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Outline:

• Hubble’s Expansion of the Universe

• Newtonian and Relativistic Cosmology

• Observational (astronomer’s) Cosmology
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Redshift, z, Distance D, and Relative Radial Velocity v

Redshift is defined by the shift of the spectral features, relative

to their laboratory position (in wavelength space)

z =
∆λ

λ
(1)

(n.b. for negative ∆λ this is effectively blueshift).

When interpreted as due to the Doppler effect,

z =

√√√√1 + v/c

1− v/c
− 1 (2)

where v is the relative velocity between the source and observer,

and c is the speed of light. This is the correct relativistic expres-

sion! For nearby universe, v << c, and

1

1− v/c
≈ 1 + v/c, and thus z ≈

v

c
(3)

E.g. at z = 0.1 the error in implied v is 5% (and 17% for z = 0.3)
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Hubble’s redshift*c vs. distance diagram
(1929)
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Expansion of the Universe
• Discovered as a linear law (v = HD) by

Hubble in 1929.

• With distant SNe, today we can measure

the deviations from linearity in the Hubble

law due to cosmological effects

• The curves in the top panel show differ-

ent models for the expansion of the Uni-

verse: a closed Universe (Ω = 2) in red,

the critical density Universe (Ω = 1) in

black, the empty Universe (Ω = 0) in

green, the steady state model in blue,

and the WMAP based concordance model

with Ωm = 0.27 and ΩΛ = 0.73 in purple.

• The data imply an accelerating Universe

at low to moderate redshifts but a de-

celerating Universe at higher redshifts:

the explanation involves both dark matter

and dark energy: the topics for the rest

of this course. 6



Introduction to Cosmology: just one stone

• Lots of math – but can’t have quantitative science without
it, ey?

• Before we start thinking about the whole universe, let’s first
review the mechanics of a stone thrown vertically up.

• At some time t after it was thrown up, the stone of mass m
is at height h away from the ground, and moving up with a
speed v. Will it leave the Earth, or come back and fall on
our head?

• As the stone moves up, its total energy E = K + U , doesn’t
change with time (neglect the deceleration by the atmo-
sphere). However, its kinetic energy K must decrease be-
cause its potential energy U is increasing

E =
1

2
mv2 −G

MEm

RE + h
(4)
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• Here ME and RE are the mass and radius of the Earth. Note

that RE+h is simply the distance between the stone and the

Earth’s center. As h increases the negative potential energy

becomes less negative, i.e. it increases (at the expense of

kinetic energy – v becomes smaller, or the stone is deceler-

ating). Note also that, as h goes to infinity, the potential

energy goes to 0.

• The stone will reach infinity if its v is large enough so that

there is enough kinetic energy to bring the potential energy

from its negative level all the way to 0. In other words, E

has to be positive (this is what happens with rockets). For a

plain stone thrown up by a feeble astronomy professor, E is

negative: the stone is bound and it eventually stops (v = 0)

and then returns back.



• If a bystander sees a stone going up, (s)he can find out

whether it is bound or not even if the initial act of stone being

thrown up was not observed – simply evaluate (measure)

kinetic and potential energy, add them up and thus get the

total energy E; is it < 0 or > 0?



Introduction to Cosmology: the whole Universe

• The Cosmological Principle: on the largest scales, the uni-

verse is isotropic and homogeneous, appearing the same in

all directions and at all locations

• Imagine a universe filled with some uniform “stuff” with mass

density ρ(t). How does ρ(t) vary with time as this universe

expands?

• Imagine a thin shell of radius r, that contains “stuff” with

total mass m; this shell expands with the rest of the universe,

and thus always contains the same material; the total energy

of the shell, E = K + U , doesn’t change with time, but the

kinetic energy K and potential energy U do. If the shell’s

recessional velocity is v, then the total energy is

E =
1

2
mv2 −G

Mrm

r
(5)

8



• Here Mr is the mass enclosed by the shell:

Mr =
4

3
πr3ρ (6)

Now let’s introduce (for future convenience)

E = −
1

2
mc2 k a2 (7)

You’ll see in a minute why mc2/2; note that only k can be

negative. Instead of ka2, we could have introduced only

a single constant, but bear with me for now. Using these

definitions we get

v2 −
8

3
πGr2ρ = −k a2 c2 (8)

Note that the shell’s mass m has disappeared. Also, the sign

of the right-hand side (and thus of the left-hand side, too)

is determined solely by k.



• Now we can see that k encapsulates the fate of the universe.

v2 −
8

3
πGr2ρ = −k a2 c2 (9)

– If k > 0 the total energy is negative, and the universe if

bounded or closed. The expansion will someday halt and

reverse itself (just like the stone falling back)

– If k < 0 the total energy is positive, and the universe if

unbounded or open. The expansion will continue forever

(but at a decreasing rate)

– If k = 0, the total energy is zero. Such universe is called

flat. The expansion will at a decreasing rate and will come

to a halt as time goes to infinity.

• Now, let’s invoke the cosmological principle: the expansion

must proceed in the same way for all shells (think of raisin



bread: the time to double distance from some arbitrary point

must be the same for all raisins). Therefore, we can express

the radius of a shell as

r(t) = R(t) a (10)

where R(t) is some general dimensionless scale factor of

the universe (at some specified time), which is the same for

all shells. The expansion is fully described by R(t). Here a

specifies a particular shell – think of it as the present radius

of the shell; i.e. R(to) = 1. The shell coordinate a is called

a comoving coordinate.

• Using the concept of scale factor and comoving coordinate,

recall the Hubble law:

v(t) = H(t) r(t) = H(t)R(t) a (11)



• Inserting this to the energy conservation equation (6), we
get (

H2 −
8

3
πGρ

)
R2 = −k c2 (12)

Note that the right-hand side is the same for all positions
and all times.

• As we will see in a second, the left-hand side relates the scale
factor and density of the universe. But let’s first introduce
the concept of critical density.

• For a flat universe k = 0. The value of density (as a function
of time) which produces a flat universe is

ρc(t) =
3H2(t)

8πG
(13)

Evaluating this at the present time (Ho = 70 km/s/Mpc),
we get

ρc(to) = 0.92× 10−29gcm−3 (14)



This corresponds to only about five hydrogen atoms per cubic

meter!

• A ‘fate of the universe” question is then what is the present

density of the universe ρ(to), i.e. is it smaller, equal or larger

than ρc(to)?

• But let’s first see why the above equation relates density and

the scale factor of the universe. With

v(t) =
dr(t)

dt
= a

dR(t)

dt
(15)

we get for the Hubble’s constant (well, it’s not really a con-

stant since it depends on time – constant refers to the lack

of spatial variation at a given time)

H(t) =
1

R(t)

dR(t)

dt
(16)



• Inserting this to the energy conservation equation (6, or the

above equation 9), we get[(
1

R

dR

dt

)2
−

8

3
πGρ

]
R2 = −k c2 (17)

We can obtain yet another form of the same equation by

noting that mass Mr enclosed by the shell doesn’t depend on

time. Therefore,

R3(t) ρ(t) = R3(to) ρ(to) = ρo (18)

which, together with eq.(14) gives(
dR

dt

)2
−

8πGρo
3R

= −k c2 (19)



The density parameters Ω

• The ratio of the present density of the universe and the crit-

ical density determines the fate of the universe. Instead of

working with numbers like 10−29, it is convenient to define

Ω(t) =
ρ(t)

ρc(t)
=

8πGρ(t)

3H2(t)
(20)

which has the present value Ωo. So, Ω <>= 1 is the same

condition as k <>= 0 (flat, open and closed universe).

• The contributions to Ωo from baryons, dark matter and dark

energy are treated separately.

• The current best estimates (from a combination of CMB

measurements by WMAP and other data; we will discuss later

why CMB measurements can constrain these parameters)

are:
9



– Only baryons: Ωb = 0.043± 0.002

– Stable neutrinos: Ων < 0.01

– Total matter: Ωm = 0.260± 0.002

– Total all: Ωo = 1.02± 0.02

• Therefore, the universe appears to be flat, and its energy

content is NOT dominated by matter.

• The difference between Ωo and Ωm is contributed to dark

energy (Ωm + ΩΛ = Ωo), with ΩΛ ∼ 0.75. Here,

ΩΛ =
Λ c2

3H2(t)
, (21)

where Λ is the cosmological constant, originally introduced

by Einstein (which he called “his greatest blunder”).



Introduction

So far, we derived an equation that relates the time evolution of
scale factor R(t) and density ρ(t):[(

1

R

dR

dt

)2
−

8

3
πGρ

]
R2 = −k c2 (22)

But we didn’t discuss the fact that this equation cannot be solved
by itself – because it contains two independent quantities. We
need another equation!

Another problem was that the underlying meaning of k wasn’t
obvious – in Newtonian derivation it is simply an unspecified
integration constant, that determines the fate of the Universe
according to

• If k > 0 the total energy is negative, and the universe if
bounded or closed. The expansion will someday halt and
reverse itself
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• If k < 0 the total energy is positive, and the universe if

unbounded or open. The expansion will continue forever

(but at a decreasing rate)

• If k = 0, the total energy is zero. Such universe is called

flat. The expansion will at a decreasing rate and will come

to a halt as time goes to infinity.

Let’s first see what the relativity theory has to say about k,

and then we will see how thermodynamical considerations give

us another equation (actually two, since we need to introduce a

third quantity).



Space-time Curvature
• From a geometrical point of view, there are 3 qualita-

tively different classes of curvature, as illustrated for a two-

dimensional surface. If you can describe your surface mathe-

matically, then it is straightforward to compute the curvature.

For example, a circle of radius r has a curvature of size 1/r

(the curvature of a line, or a circle with infinite r, is 0).

• Formally, we define curvature k of a two-dim. surface as

k =
3

π
limR→0

2πR− Cmeas
R3

(23)

where R is the radius of an infinitesimally small circle, and

Cmeas is its measured circumference.
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Space-time Curvature
• General Relativity asserts that space itself (not just an ob-

ject in space) can be curved, and furthermore, the space of

General Relativity has 3 space-like dimensions and one time

dimension, not just two as in our example above.

• While this is difficult to visualize, the math proceeds in the

same way in 4-dimensional case as it does in 2-dimensional

case

• We don’t know a priori what is the curvature of the universe.

One of the most profound insights of General Relativity was

the conclusion that mass caused space to curve. Thus, the

curvature of the universe is tied to the amount of mass (and

thus to the total strength of gravitation) in the universe.

• How do we measure distances in the space-time continuum

of General Relativity?
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The Robertson-Walker Metric

The distance between the two neighbouring events in the space-
time is given by the Robertson-Walker metric:

(ds)2 = (cdt)2 −R2(t)


 da√

1− ka2

+ (adθ)2 + (a sin(θ)dφ)2


(24)

Here ds is the line element of the space time, or the distance
between the two neighbouring events in the space-time. R(t) is
the scale factor and k is a constant which specifies the curvature.
Comoving spherical coordinates are a, θ and φ and t is the proper
(time between two events at the same place) time.

The Robertson-Walker metric is the most general metric possible
for describing an isotropic and homogeneous universe filled with
matter.

For completeness, compare to the Schwarzschild metric, which
describes the curving of space-time continuum around a massive

13



object (note that here the radial coordinate is r, instead of a)

(ds)2 = (cdtα)2 −
(

dr

α

)
+ (rdθ)2 + (r sin(θ)dφ)2 (25)

where

α =
√

1− 2GM/rc2 (26)

describes the curvature induced by the massive object.



The Friedmann Equation

Just for illustration, here are Einstein’s field equations:

Rµν −
1

2
gµνR− λgµν = 8πGTµν (27)

Note the λ term that was introduced to allow for a static solution.

Here g
µ
ν “hides” the Robertson-Walker metric.

From these equations, one can derive the Friedmann equation[(
1

R

dR

dt

)2
−

8

3
πGρ

]
R2 = −k c2 +

Λc2

3
(28)

The equation that describes the expansion of the Universe, and

is the most important equation in cosmology, the Friedmann

equation, is the same whether derived using General Relativity

or Newtonian mechanics!
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The Friedmann Equation: Einstein vs. Newton

The Friedmann equation[(
1

R

dR

dt

)2
−

8

3
πGρ

]
R2 = −k c2 +

Λc2

3
(29)

The differences between the two derivations are that k is in-

terpreted by General Relativity as the curvature of time-space

continuum, and that ρ, which is mass density in Newtonian me-

chanics, becomes total energy density (divided by c2) in relativis-

tic cosmology.

15



The Closure Equation

Let’s now use thermodynamical considerations to derive an equa-

tion that can be used with the Friedmann equation to solve for

the size of the Universe as a function of time.

The first law of thermodynamics says that the change in energy

of an expanding system must be equal to the work done by the

pressure:

dE

dt
= −p

dV

dt
(30)

(n.b. the right hand side also includes the TdS/dt term, where

S is the entropy, but it drops out since we assume a reversible

expansion).

Here we have introduced a new quantity: pressure. The depen-

dence of pressure on density is specified through an equation

of state: p = p(ρ). E.g. for ideal gas p = ρkBT (here kB is the

Boltzmann constant), and for radiation p = ρc2/3.
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We will relate energy of an expanding shell to its mass using the

famous E = mc2, which gives us

E = V ρ c2 (31)

where volume V is

V =
4

3
πr3 (32)

The change of energy with time is

dE

dt
= ρ c2

dV

dt
+ V c2

dρ

dt
, (33)

and the change of volume with time is

dV

dt
= 4πr2dr

dt
= V

3

r

dr

dt
(34)

By inserting (30) and (31) in (27), and some rearranging, we

get

dρ

dt
+

3

R

dR

dt

(
ρ+

p

c2

)
= 0 (35)



The Expansion of the Universe

In summary, we can describe the expansion of a homogeneous

isotropic Universe using a scale factor R(t), and a set of equa-

tions:

The Friedmann equation:[(
1

R

dR

dt

)2
−

8

3
πGρ

]
R2 = −k c2 (36)

The “fluid” equation:

dρ

dt
+

3

R

dR

dt

(
ρ+

p

c2

)
= 0 (37)

and an equation of state:

p = p(ρ) (38)

with boundary conditions: at t = to: R = 1, dR/dt = Ho
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The Size of the Universe as a Function of Time
The Age of the Universe is 13.7±0.2 Gyr, as measured by WMAP.

How do we get age? By solving first for R(t) and then setting

R(to) = 1. This is especially easy in case of an open (k =

0) matter dominated universe (so that p = 0). In this case

ρ(t)R3(t)= const. from the fluid equation, and when this is

inserted into the Friedmann equation (note that the same results

can be obtained using eq. 16):

R1/2dR =
(

8πGρc,o
3

)1/2
dt (39)

and by simple integration

R(t) = (6πGρc,o)
1/3 t2/3 = (

3Ho t

2
)2/3 (40)

Because k = 0 (and Λ = 0), the only parameter needed to run

the expansion backwards in time is Ho.

The age of the universe, to, is usually expressed in terms of

tH = 1/Ho = 13.8 Gyr. Thus, for a k = 0 matter dominated

universe, to/tH = 2/3 (because R(to) = 1 by definition), which

gives to=9.2 Gyr, which is younger that the age of the oldest

stars! 18



The Size of the Universe as a Function of Time

The past and future of the universe depends on k: open, flat and

closed.

Note that the slope H = 1/R dR/dt is the same for all models at

the present time (this is simply the measured value of the Hubble

constant Ho).

In a universe without cosmological constant (as in the models

shown above), the age of the universe is always smaller than

tH!.
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The Size of the Universe as a Function of Time
The WMAP estimate for the age of the universe is also obtained

by integrating the Friedmann equation (with k = 0 and Ho = 71±
5 km/s/Mpc), but the measurement of ΩΛ = 0.75 is also taken

into account (you’ll repeat this calculation in your homework!)

FYI: the seminal WMAP paper is Spergel et al. 2003, The As-

trophysical Journal Supplement Series, 148, 175–194.

The latest ESO Planck results: Ade et al. 2013, arXiv:1303.5075
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The Expansion of the Universe

To recap, so far we derived equations that relate the time evolu-

tion of the scale factor R(t) and density ρ(t) of a homogeneous

isotropic Universe:

The Friedmann equation:[(
1

R

dR

dt

)2
−

8

3
πGρ

]
R2 = −k c2 (41)

The “fluid” equation:

dρ

dt
+

3

R

dR

dt

(
ρ+

p

c2

)
= 0 (42)

and an equation of state:

p = p(ρ) (43)

with boundary conditions: at t = to: R = 1, dR/dt = Ho

Astronomers use a slightly different form of these equations.
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The Expansion of the Universe: an Astronomer’s
View

Redshift is used to describe size (or time) instead of scale factor

R(t), and densities are normalized by the critical density at the

present time

ρc =
3H2

o

8πG
∼ 0.92× 10−29gcm−3 (44)

(using Ho = 70 km/s/Mpc), leading to Ω = ρ/ρc parameters.

The scale factor is related to redshift, z, as

R(t) =
1

1 + z
(45)

which simply reflects the fact that the photon wavelength ex-

pands in the same fashion as the whole universe. Note that

dR

dz
= −

1

(1 + z)2
= −R2 (46)
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The Contributors to the Energy-mass Density

We will assume that the density has contributions from several

components with different equations of state:

p = w(t) ρ c2 (47)

The following dominant components are considered:

• Matter: includes both baryonic and dark matter. Matter

is non-relativistic and can be approximated by zero pressure

(p = 0). Therefore, for matter w = 0. The amount of matter

is specified by Ωm (∼0.26, with 0.04 in baryons – of which

only 1/10 are emitting light, and the rest is in the form of

dark matter).

• Radiation: today it is energetically negligible, but it was dom-

inant in the early universe. The equation of state for radi-

ation is p = ρ c2/3 and hence, for radiation w = 1/3. The

contribution of radiation to Ω is specified by Ωr (< 0.0001).
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• Dark Energy: since we don’t know much about it, we’ll re-

tain, at least for now, it’s most general description as w(t),

(or, equivalently, w(z)). When w is assumed constant, then

observations indicate that w ∼ −1, which is equivalent to cos-

mological constant. The contribution of cosmological con-

stant to Ω is specified by ΩΛ (∼ 0.7).

• We can formally treat k term in the Friedmann equation as

“energy density” in curvature, with w = −1/3, and contribu-

tion Ωk. By definition, Ωk and all other Ω add up to 1:

Ωm + ΩΛ + Ωk + Ωr = 1 (48)

Before we can write down the resulting Friedmann equation, we

have to find out how the density of a component described by a

particular equation of state depends on redshift.



The Equation of State and the Fluid Equation

For a given equation of state, we can transform the fluid equation

dρ

dt
+

3

R

dR

dt
ρ [1 + w(R)] = 0 (49)

into
dρ

ρ
= −3 [1 + w(R)]

dR

R
= 3

dz

1 + z
[1 + w(z)] (50)

and integrate to obtain

ρ(z)

ρ(to)
= exp

(
3
∫ z

0

1 + w(z′)

1 + z′
dz′

)
(51)

If w(t) = wo =const., then

ρ(z)

ρ(to)
= (1 + z)3(1+wo) =

1

R3(1+wo)
(52)

Hence, for wo = 0 (matter) ρm ∝ Ωm(1 + z)3, for wo = −1/3

(radiation) ρr ∝ Ωr(1 + z)4, and for wo = −1 (cosmological

constant) ρΛ ∝ ΩΛ=const.
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The Astronomer’s Friedmann Equation

We can write the Friedmann equation in a general form as(
1

R

dR

dt

)2
=
H2(z)

H2
o

= E2(z) =
∑
i

Ωiexp

(
3
∫ z

0

1 + w(z′)

1 + z′
dz′

)
(53)

Given the solutions of the fluid equation for the dominant com-
ponents to the energy-mass density, we can write the Friedmann
equation as

E2(z) = Ωr(1+z)4 +Ωm(1+z)3 +Ωk(1+z)2 +ΩDEf(z), (54)

where

f(z) = exp

(
3
∫ z

0

1 + w(z′)

1 + z′
dz′

)
(55)

For w(z) = wo, f(z) = (1 + z)3(1+wo). In particular, for wo = −1
f(z) = 1, and ΩDE = ΩΛ (dark energy as cosmological con-
stant).

The function E(z) has fundamental importance for interpreting
cosmological observations.
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Lookback time and the age of the universe

We can compute the time that took a photon to get to us from

an object at redshift z as

tL =
∫ to
t

dt = −
∫ z

0

dt

dz
dz′. (56)

Since

E(z) =
1

HoR

dR

dt
= −

tH
1 + z

dz

dt
(57)

we get for the lookback time

tL = tH

∫ z
0

dz′

(1 + z′)E(z′)
. (58)

where tH = 1/Ho ∼ 13.7 Gyr. Thus, given the cosmological pa-

rameters, we can compute the age of the universe as the look-

back time for z →∞.
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Lookback time and the age of the universe

For a flat universe Ωm + ΩΛ = 1, favored by the CMB observa-
tions and theoretically by inflation, the implied age of the uni-
verse increases with ΩΛ. For ΩΛ = 0, the age of the universe is
equal to 2tH/3 ∼ 10 Gyr smaller than the age of the oldest stars
(∼ 13− 14 Gyr), but for ΩΛ = 0.7, the universe is slightly older
than the oldest stars. Observations of distant supernovae also
favor ΩΛ = 0.7, while dynamical observations of galaxy clusters
favor Ωm = 0.3.

Because of this simultaneous success in explaining fundamentally
different observations, the Ωm = 0.3 and ΩΛ = 0.7 model is
called the concordance model.

By the way: until recently, a very popular parameter for describ-
ing cosmology was the deceleration parameter

qo = −
dR2

dt2

(
dt

dR

)2
R = Ωm/2−ΩΛ (59)

An interesting point is that ΩΛ > 0 doesn’t necessarily imply a
deceleration: qo < 0 only if ΩΛ > Ωm/2 (assumed wo = −1).
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The Luminosity and Angular Diameter Distances

In curved space-time, there is no preferred notion of the distance

between two objects. There are several distance measures which

can be extracted from observations. The most important are

luminosity distance

dL =

√
L

4πF
= (1 + z)DM , (60)

where L is the luminosity and F is the measured flux, and angular

diameter distance

dA =
D

θ
=

DM
1 + z

(61)

where D is the metric (proper) size of an object, and θ is the

measured angular size.

Here DM is the transverse comoving distance, given by

DM = DC f(DC/DH) (62)
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When Ωk = 0, f = 1, and it is easily computable otherwise. Here

DC is comoving (line-of-sight) distance

DC = DH

∫ z
0

dz′

E(z′)
(63)

and DH = c tH = 4.2 Gpc is the Hubble distance.

Thus, when we know the absolute magnitude of an object, such

as supernova, we can compute its apparent magnitude as

m = M + 5 log(
DL

10pc
) +K + E (64)

Here K and E are corrections to account for the redshift of

spectral energy distribution and for evolutionary effects. For

Ωk = K = E = 0, the distance module is

DM = m−M = 5 log(
DH

10pc
)+5 log(1+z)+5 log(

∫ z
0

dz′

E(z′)
) (65)

DM = 43.1 + 5 log(1 + z) + 5 log(
∫ z

0

dz′

E(z′)
) (66)



SNe by Riess et al. (2004): extremely convincing
evidence for cosmic jerk (deceleration turning into

acceleration around z ∼ 0.5), in amazing agreement
with the concordance model! Nobel Prize in physics for

2012!
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Constraints on Ωm and ΩΛ
from SNe

• From Riess et al. (2004, ApJ

607, 665)

• SNe constraints are shown by

the solid contours; note that

they are above the line sepa-

rating accelerating and decel-

erating universes

• The Ωtot = Ωm+ΩΛ = 1 con-

dition, favored by the CMB

measurements, and theoreti-

cally by inflation, is in good

agreement with the SNe con-

straint.

• SNe (i.e. luminosity distance)

also provide good constraints

on the dark energy equation of

state
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Constraints on the dark
energy equation of state
• From Riess et al. (2004, ApJ

607, 665); gold and silver re-

fer to subsamples of different

quality

• Top: assuming w(z) = w =

const.

• Bottom: assuming w(z) =

wo + w′ z
• Conclusions: if w(z) is as-

sumed constant, then wo =

−1 cannot be ruled out: it is

-1 to within the measurement

error of σw ∼ 0.2; if w′ dif-

ferent from 0 iz allowed, then

perhaps w0 < −1

• Last few years have produced

extremely exciting cosmologi-

cal measurements! 31



The Angular Diameter
Distance

• An interesting/amusing

fact: the angular di-

ameter distance has a

local maximum around

z ∼ 1.5. Thus, an ob-

ject becomes apparently

smaller as we move it

out to that distance, but

then its size increases

with distance!

• Check out a nice

compendium of cos-

mological formulae by

Hogg (2000, astro-

ph/9905116).
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Cosmic Microwave Background (CMB)
• The CMB fluctuations, recently observed by WMAP at a high

angular resolution, show a characteristic size of ∼ 1◦

• How do we mathematically describe this behavior? How do

we compare models to these observations?
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