Astr 102: Introduction to Astronomy Fall Quarter 2009, University of Washington, Željko Ivezić

Lecture 13: Our galaxy, the Milky Way

Outline

- Spatial distribution of stars: disk, halo, bulge
- Interstellar medium: gas and dust
- Stellar kinematics: rotation vs. random motions
- Black hole in the center: kinematic evidence

Good Milky Way sites:

http://seds.lpl.arizona.edu/messier/more/mw.html

http://www.space.com/milkyway

Introduction

- Top left: 30° by 10° (optical) view towards the Galactic center (from Axel Mellinger)
- Middle left: The all-sky view by the Infrared Astronomical Satellite
- Bottom left: a spiral galaxy (NGC 7331) similar to the Milky Way
- Conclusion: the density of stars on the sky varies greatly because we are observing from inside a disk of stars
- We live in a a spiral galaxy the same conclusion supported by the motions of stars and the presence of abundant interstellar medium (more later)

GALACTIC DISK	GALACTIC HALO	GALACTIC BULGE
Highly flattened	Roughly spherical—mildly flattened	Somewhat flattened and elongated in the plane of the disk ("football shaped")
Contains both young and old stars	Contains old stars only	Contains both young and old stars; more old stars at greater distances from the center
Contains gas and dust	Contains no gas and dust	Contains gas and dust, especially in the inner regions
Site of ongoing star formation	No star formation during the last 10 billion years	Ongoing star formation in the inner regions
Gas and stars move in circular orbits in the Galactic plane	Stars have random orbits in three dimensions	Stars have largely random orbits but with some net rotation about the Galactic center
Spiral arms	No obvious substructure	Ring of gas and dust near center; Galactic

Halo Substructure

The table on the previous page is wrong: most recent data clearly show that halo has rich substructure

Top right: the counts of SDSS stars color-coded by distance (red: ~ 10 kpc, blue: several kpc) from Belokurov et al. (2007)

Bottom left: the distribution of distant SDSS RR Lyrae stars (Sesar et al. 2009)

Revised Spiral Arms

- The stellar bar was discovered in 1990s based on IRAS data
- It was believed that the Galaxy has four spiral arms: the Scutum-Centaurus, Perseus, Sagittarius and Norma
- The stellar counts from Spitzer galactic plane survey (Benjamin et al. 2008) strongly suggest that there are only two major arms, the Scutum-Centaurus and Perseus arms, as is common for barred galaxies

M81 - Spiral Galaxy (Type Sb)

Distance: 12,000,000 light-years (3.7 Mpc)

Image Size = 14 x 14 arcmin

Visual Magnitude = 6

://adc.gstc.nasa.gov/mw

Stars form from gas in galaxies

"Interstellar Medium" = "ISM"

Hot ionized Gas

- Neutral Atomic Gas
- Cold Molecular Gas
- Dust

What these phases are called:

- Hot ionized Gas
- Neutral Atomic Gas
- Cold Molecular Gas
- Dust ≼

"HI" = "H one"

"Dust"

Nomenclature: "ElementI" = unionized Element "ElementII" = singly ionized Element "ElementIII" = doubly ionized Element...etc

What fraction is in each phase?

~65%

~20%

- Hot ionized Gas⁴
- Neutral Atomic Gas
- Cold Molecular Gas
- Dust

Typical Densities

Low (<0.5 atoms/cm³)

- Hot ionized Gas⁴
- Neutral Atomic Gas^K
- Cold Molecular Gas
- Dust

Medium (1-10 atoms/cm³)

High (10²-10⁵ atoms/cm³)

Very High (solid)

Typical Temperatures

Hot (>10⁴⁻10⁷ K)

Hot ionized Gas
Neutral Atomic Gas
Cold Molecular Gas
Dust

Medium (100 ⁻10⁴ K)

> Cold (<50K)

Medium-cold (<100K)

Detected How?

Hα emission line (6563Å) X-Rays (if T>10⁶K)

- Hot ionized Gas
 Neutral Atomic Gas
 Cold Molecular Gas
- Dust

Thermal (Black-body) radiation at far-infrared wavelengths 21cm emission line (hyperfine splitting of H ground state)

CO rotational emission line (mm wavelengths)

Distributed How?

Halos of Galaxies

- Hot ionized Gas
 Neutral Atomic Gas
- Cold Molecular Gas
- Dust

Galaxy Midplane, out to large radii beyond stars

Tracks the distribution of gas

Galaxy Midplane, concentrated in spiral arms

How are the three phases of gas inter-related?

Molecular gas is clumpy on small scales.

(View of the outskirts, away from the center)

"Molecular Clouds" This is why stars form in clusters!

The amount of dust can be measured using light that has been **reprocessed** into the infrared.

UV & optical light is absorbed by dust...

...which heats up to 10-100K and radiates like a greybody at 10-300µm

Dust plays many important roles in galaxies

- 1. Extinction/Attenuation
- 2. Reddening
- 3. Reprocessing UV/optical light into the infrared
- 4. Scatters light.
- 5. Locks up metals

Dusty molecular

gas

New stars

Ionized gas

The Orion Nebula

Molecular H

 Hot young O & B stars heat the surrounding gas, ionizing it.
 → HII

Star formation transforms a molecular cloud into an

"HII Region"

Ionized H

Eagle Nebula: Hot young O & B stars eating away the molecular cloud from which they formed! Gas is still molecular in the columns...

0.35 < r-i < 0.40

runnid maar 126 - 47

R [pc]

- Panoramic view of the Milky Way, akin to observations of external galaxies; good support for standard Galactic models
- Metallicity mapping (age is traced by chemical composition) supports components inferred from number counts mapping:

0.35 < r-i < 0.40

-8

R (kpc)

Dissecting the Milky Way with SDSS

- Panoramic view of the Milky Way, akin to observations of external galaxies; good support for standard Galactic models
- Metallicity mapping supports components inferred from number counts mapping
- Kinematics correlated with metallicity: high-metallicity (disk) stars rotate, lowmetallicity (halo) stars on random highly eccentric orbits

Kinematics

- Stars move in a gravitational potential produced by all stars and dark matter
- Two types of motion: disk stars rotate around the center, while halo stars are on randomly distributed elliptical orbits
- The motion of stars was set during the formation period
- The details are governed by the laws of physics: conservation of energy and conservation of angular momentum!
- As the cloud collapses, its rotation speed must increase. As it spins faster, it must flatten.

Black Hole in the Galactic Center

- Stars move in a gravitational potential: the Galactic center is sufficiently close ("only" 25,000 light years) that we can trace the orbits of individual stars!
- Observations: a large mass (a few 10⁶ M_☉) confined to small space (0.1-0.2 AU) is required to explain about ~30 observed orbits

The Milky Way: Summary Stars: Disk, Bulge and Halo ISM: gas and dust Halo: old stars with random orbits Disk: young rotating stars, Black hole in the center!