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Galaxies
• Galaxies are (mostly) made of stars

(also gas, dust, active galactic nuclei

– AGN); hence have similar (but not

identical!) color distributions

• They come in various shapes and forms

(spiral vs. ellipticals; aka exponential

vs. de Vaucouleurs profiles)

• Some host AGNs, some have high star-

formation rates, some are very unusual

(dwarf galaxies, mergers, etc.)

• We are interested in various distribu-

tion functions (e.g. for luminosity, col-

ors, mass, age, metallicity, size, etc.)

– the hope is to figure out how galaxies

formed and evolved

• Nearest neighbors: the Andromeda

galaxy (M31), Large and Small Mag-

ellanic Clouds, the Sgr Dwarf (may be

more)
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Most important historical breakthroughs in galaxy
research

• Around 1610: Galileo Galilei resolves the Milky Way into

individual stars

• Around 1750: Immanuel Kant developes the idea of “island

universes” – different galaxies just like our own

• Around 1850: William Parsons discovers spiral structure and

proposes that some galaxies rotate

• 1923/24: Edwin Hubble resolves M31 and M33 into indi-

vidual stars – confirms that they are galaxies just like our

own

• 1929: Edwin Hubble discoveres the expansion of the Universe
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• 1933: Fritz Zwicky claims the existence of “dark matter”

based on observed speeds of cluster galaxies (nobody believes

him! – for a rap song about this see astro-ph/9610003)

• 1970-1980: Vera Rubin’s work on rotation curves of spiral

galaxies – dark matter idea becomes widely accepted



Hubble’s Morphological Classification
• Broadly, galaxies can be divided into el-

lipticals, spirals, and irregulars

• Broadly, spirals are divided into normal

and barred (similar frequencies): S and

SB

• The subclassification (a, b, or c) refers

both to the size of the nucleus and the

tightness of the spiral arms. For example,

the nucleus of an Sc galaxy is smaller than

in an Sa galaxy, and the arms of the Sc

are wrapped more loosely.

• The number and how tightly the spiral

arms are wound are well correlated with

other, large scale properties of the galax-

ies, such as the luminosity of the bulge

relative to the disk and the amount of gas

in the galaxy. This suggests that there

are global physical processes involved in

spiral arms.
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Galaxy types that didn’t make it into the
Hubble-Sandage system
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Colors are correlated with morphology
• Galaxies have bi-modal color distribution

(e.g. SDSS u − r color – the ratio of the

UV and red fluxes)

• Colors correlated with shapes and profiles:

blue galaxies tend to be spiral and red galax-

ies tend to be elliptical (there are deviants

such as e.g. “anemic spirals”)

• A good parametrization for shapes (i.e. in-

tensity vs. radius R) is the Sersic index n:

I(R) ∝ exp(−(R/Re)1/n)

• n = 1: exponential profile

• n = 4: de Vaucouleurs profile
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Note the bulge contribution!

13



The light intensity distribution as a function of
(elliptical) radius

Astronomers usually express brightness on a logarithmic (mag-

nitude) scale (well, at least optical astronomers do):

log I(R) = a− bR1/n (1)

Given an image of a galaxy (i.e. I as a function of R), one can

determine a, b and n. Sometimes, n is fixed as a function of

galaxy’s morphology, and only a and b are fit to the data.

Sometimes, de Vaucouleurs profile is expressed as

I(R) = Io 10
−3.33 [( R

R1/2
)1/4−1]

(2)

or for surface brightness (e.g. mag/arcsec2)

µ = −2.5 log [I(R)] = µo + 8.33 [(
R

R1/2
)1/4 − 1] (3)

14



The light intensity distribution as a function of
(elliptical) radius

Integral of I(R) over the entire galaxy gives flux

F = 2π
∫ ∞

0
I(R)RdR (4)

This assumes that the profile was averaged in elliptical annuli.

In general,

F =
∫ ∞

0

∫ 2π

0
I(R, φ)RdRdφ (5)

Here, I(R), and this F is measured at some wavelength (and in

some band). Integration over all wavelengths gives bolometric

flux.

If flux F is multiplied by 4πD2, where D is distance, one gets

luminosity. Beware of units!
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The light intensity distribution as a function of
(elliptical) radius

Freeman’s law: when µ(R) is extrapolated to the center of the

galaxy (R=0, and excluding the bulge contribution), one gets a

similar answer (to within 40-50%) for all spiral galaxies!

This all (i.e. exp. profile and Freeman’s law) applies to disks of

spiral galaxies. What about (luminous) halo?

The answer depends on tracer; for the Milky Way

• globular clusters: I(R) ∝ R−3.5

• RR Lyrae: I(R) ∝ R−3.0
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RR Lyrae from Ivezić et al. (2003)
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• Spectra are correlated
with morphology
• Galaxies with weak blue flux

tend to be ellipticals (consis-

tent with conclusions based

on colors, of course)

• Galaxies with emission lines

tend to be spiral galaxies

(though not all)

• Both AGNs and star-forming

galaxies show emission lines:

How do we separate AGNs

from star-forming galaxies?

Using the emission line ra-

tios (which are also corre-

lated with colors and shapes)
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• Star formation vs AGN
• It is not easy to distinguish

galaxies with active star for-

mation from those that har-

bour an AGN (active galac-

tic nuclues; a.k.a. black hole

with an accretion disk)

• We can use the emission line

strength to separate them:

Hα, Hβ, [NII], [OIII]

• Physical origin: AGN have

power-law spectra, so they

have more UV photons than

even the hottest stars; as a

result, for a given [OIII]/Hβ
ratio, AGNs have larger

[NII]/Hα ratio than star-

forming galaxies
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• Correlations of Galaxy Param-
eters
• Many physical parameters are cor-

related with each other; for exam-

ple, the luminosity, concentration of

the light profile, and spectral line

strengths are correlated with colors

• In the color-color space, galaxies

form a very thin locus: the SEDs of

galaxies are nearly one-dimensional

family (at the level of ∼0.02 mag)

• Next page: SDSS sample from

Blanton et al. (2003); the quan-

tities are u− g, g − r, r − i and i− z
colors, surface brightness, Sersic in-

dex, and absolute magnitude in the

r band; the grayscale plots show

galaxy distribution in 2D diagrams,

together with distributions of each

individual quantity (histograms).
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Luminosity Function
• Luminosity Function is the

distribution in the luminosity–

position plane; how many

galaxies per unit interval in lu-

minosity and unit volume (or

redshift): Ψ(M, z)

• Imagine a tiny area with the

widths ∆Mr and ∆z centered

at some Mr and z in the plot

to the left: count the number

of galaxies, divide by ∆Mr∆z,

and correct for the fraction of

sky covered by your survey:

this gives you Ψ(M, z).
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Luminosity Function

• Luminosity Function is the distribution in the luminosity–
position plane; how many galaxies per unit interval in lumi-
nosity and unit volume: Ψ(M, z)

• Often, this is a separable function: Ψ(M, z) = Φ(M)n(z),
where Φ(M) is the absolute magnitude (i.e. luminosity) dis-
tribution, and n(z) is the number volume density.

• Luminosity is a product of flux and distance squared (ignore
cosmological effects for simplicity): L = 4πD2F

• The samples are usually flux-limited (meaning: all sources
brighter than some flux limit are detected) – the minimum
detectable luminosity depends on distance: L > 4πD2Fmin,
or for absolute magnitude M < Mmax(D) (c.f. the first plot)
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The dependence of LF on galaxy
type

• The comparison of LFs for blue and

red galaxies (from Baldry et al. 2004,

ApJ, 600, 681-694)

• The red distribution has a more lumi-

nous characteristic magnitude and a

shallower faint-end slope, compared to

the blue distribution

• The transition between the two types

corresponds to stellar mass of ∼ 3 ×
1010 M�
• The differences between the two LFs

are consistent with the red distribution

being formed from major galaxy merg-

ers.

26



Schechter Function

Galaxy luminosity distribution resembles a power-law, with an ex-

ponential cutoff. This distribution is usually modeled by Schechter

function:

Φ(L) = Φ∗
(
L

L∗

)α
e−L/L∗ (6)

Or using absolute magnitudes:

Φ(Mr) = 0.4Φ∗ e−0.4(α+1)(Mr−M∗) e−e−0.4(Mr−M∗)
(7)
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Spiral Galaxies

1. Spiral Arms and Disk Instabilities

2. Dynamics of Spiral Galaxies
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Disk instabilities come in many shapes and forms! The spiral

structure is arguably the most beautiful disk instability.
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Lord Rosse in 1845 “discovered” spiral structure in M51 (this is

an HST image of M51)
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Not all spirals are alike!
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Hubble’s Morphological Classification
• Broadly, galaxies can be divided into el-

lipticals, spirals, and irregulars

• Broadly, spirals are divided into normal

and barred (similar frequencies): S and

SB

• The subclassification (a, b, or c) refers

both to the size of the nucleus and the

tightness of the spiral arms. For example,

the nucleus of an Sc galaxy is smaller than

in an Sa galaxy, and the arms of the Sc

are wrapped more loosely.

• The number and how tightly the spiral

arms are wound are well correlated with

other, large scale properties of the galax-

ies, such as the luminosity of the bulge

relative to the disk and the amount of gas

in the galaxy. This suggests that there

are global physical processes involved in

spiral arms.
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In addition to Hubble’s classification, there are different types

of spiral structure: grand design spirals, with clearly outlined

and well organised globally correlated spiral structure, and

flocculent (fluffy) spirals with many small short globally

uncorrelated spiral arms
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Theories of Spiral Structure

Despite 50 years of work, spirals are not very well understood. It

seems clear now that the spiral structure of galaxies is a complex

problem without any unique and tidy answer.

Differential rotation clearly plays a central role, as well as global

instabilities, stochastic spirals, and the shocks patterns that can

arise in shearing gas disks when forced by bars.

There are (at least) two popular theories, one of which is more

commonly used to explain grand design spirals, the other for

flocculent spirals.

But before proceeding: winding problem (Lindblad)
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Winding problem
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Winding problem

The problem: most spiral galaxies would be tightly wound by

now, which is inconsistent with observations.

Spiral arms cannot be a static structure (i.e. at different times,

arms must be made of different stars)
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Density Wave theory
C.C. Lin & F. Shu (1964-66)

• This is the preferred model

for grand design spirals.

• The spiral arms are over-

dense regions which move

around at a different speed

than star: stars thus move

in and out of the spiral arm

• How these density waves

are set up is unclear, but

it may have to do with

interactions. Once they

are set up, they must last

for a long enough time

to be consistent with the

observed number of spiral

galaxies

42



Stochastic Self-Propagative Star Formation

• This model probably cannot explain grand design sprials, but

it may account for flocculent spiral structure.

• Ongoing star formation triggers star formation in areas ad-

jacent to it. As the galaxy rotates, differential rotation leads

to the appearance of a spiral pattern.

Spiral arms are made of short-lived massive blue stars!
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Note that the smaller galaxy (NGC 5195) is not visible in GALEX

image (left)

The spiral structure is associated with (short-lived) hot

stars.
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Disks contain a lot of dust! Spiral arms are almost exclusively

seen in disks with a lot of gas and dust, unlike bars which are

often seen in galaxies without ISM. Bars are not a wave of star

formation – they are orbital features.
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To remember:

• Spiral arms are not static structure (winding problem)

• Not all spirals are alike: more than one pattern

• The appearance dominated by young luminous blue stars,

but the overall density of all stars is elevated by 10-20% in

spiral arms
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Rotation of Stars in the Disks of Spiral Galaxies

• Most stars in spiral galaxies are concentrated in fairly thin
disks

• Stars move around the galaxy center – described by the ro-
tation (circular velocity) curve vc(R)

• The shape of rotation curve depends on the distribution of
enclosed mass – e.g. for a point mass vc(R) ∝ 1/

√
R

• In general, vc(R) = RdΦ(R)/dR, where Φ is the gravitational
potential (Φ follows from the mass density profile via Poisson
equation)

• We know the disk light intensity profile; we can assume that
mass is following light and predict vc(R) for an exponential
disk; but...
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Rotation of Stars in the Disks of Spiral Galaxies

The prediction for rotation curve in an infinitely thin exponential

disk (the previous slide) involves (somewhat) complicated Bessel

functions. A much simpler, but still decent approximation is

vc(R) = 0.876

√
GM

Re

√√√√ r1.3

1 + r2.3
(8)

where Re is the scale length (I(R) ∝ exp(−R/Re)), and r =

0.533R/Re.

Note that for R >> Re, vc(R) ∝ 1/
√
R (disk “looks” like a point

mass)

FYI: if M is measured in solar masses (M�), R in pc, vc in km/s,

then the gravitational constant is G = 233

What do we get from observations?
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Measurements of the Rotation Curve

The circular speed can be determined as a function of radius by

measuring the redshift of emission lines of the gas contained in

the disk:

Hot stars ionize gas: hydrogen emission lines (e.g. Hα) in the

optical

Neutral atomic hydrogen gas: hyperfine structure transition (due

to flip in electron spin) leads to 21 cm radio line
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Hα measurements
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From A. Bosma’s

PhD Thesis (1978).

“Flat” rotation curves
• The measurements show that rotation

curves are “flat” – they are not ap-

proching the vc(R) ∝ 1/
√
R behavior ex-

pected in the outer parts of disks

• Therefore, there must be an invisible

galaxy component that is capable of pro-

ducing gravitational force

• Earlier (1930’s) suggested by Fritz

Zwicky, became an accepted view after

Rubin’s work

• While, in principle, this discrepancy could

also be due to a different gravitational

law (i.e. force that is not ∝ 1/R2), the

modern data, including cosmic microwave

background measurements, suggest that

indeed that is a “dark matter” compo-

nent contributing ∼5 more gravitational

force than stars and gas combined!
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The Tully-Fisher Relation

The (maximum, the flat part value) rotation velocity is related
to galaxy’s luminosity:

MB = A log vc +B (9)

where A ∼ −10 and B ∼ 3 depend slightly on galaxy’s morpho-
logical type.

Another way of expressing the same correlation

L ∝ v−0.4A
c ∝ v4

c (10)

Why? From the virial theorem, v2 ∝ M/R. Also, L ∝ IR2, and
hence

L ∝ (
M

L
)−2I−1v4 (11)

Since I ∼const. (Freeman’s law), the Tully-Fisher relation im-
plies that (ML ) ∼ const. for spiral galaxies (∼30 in the B band,
and in solar units)
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The Virial Theorem
• In a system of N particles, grav-

itational forces tend to pull the

system together and the stel-

lar velocities tend to make it fly

apart. It is possible to relate ki-

netic and potential energy of a

system through the change of its

moment of intertia

• In a steady-state system, these

tendencies are balanced, which is

expressed quantitatively through

the the Virial Theorem.

• A system that is not in balance

will tend to move towards its viri-

alized state. (virialized ≈ relaxed

≈ equilibrium)
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The Virial Theorem(s)

• The Scalar Virial Theorem tells us that the average kinetic

and potential energy must be in balance.

• The tensor Virial Theorem tells us that the kinetic and po-

tential energy must be in balance in each separate direction.

• The scalar virial theorem is useful for estimating global av-

erage properties, such as total mass, escape velocity and

relaxation time, while the tensor virial theorem is useful for

relating shapes of systems to their kinematics, e.g. the flat-

ness of elliptical galaxies to their rotational speed.
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The Virial Theorem

Zwicki’s derivation: (Ap. J. 1937, 86, 217)

mi
d2~xi
dt2

= ~Fi (12)

where ~Fi is the total forces on galaxy i.

Scalar multiplication with ~xi gives:

1

2

d2

dt2
(mix

2
i ) = ~xi · ~Fi +mi

(
d~xi
dt

)2

(13)

(summing over all system particles is implied). The term on the

left side represents the change of the momentum of inertia, the

second term on the right side is related to kinetic energy, and

the first term on the right side is called virial.
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The Virial Theorem

It can be shown (the so-called Euler theorem from classical me-

chanics) that for Φ ∝ 1/r∑
~xi · ~Fi =

∑
~xi · ∇Φ = −Φ (14)

That is, the virial is related to potential energy of the system

(true for any homogeneous function of the order k such that

Φ(λx) = λkΦ(x) – the virial is equal to kΦ).

In a steady state,

1

2

d2

dt2
(mix

2
i ) = 0, (15)

and, for a self-gravitating system in steady state

2K + Φ = 0 (16)

where K = M < v2 > /2 is the kinetic energy. Thus,

E = K + Φ = −K =
1

2
Φ (17)
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The Scalar Virial Theorem: Applications

• If a system collapses from infinity, half of the potential en-

ergy will end up in kinetic energy, and the other half will be

disposed of! From the measurement of the circular veloc-

ity and the mass of Milky Way (which constrain the kinetic

energy), we conclude that during their formation, galaxies

radiate away about 3× 10−7 of their rest-mass energy.

• For a virialized spherical system, M = 2Rσ2/G. We can

estimate total mass from the size and velocity dispersion.

E.g. for a cluster with σ=12 km/s, and R=3 pc, we get

M = 2× 105 M�.
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Elliptical Galaxies

You’ve seen one, you’ve seen them all! Not true.

• Giant luminous ellipticals, cD: the largest (1 Mpc!) and most

luminous galaxies, very large mass-to-light ratios (lots of dark

matter), masses 1013 − 1014 M�

• Normal ellipticals: most numerous, masses 108 − 1013 M�

• Dwarf ellipticals: masses 107−109 M� – fundamentally differ-

ent from all other ellipticals by having low surface brightness

and lower metallicity

• Dwarf spheroidals: masses 107 − 108 M�, the low-mass end

of normal ellipticals

63



• Blue compact dwarf galaxies: masses ∼ 109 M�, similar to

dwarf ellipticals but unusually blue colors – indicates ongoung

star formation (yes, they do have lots of gas); very low mass-

to-light ratios



The Faber-Jackson Relation

Remember the Tully-Fisher Relation for spiral galaxies?

L ∝ v4
c (18)

Here vc is the rotational velocity.

Do we have an analogous relation for elliptical galaxies?

Unlike spiral galaxies, elliptical galaxies don’t rotate – use the
velocity dispersion, σ, instead.

The Faber-Jackson Relation:

L ∝ σ4 (19)

Actually, the exponent varies from 3 to 5, depending on sample
and band.

The scatter in the FJ relation is decreased by adding another
physical parameter – the fundamental plane:

L ∝ σ2.65r0.65
e (20)
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The velocity dispersion is the width of the velocity distribution.
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The Light Profiles of Elliptical Galaxies

Remember the Sersic profile from Lecture 2: I(R) ∝ exp(−(R/Re)1/n)?
For elliptical galaxies n = 4 – de Vaucouleurs profile:

I(R) = Io 10
−3.33 [( R

R1/2
)1/4−1]

(21)

Another commonly used profiles are King models (isothermal
sphere) and Jaffe’s spheres. The latter has almost identical light
profile as de Vaucouleurs profile, but the density law and gravi-
tational potential are analytic:

ρL(r) =
L

4πr3
o

(
ro

r

)2 1

(1 + ro/r)2
(22)

Φ(r) =
GL

ro

(
M

L

)
ln

(
1

1 + ro/r

)
(23)
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True shapes of elliptical galaxies
• The classification of elliptical galaxies

(E0–E7)is based on apparent flattening:

are the true shapes bi-axial (as expected

for rotation), or triaxial (as expected for

randomly distributed orbits)?

• Elliptical galaxies are modestly triaxial –

a:b:c ∼ 1:0.95:0.7 (nearly oblate, a=b>c,

like an UFO, as opposed to prolate,

a>b=c, like a football)

• We know that because of the effect called

“isophote twist”, which doesn’t happen

for bi-axial shapes, only for triaxial

• Therefore, (most) elliptical galaxies are

NOT supported by rotation

• Isophotes are not exactly elliptical: boxy

vs. disky. The latter can be explained as

a superposition of an elliptical bulge on a

faint edge-on disk.
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The central regions of elliptical galaxies include two types of

profiles: cuspy cores and power-law cores
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Dark Matter in Elliptical Galaxies

In the central part of elliptical galaxies there is no evidence for

dark matter (mass-to-light ratio ∼5–10 in solar units – typical

for old stellar populations). In the outer parts it is harder to find

such evidence because there is no gas on circular orbit as is the

case for spiral galaxies.

Nevertheless, there are several methods that indicate the pres-

ence of dark matter in elliptical galaxies:

1. Analysis of stellar kinematics (detailed models of motion in

gravitational potential)

2. Gravitational lensing (later in this class)

3. X-ray halos (application of virial theorem)
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