perpetrate the Jeans swindle by assuming that

Poisson’s equation only describes the relation between the per-

turbed potential and density.
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This is justified as long as the scale for changes in Φ in the equi-

librium system is much larger than the scale of the perturbations.

Linearized equations of motion

To linearize, we divide variables into an equilibrium part and a

perturbed part which is assumed small. Hence for a collisionless

system,

f(x,v, t) = f0(x,v) + εf1(x,v, t),

Φ(x, t) = Φ0(x) + εΦ1(x, t).



Plugging these into the CBE and Poisson’s equation, and drop-

ping all terms proportional to ε2, we have the linearized colli-

sionless Boltzmann equation

∂f1
∂t

+ v ·
∂f1
∂x

−∇Φ0 ·
∂f1
∂v

−∇Φ1 ·
∂f0
∂v

= 0, (19)

and

∇2Φ1 = 4πG
∫

f1d
3v. (20)

Similarly for a self gravitating barytropic fluid (p = p(ρ)), the

continuity equation becomes

∂ρ1

∂t
+∇ · (ρ0v1) +∇ · (ρ1v0) = 0. (21)

Euler’s equation becomes

∂v1

∂t
+ (v0 · ∇)v1 + (v1 · ∇)v0 =

ρ1

ρ2
0

∇p0 −
1

ρ0
∇p1 −∇Φ1, (22)

and the equation of state is

p1 =

(
dp

dρ

)
0

ρ1 ≡ v2
s ρ1. (23)



Here we have introduced the sound speed defined by

v2
s ≡

(
dp(ρ)

dρ

)
ρ0

. (24)

Jeans Instability for a fluid

If we assume ρ0 is constant and v0 = 0 and swindle Φ0 to be
zero, we have

∂ρ1

∂t
+ ρ0∇ · v1 = 0,

∂v1

∂t
= −

1

ρ0
∇p1 −∇Φ,

∇2Φ1 = 4πGρ1,

p1 = v2
s ρ1.

Taking the time derivative of the conservation equation and the
divergence of the Euler equation, and eliminating in favor of ρ1
give us

∂2ρ1

∂t2
− v2

s∇2ρ1 − 4πGρ0ρ1 = 0. (25)



This is a wave equation, so we expect solutions of the form:

ρ1 = Cei(k·x−ωt). (26)

This satisfies the equation provided the dispersion relation holds:

ω2 = v2
s k2 − 4πGρ0. (27)

For large k (small wavelength), this reduces to just sound waves,
and things are stable, but for some k

k2 < k2
J ≡

4πGρ0

v2
s

(28)

the system will be unstable. We define the Jeans length to be
λJ = 2π/kJ or

λ2
J =

πv2
s

Gρ0
. (29)

The Jeans Mass is the mass contained within a sphere of di-
ameter λJ:

MJ =
4π

3
ρ0(

1

2
λJ)

3 =
1

6
πρ0

(
πv2

s

Gρ0

)3/2

. (30)



Jeans Instability for a stellar system

The CBE and Poisson’s equation also admit wave solutions,

f1 = fa(v) exp[i(k · x − ωt)],Φ1 = Φa exp[i(k · x − ωt)], giving

the relations:

(k · v − ωt)fa −Φak ·
∂f1
∂v

= 0

−k2Φa = 4πG
∫

fad
3v

Combining these gives a dispersion relation

1 +
4πG

k2

∫ k · ∂f0/∂v

k · v − ω
d3v = 0. (31)

The stability is determined by the dependence of f0 on v. If we

assume a Maxwellian,

f0(v) =
ρ0

(2πσ2)3/2
e−

1
2v2/σ2

. (32)



If we choose a coordinate system such that vx lies along the k

axis then the dispersion relation becomes

1−
2
√

2πGρ0

kσ3

∫ ∞
−∞

vxe−
1
2v2

x/σ2

kvx − ω
dvx = 0. (33)

The point that divides stability from instablility is where ω = 0,

and this where the integral can be evaluated:

k2
J =

4πGρ0

σ2
. (34)

And we are done!


