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ABSTRACT

This paper introduces the multiband periodogram, a general extension of the well-known Lomb–Scargle approach
for detecting periodic signals in time-domain data. In addition to advantages of the Lomb–Scargle method such as
treatment of non-uniform sampling and heteroscedastic errors, the multiband periodogram significantly improves
period finding for randomly sampled multiband light curves (e.g., Pan-STARRS, DES, and LSST). The light
curves in each band are modeled as arbitrary truncated Fourier series, with the period and phase shared across all
bands. The key aspect is the use of Tikhonov regularization which drives most of the variability into the so-called
base model common to all bands, while fits for individual bands describe residuals relative to the base model and
typically require lower-order Fourier series. This decrease in the effective model complexity is the main reason for
improved performance. After a pedagogical development of the formalism of least-squares spectral analysis, which
motivates the essential features of the multiband model, we use simulated light curves and randomly subsampled
SDSS Stripe 82 data to demonstrate the superiority of this method compared to other methods from the literature
and find that this method will be able to efficiently determine the correct period in the majority of LSST’s bright
RR Lyrae stars with as little as six months of LSST data, a vast improvement over the years of data reported to be
required by previous studies. A Python implementation of this method, along with code to fully reproduce the
results reported here, is available on GitHub.
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1. INTRODUCTION

Many types of variable stars show periodic flux variability
(Eyer & Mowlavi 2008). Periodic variable stars are important
both for testing models of stellar evolution and for using such
stars as distance indicators (e.g., Cepheids and RR Lyrae
stars). One of the first and main goals of the analysis is to
detect variability and to estimate the period and its
uncertainty. A number of parametric and non-parametric
methods have been proposed to estimate the period of an
astronomical time series (e.g., Graham et al. 2013 and
references therein).

The most popular non-parametric method is the phase
dispersion minimization (PDM) introduced by Stellingwerf
(1978). Dispersion per bin is computed for binned phased light
curves evaluated for a grid of trial periods. The best period
minimizes the dispersion per bin. A similar and related non-
parametric method that has been recently gaining popularity is
the SuperSmoother routine (Reimann 1994). It uses a running
mean or running linear regression on the data to fit the
observations as a function of phase to a range of periods. The
best period minimizes a figure-of-merit, adopted as weighted
sum of absolute residuals around the running mean. Neither the
SuperSmoother algorithm nor the PDM method require a priori
knowledge of the light curve shape.

The most popular parametric method is the Lomb–Scargle
periodogram, which is discussed in detail in Section 2. The
Lomb–Scargle periodogram is related to the χ2 for a least-
square fit of a single sinusoid to data and can treat non-
uniformly sampled time series with heteroscedastic measure-
ment uncertainties. The underlying model of the Lomb–
Scargle periodogram is nonlinear in frequency and so the
likelihood surface in frequency is non-convex. This non-
convexity is readily apparent in the many local maxima of the
typical periodogram, which makes it difficult to find the

maximum via standard numerical optimization routines. Thus
in practice the global maximum of the periodogram is often
found by a brute-force grid search (for details see, e.g., Ivezić
et al. 2014).
A more general parametric method based on the use of a

continuous-time autoregressive moving average (CARMA)
model was recently introduced by Kelly et al. (2014). CARMA
models can also treat non-uniformly sampled time series with
heteroscedastic measurement uncertainties and can handle
complex variability patterns.
A weakness of all these standard methods is that they require

homogeneous measurements—for astronomy data, this means
that successive measurements must be taken through a single
photometric bandpass (filter). This has not been a major
problem for past surveys because measurements are generally
taken through a single photometric filter (e.g., LINEAR, Sesar
et al. 2011) or nearly simultaneously in all bands at each
observation (e.g., SDSS, Sesar et al. 2010). For the case of
simultaneously taken multiband measurements, Süveges et al.
(2012) utilized the principal component method to optimally
extract the best period. Their method is essentially a multiband
generalization of the well-known two-band Welch–Stetson
variability index (Welch & Stetson 1993). Unfortunately, when
data in each band are taken at different times, such an approach
is not applicable. In such cases, past studies have generally
relied on ad hoc methods such as a majority vote among
multiple single-band estimates of the periodogram (e.g.,
Oluseyi et al. 2012).
For surveys that obtain multiband data one band at a time,

such as Pan-STARRS (Kaiser et al. 2010) and DES
(Flaugher 2008), and for future multicolor surveys such as
LSST (Ivezić et al. 2008), this ad hoc approach is not
optimal. In order to take advantage of the full information
content in the available data, it would be desirable to have a
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single estimate of the periodogram that accounts for all
observed data in a manner independent of assumptions about
the underlying spectrum of the object. We propose such a
method in this paper.

The proposed method is essentially a generalization of the
Lomb–Scargle method to a multiband case. The light curves in
each band are modeled as an arbitrary truncated Fourier series,
with the period and optionally the phase, shared across all
bands. The key aspect enabling this approach is the use of a
Tikhonov regularization (discussed in detail in Section 4.3)
which drives most of the variability into the so-called base
model common to all bands, while fits for individual bands
describe residuals relative to the base model and typically
require a lower-order Fourier series. This regularization-driven
decrease in effective model complexity is the main reason for
improved performance.

The remainder of the paper is organized as follows.
Sections 2–4 offer a review of essential concepts in least
squares modeling and least squares spectral analysis, as well as
their relationship to common periodogram estimates: in
Section 2 we provide a brief review of least-squares periodic
fitting, in Section 3 we derive the matrix-based formalism for
the single-band least squares spectral analysis used throughout
the rest of this work, and Section 4 introduces several
extensions and generalizations to the single-band model that
the matrix formalism makes possible, including floating mean
models, truncated Fourier models, and regularized models.
Sections 5–7 present our new developments: in Section 5, we
use the ideas and formalism of Sections 2–4 as motivation for
the multiband periodogram and show some examples of its use
on simulated data. In Section 6 we apply this method to
measurements of 483 RR Lyrae stars first explored by Sesar
et al. (2010, hereafter S10), and in Section 7 we explore the
performance of the method for simulated observations from the
LSST survey. We conclude in Section 8.

2. BRIEF OVERVIEW OF PERIODIC ANALYSIS

The detection and quantification of periodicity in time-
varying signals is an important area of data analysis within
modern time-domain astronomical surveys. For evenly spaced
data, the periodogram, a term coined by Schuster (1898), gives
a quantitative measure of the periodicity of data as a function of
the angular frequency ω. For data yk k

N
1{ } = measured at equal

intervals t t k t,k 0= + D Schuster’s periodogram, which mea-
sures the spectral power as a function of the angular frequency,
is given by
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and can be computed very efficiently using a fast Fourier
transform.

Because astronomical observing cadences are rarely so
uniform, many have looked at extending the ideas behind the
periodogram to work with unevenly sampled data. Most
famously, Lomb (1976) and Scargle (1982) extended earlier

work to define the normalized periodogram:
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where ȳ is the mean, Vy is the variance of the data yk{ }, and τ is
the time-offset which orthogonalizes the model and makes
PN ( )w independent of a translation in t (see Press et al. 2007 for
an in-depth discussion). Lomb (1976) showed that this time-
offset has a deeper effect: namely, it gives PN a form similar to
previous extensions of C(ω), while leaving PN identical to the
estimate of harmonic content given a least-squares fit to a
single-component sinusoidal model,

d t A tsin . 3( ) ( ) ( )w f= +

This long-recognized connection between spectral power and
least-squares fitting methods was solidified by Jaynes (1987,
pp. 1–37), who demonstrated that the least-squares period-
ogram method is a sufficient statistic for inferences about a
stationary frequency signal in the presence of Gaussian noise.
Building on this result, Bretthorst (1988) explored the
extension of these methods to more complicated models with
multiple frequency terms, non-stationary frequencies, and other
more sophisticated models within a Bayesian framework.
While the important features of least squares frequency

estimation via Lomb–Scargle periodograms have been dis-
cussed elsewhere, we will present a brief introduction to the
subject in the following section. In particular, we re-express the
problem in a matrix-based formalism that makes clear how the
basic approach motivated by Lomb (1976), Scargle (1982), and
others can be extended to more sophisticated models including
the multiband periodogram proposed in this work.

3. STANDARD LEAST-SQUARES SPECTRAL FITTING

In this section we present a brief quantitative introduction to
the least-squares fitting formulation of the normalized period-
ogram of Equation (2). We denote N observed data points as

D t y, , 4k k k k
N

1{ } ( )s= =

where tk is the time of observation, yk is the observed value
(typically a magnitude), and σk describes the Gaussian errors
on each value. For notational simplicity we will assume
without loss of generality that the data yk are centered such that
the measurements within each band satisfy

w y

w
0 5k k k

k k
( )å

å
=

where the weights are w .k k
2s= - Though this assumption is

essential to the simpler models presented in this section, it will
become superfluous with the floating-mean models described in
later sections.
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3.1. Stationary Sinusoid Model

The normalized periodogram of Equation (2) can be derived
from the normalized χ2 of the best-fit single-term stationary
sinusoidal model given in Equation (3). To make the problem
linear, we can re-express the model in terms of the parameter
vector A Acos , sin[ ]q f f= so that our model is

y t t t, sin cos . 61 2( ∣ ) ( ) ( ) ( )w q q w q w= +

For a given ω, the maximum likelihood estimate of the
parameters θ can be found by minimizing the χ2 of the model,
which is given by

y y t ,
. 7
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For the single-term Fourier model, it can be shown (see, e.g.,
Ivezić et al. 2014) that

P1 8Nmin
2

0
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where PN(ω) is the normalized periodogram given in
Equation (2)3and 0

2c is the reference χ2 for a constant model,
which due to the assumption in Equation (5) is simply

y .
k k k0

2 2( )åc s=

3.2. Matrix Formalism

A standard way of compactly expressing least-squares
models is via matrix expressions (see, e.g., Brandt 1970).
Likewise, the expressions related to the stationary sinusoid
model can be expressed more compactly by defining the
following matrices:

X

t t

t t

t t

y

y
y

y

sin cos

sin cos

sin cos

;

;

0 0

0 0

0 0

. 9

N N

N
N

1 1

2 2

1

2

1
2

2
2

2

( ) ( )
( ) ( )

( ) ( )

( )

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

w w
w w

w w

s

s

s

=

= S =

w
 






   


With these definitions, the model in Equation (6) can be
expressed as a simple linear product, y t X, ,( ∣ )w q q= w and the
model and reference χ2 can be written as

y X y X 10T2 1( ) ( )( ) ( )c w q q= - S -w w
-

y y. 11T
0
2 1 ( )c = S-

The expression for the normalized periodogram can be
computed by finding via standard methods the value of θ that
minimizes χ2(ω) and plugging the result into Equation (8). This

yields
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We note that Equation (12) is equivalent to Equation (2) in the
homoscedastic case with Σ ∝ VyI.

4

3.3. Simple Single-band Period Finding

As an example of the standard periodogram in action, we
perform a simple single-band harmonic analysis of simulated
r-band observations of an RR Lyrae light curve based on
empirical templates derived in S10 (Figure 1). The observations
are of a star with a period of 0.622 days and take place on 60
random nights over a six-month period, as seen in the left
panel.
The upper-right panel shows the normalized periodogram for

this source as a function of period. While the power does peak
at the true period of 0.622 days, an aliasing effect is readily
apparent near P = 0.38. This additional peak is due to the beat
frequency between the true period P and the observing cadence
of ∼1 day. This beat frequency is the first in a large sequence:
for nightly observations, we would expect to find excess power
at periods P P nP1n ( )= + days for any integer n. The strong
alias in Figure 1 corresponds to the n = 1 beat period
Pn = 0.383. Though it is possible to carefully correct for such
aliasing by iteratively removing contributions from the
estimated window function (e.g., Roberts et al. 1987), we will
ignore this detail in the current work.
The lower-right panel of Figure 1 shows the maximum

likelihood interpretation of this periodogram: it is a measure of
the normalized χ2 for a single-term sinusoidal model. Here we
visualize the data from the left panel, but folded as a function of
phase and overplotted with the best-fit single-term model. This
visualization makes it apparent that the single-term model is
highly biased: RR Lyrae light curves are, in general, much
more complicated than a simple sinusoid. Nevertheless, the
simplistic sinusoidal model is able to recover the correct
frequency to a high degree of accuracy (roughly related to the
width of the peak) and significance (roughly related to the
height of the peak; see Scargle 1982 for details). For a more
complete introduction to and discussion of the single-term
normalized periodogram, refer to, e.g., Bretthorst (1988) or
Ivezić et al. (2014).

4. GENERALIZING THE PERIODOGRAM MODEL

We have shown two forms of the classic normalized
periodogram: Equations (2) and (12). Though the two
expressions are equivalent, they differ in their utility. Because
the expression in Equation (2) avoids the explicit construction
of a matrix, it can be computed very efficiently. Furthermore,
through clever use of the fast Fourier transform, expressions of
the form of Equation (2) can be evaluated exactly for N
frequencies in Nlog[ ] time (Press & Rybicki 1989).

3 An important feature of the Lomb–Scargle approach is the modification of
the model with time-offset τ tuned to orthogonalize the harmonic basis across
the irregular times t .i{ } This orthogonalization cancels cross-terms in the
expression of χ2, greatly reducing the complexity of computing PN. As
discussed in footnote 4, however, this orthogonalization does not change the
resulting periodogram, so it can safely be ignored for the purposes of this work.

4 For direct comparison to the Lomb–Scargle approach, we need the
equivalent of the τ parameter which orthogonalizes the basis across the
observed times t .i{ } Such an orthogonalization is accomplished via the
transformations X X Vw w w and V ,Tq q w where Vω is the orthogonal matrix
of eigenvectors of the covariance X X .T 1Sw w

- The Vω terms straightforwardly
cancel out of Equations (10)–(12) and the results of this section are unchanged.
The general matrix formalism used here makes clear that this result applies to
all the periodogram extensions mentioned in this work.

3
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The matrix-based formulation of Equation (12), though
slower than the Fourier-derived formulation, is a more general
expression and allows several advantages.

1. It is straightforwardly extended to heteroscedastic and/or
correlated measurement noise in the data yk through
appropriate modification of the noise covariance
matrix Σ.

2. It is straightforwardly extended to more sophisticated
linear models by appropriately modifying the design
matrix Xω.

3. It is straightforwardly extended to include Tikhonov/L2-
regularization terms (see Section 4.3 for more details) by
adding an appropriate diagonal term to the normal matrix
X X .T 1Sw w

-

In the remainder of this section, we will explore a few of
these modifications and how they affect the periodogram and
resulting model fits.

4.1. Stationary Sinusoid with Floating Mean

As an example of one of these generalizations, we will
consider what has variously been called the date-compensated
discrete Fourier transform (Ferraz-Mello 1981), the floating-
mean periodogram (Cumming et al. 1999), and the generalized
Lomb–Scargle method (Zechmeister & Kürster 2009). Here we
use the term floating-mean periodogram. This method adjusts
the classic normalized periodogram by fitting the mean of the
model alongside the amplitudes:

y t t t, sin cos . 130 1 2( ∣ ) ( )w q q q w q w= + +

The periodogram derived from this model can be more accurate
than the standard pre-centered periodogram for certain
observing cadences and selection functions, and especially
when searching for long-period varaibility or working with
very few samples (Cumming et al. 1999). Zechmeister &
Kürster (2009) detail the required modifications to the
orthogonalized harmonic formalism of Equation (2) to allow
the mean to float in the model. In the matrix formalism, the

modification is much more straightforward: all that is required
is to add a column of ones to the Xω matrix before computing
the power via Equation (12). This column of ones corresponds
to a third entry in the parameter vector θ, and acts as a uniform
constant offset for all data points.
For well-sampled data, there is usually very little difference

between a standard periodogram on pre-centered data and a
floating-mean periodogram. Where this difference becomes
important is if selection effects or observing cadences cause
there to be preferentially more observations at certain phases of
the light curve: a toy example demonstrating this situation is
shown in Figure 2. The data are drawn from a sinusoid with
Gaussian errors, and data with magnitudes fainter than 16 are
removed to simulate an observational bias (left panel). Because
of this observational bias, the mean of the observed data is a
poor predictor of the true mean, causing the standard method to
poorly fit the data and miss the input period (upper-right panel).
The floating-mean approach is able to automatically adjust for
this bias, resulting in a periodogram that readily detects the
input period of 0.622 days (lower-right panel).

4.2. Truncated Fourier Models

As mentioned above, the standard periodogram is equivalent
to fitting a single-term stationary sinusoidal model to the data.
A natural extension is to instead use a multiple-term sinusoidal
model with frequencies at integer multiples of the fundamental
frequency (see, e.g., Bretthorst 1988). With N Fourier terms,
there are N2 1+ free parameters, and the model is given by

y t n t n t, sin cos . 14
n

N

n n0
1

2 1 2[ ]( ∣ ) ( ) ( ) ( )åw q q q w q w= + +
=

-

Because this model remains linear in the parameters θ, it can be
easily accommodated into the matrix formalism of Section 3.2.
For example, a two-term (N = 2) floating-mean model can be
constructed by building a design matrix Xω with N2 1 5+ =

Figure 1. Illustration of the basic periodogram and its relationship to the single-term sinusoid model. The left panel shows the input data, while the right panels show
the fit derived from the data. The upper-right panel shows the periodogram with a clear peak at the true period of 0.622 days, and the bottom-right panel shows the data
as a function of the phase associated with this period. Note in the periodogram the presence of the typical aliasing effect, with power located at beat frequencies
between the true period and the one-day observing cadence (see Section 3.3 for further discussion).
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Computing the power via Equation (12) using X 2( )
w will give the

two-term periodogram. For larger N, more columns are added,
but the periodogram can be computed in the same manner.
Figure 3 shows a few examples of this multiterm Fourier

approach as applied to the simulated RR Lyrae light curve from
Figure 1 and illustrates several important insights into the
subtleties of this type of multiterm fit.
First, we see in the right panel that all three models show a

clear signal at the true period of P0 = 0.622 days. The higher-
order models, however, also show a spike in power at P1 = 2
P0: the reason for this is that for a model with more than one
frequency term, the period P0 is the first harmonic of a model
with fundamental frequency 2P0, and the higher-order models
contain the single-period result.
Second, notice that as the number of terms is increased, the

general “background” level of the periodogram increases. This
is due to the fact that the periodogram power is inversely
related to the χ2 of the fit at each frequency. A more flexible
higher-order model can better fit the data at all periods, not just
the true period. Thus in general, the observed power of a

Figure 2. Illustration of the effect of the floating-mean model for censored data. The data consist of 80 observations drawn from a sinusoidal model. To mimic a
potentially damaging selection effect, all observations with magnitudes fainter than 16 are removed (indicated by the light gray points). The standard and floating-
mean periodograms are computed from the remaining data; these fits are shown over the data in the left panel. Because of this biased observing pattern, the mean of
the observed data is a biased estimator of the true mean. The standard fixed-mean model in this case fails to recover the true period of 0.622 days, while the floating-
mean model still finds the correct period.

Figure 3. Model fits and periodograms for several truncated Fourier models. The data are the same as those in Figure 1. Note that in addition to the previously seen
0.38 day alias, the higher-order models will generally show periodogram peaks at multiples of the true fundamental frequency P0: this is because for integer n less than
the number of Fourier terms in the model, P0 is a higher harmonic of the model at P = nP0. Additionally, the increased degrees of freedom in the higher-order models
let them fit better at any frequency, which drives up the “background” level in the periodogram.
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higher-order Fourier model will be higher than the power of a
lower-order Fourier model everywhere.

One might hope that when adding terms, the correct-period
model would show more of an improvement than the incorrect-
period model (and thus the periodogram maximum would
become more pronounced in comparison to the background),
but this does not generally hold. Consider that in the extreme
limit in which the number model parameters is equal to the
number of data points, the model has enough flexibility to fit
the data perfectly at every frequency, and the resulting
periodogram would be unity everywhere! This can only be
the case if, on average, the addition of terms preferentially
boosts the background level.

4.3. Regularized Models

The previous sections raise the question: How complicated a
model should we use? We have seen that as we add more terms
to the fit, the model will more closely describe the observed
data. For very high-order models, however, such a close fit
over-fits the data: that is, the fit is more responsive to statistical
noise in the observations than to the underlying signal. This can
be addressed by explicitly truncating the series at some number
of terms, but we can also use a regularization term to
mathematically enforce model simplicity.

A regularization term is an explicit penalty on the magnitude
of the model parameters θ and can take a number of forms. For
computational simplicity here we will use an L2 regularization
—also known as a Tikhonov regularization (Tikhonov 1963) or
Ridge regression (Hoerl & Kennard 1970)—which is a
quadratic penalty term in the model parameters added to the
χ2. Mathematically, this is equivalent to using a zero-mean
Gaussian prior on the model parameters in the Bayesian
framework.

We encode our regularization in the matrix
diag , M1 2([ ])l l lL =  for a model with M parameters and

construct a “regularized” χ2:

y X y X . 16T T2 1( ) ( )( ) ( )c w q q q q= - S - + Lw wL
-

Minimizing this regularized χ2, solving for θ, and plugging
into the expression for PN gives us the regularized counterpart
of Equation (12):

P
y X X X X y

y y
. 17N

T T T

T,

1 1 1 1

1
( ) ( )
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w =

S S + L S

S

w w w w
L

- - - -

-

Notice that the effect of this regularization term is to add a
diagonal penalty to the normal matrix X X ,T 1Sw w

- which has the
additional feature that it can correct ill-posed models where the
normal matrix is non-invertible. This feature of the regulariza-
tion will become important for the multiband models discussed
below.
In Figure 4, we compare regularized and unregularized

twenty-term truncated Fourier models of our simulated RR
Lyrae light curve. We use λ = 0 for the offset term and make
the penalty λj progressively larger for each harmonic
component. The regularization prevents overfitting (left panel)
and results in more prominent periodogram peaks (right panel).

5. A MULTIPLE-BAND MODEL

In this section we will combine the ideas of the previous
sections to construct a multiband periodogram which flexibly
accounts for heterogeneous sources of data for a single object.
To start with, we can consider one of two naïve approaches to
the multi-band problem.
First, we might ignore band labels entirely and simply

compute a single standard Lomb–Scargle periodogram over the
full data set. This amounts to the assumption that one global
model suitably fits each band and in practice will perform
poorly due to the astrophysical variability between bands: in
other words, the model is too simple and under-fits the data.
Second, we might treat each band entirely independently and

compute a standard Lomb–Scargle periodogram on each, then
use the sum of χ2 along with Equation (8) to construct a
multiband periodogram. This amounts to the assumption that
the bands have completely independent phases and amplitudes
and has too many free parameters to be useful in most cases of

Figure 4. Effect of regularization on a high-order model. The data are the same as those in Figure 1. We fit a twenty-term truncated Fourier model to the data with and
without a regularization term. Without regularization, the model oscillates widely to fit the noise in the data. The regularization term effectively damps the higher-order
Fourier modes and removes this oscillating behavior, leading to a more robust model with stronger periodogram peaks.

6

The Astrophysical Journal, 812:18 (15pp), 2015 October 10 VanderPlas & Ivezić



interest. In other words, the model is too complex and over-fits
the data (see Section 5.1 for further discussion).

To compute a periodogram that strikes a balance between
these two extremes, we will take advantage of the easy
extensibility of the matrix formalism which led to our
generalizations above. The multiband model presented here
contains the following features.

1. An Nbase-term truncated Fourier “base model” that
models the shared variability among all K observed
bands.

2. A set of Nband-term truncated Fourier fits, each of which
models the residual within a single band from the shared
variability accounted for in the base model.

The total number of parameters for K bands is then
M N K N2 1 2 1 .K base band( ) ( )= + + + As a result, for each
band k we have the following model of the observed
magnitudes:

y t n t n t
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The important feature of this model is that all bands share the
same base parameters θ, while their offsets θ k are determined
individually. Note the potential for confusion: Nband here is not
the number of observed bands, but the number of Fourier
components fit to the residuals in each of the K observed bands.

We can construct the normalized periodogram for this model
by building a sparse design matrix with MK columns. Each row
corresponds to a single observation through a single band.
Columns corresponding to the base model and the matching
observation band will have nonzero entries; all other columns
will be filled with zeros. For example, the (Nbase, Nband)= (1, 0)
model corresponds to one with a simple single-term periodic
base frequency, and an independent constant offset term in
each band. The associated design matrix depends on the
particular data, but will look similar to this:
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Here the nonzero entries of the final five columns are binary
flags indicating the (u, g, r, i, z)-band of the given observation:
for this example, the first row is a u-band measurement, the
second is a z-band, the third is an i-band, etc., as indicated by
the position of the nonzero matrix element within the row.

Upon examination of the above matrix, it is clear that the
columns are not linearly independent (i.e., Xω is low-rank), and
thus the parameters of the best-fit model will be degenerate.
Intuitively, this is due to the fact that if we add an overall offset
to the base model, this can be perfectly accounted for by
subtracting that same offset from each residual model.
Mathematically, the result of this is that the normal matrix
X XT 1Sw w

- will be non-invertible, and thus the periodogram is
ill-defined. In order to proceed, then, we will either have to use

a different model or use a cleverly constructed regularization
term on one of the offending parameters.
We will choose the latter here and regularize all the band

columns while leaving the base columns un-regularized: for the
above Xω matrix, this regularization will look like

diag 0, 0, 0, , , , , 201,0 ([ ]) ( )( ) l l l l lL =

where λ controls the degree of regularization. As λ grows
large, the model will preferentially push power into the base
terms while minimizing the deviations of the model for each
individual band.
Here we will choose λ to be some small fraction of the

trace of the normal matrix X X .T 1[ ]Sw w
- This choice ensures

the multiband periodogram is well-defined, while maintain-
ing the flexibility of the model in accounting for independent
band-to-band variation. With this regularization in place,
the model is well-posed and Equation (17) can be used
to straightforwardly compute the power. The effective
number of free parameters for such a regularized (Nbase,
Nband) model with K filters is M N K N2 2 1K

eff
base
eff

band( )= + +
where N N Nmax 0,base

eff
base band( )= - is the effective number

of base terms.
The final remaining piece to mention is our assumption in

Equation (5) that the data are centered. This is required so that
the simple form of the reference 0

2c remains valid. For the
multiband model, this assumption requires that the data satisfy
Equation (5) within each band: equivalently, we could lift this
assumption and compute the reference 0

2c of the multiband
model with an independent floating mean within each band; the
results will be identical.
This multiband approach, then, actually comprises a set of

models indexed by their value of Nbase and Nband. The most
fundamental models have (Nbase, Nband) = (1, 0) and (0, 1),
which we will call the shared-phase and multi-phase models,
respectively. In the shared-phase model, all variability is
assumed to be shared between the bands, with only the fixed
offset between them allowed to float. In the multi-phase model,
each band has independent variability around a shared fixed
offset.

5.1. Relationship of Multiband and Single-band Approaches

With this formalism in place, we can return briefly to the
naïve models discussed at the beginning of Section 5. The first,
which ignores band information, is simply a standard Lomb–
Scargle over the heterogeneous data. The second, in which
each band is fit independently, turns out to be equivalent to the
(Nbase, Nband) = (0, 1) model defined above. Here the base
model is a simple global offset which is degenerate with the
offsets in each band, so that the design matrix Xω can be
straightforwardly rearranged as block-diagonal. A block-
diagonal design matrix in a linear model indicates that
components of the model are being solved independently: here
these independent components amount to the single-band
floating-mean model from Section 2, fit independently for each
of the K bands.
For band k, we will denote the single-band floating-mean

periodogram as

P 1 . 21N
k k
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The full multiband periodogram is given by
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Thus the (Nbase, Nband) = (0, 1) multiband periodogram is
identical to a weighted sum of standard periodograms in each
band, where the weights k0,

2c are a reflection of both the
number of measurements in each band and how much those
measurements deviate from a simple constant reference model.

5.2. Multiband Periodogram for Simulated Data

Before applying the multiband method to real data, we will
explore its effectiveness on a simulated RR Lyrae light curve.
The upper panels of Figure 5 show a multiband version of the
simulated RR Lyrae light curve from Figure 1. The upper-left
panel shows 60 nights of observations spread over a six-month
period, and for each night all five bands (u, g, r, i, z) are
recorded. Using the typical approach from the literature, we
individually compute the standard normalized periodogram
within each band: the results are shown in the upper-right
panel. The data are sampled well enough that a distinct period
of 0.622 days can be recognized within each individual band up
to the aliasing effect discussed in Section 3.3. Previous studies
have made use of the information in multiple bands to choose
between aliases and estimate uncertainties in determined
periods (e.g., Sesar et al. 2010; Oluseyi et al. 2012). While
this approach is sufficient for well-sampled data, it becomes
problematic when the multiband data are sparsely sampled.

The lower panels of Figure 5 show the same 60 nights of
data, except with only a single band observation recorded each
night. The lower-left panel shows the observations as a
function of phase, and the lower-right panels show the
periodograms derived from the data. With only 12 observations
for each individual band, it is clear that there is not enough data
to accurately determine the period within each single band. The
shared-phase (Nbase, Nband) = (1, 0) multiband approach,
shown in the lower-right panel, fits a single model to the full
data and clearly recovers the true frequency of 0.622 days. The
key result is that while methods based on the standard
periodogram are suitable for densely sampled data, the
multiband periodogram is superior for sparsely sampled
multiband observations.

This shared-phase (1, 0) model is only one of the possible
multiband options, however: Figure 6 compares multiband fits
to this data for models with various choices of (Nbase, Nband).
We see here many of the characteristics noted above for single-
band models: as discussed in Section 4.2, increasing the
number of Fourier terms leads to power at multiples of the
fundamental period, and increased model complexity (roughly
indexed by the effective number of free parameters Meff) tends
to increase the background level of the periodogram, obscuring
significant peaks. For this reason, models with Nbase > Nband

are the most promising: they allow a flexible fit with minimal
model complexity. Motivated by this, in the next section we

will apply the simplest of this class of models, the (1, 0) shared-
phase model, to data from Stripe 82 of the Sloan Digital Sky
Survey (SDSS).

6. APPLICATION TO STRIPE 82 RR LYRAE

Stripe 82 is a 300 square degree equatorial region of the sky
that was repeatedly imaged through multiple bandpasses during
phase II of the SDSS (SDSS II; see Sesar et al. 2007). Here we
consider the SDSS II observations of 483 RR Lyrae stars
compiled and studied by S10, in which periods for these stars
were determined based on empirically derived light curve
templates. Because the template-fitting method is extremely
computationally intensive, S10 first determined candidate
periods by taking the top five results of the SuperSmoother
(Reimann 1994) algorithm applied to the g band; template fits
were then performed at each candidate period and the period
with the best template fit was reported as the true period. In this
section, we make use of this data set to quantitatively evaluate
the effectiveness of the multiband periodogram approach.

6.1. Densely Sampled Multiband Data

The full S10 RR Lyrae data set consists of 483 objects with
an average of 55 observations in each of the five SDSS ugriz
bands spread over just under 10 years. In the upper panels of
Figure 7 we show the observed data for one of these objects,
along with the periodogram derived with the single-band
SuperSmoother model5 and the shared-phase (0, 1) multiband
model. Here we have a case that is analogous to that shown for
simulated data in the top panels of Figure 5: each band has
enough data to easily locate candidate peaks, the best of which
is selected via the S10 template-fitting procedure.
The lower panels of Figure 7 compare the S10 period with

the best periods obtained from the one-band SuperSmoother
(lower-left) and from the shared-phase multiband model
(lower-right). To guide the eye, the figure includes indicators
of the locations of the beat aliases (dotted lines) and the first
harmonic aliases (dashed lines) of the S10 period. Numerical
results are summarized in the upper rows of Table 1.
The best-fit SuperSmoother period matches the S10 period in

87% of cases (421/483), while the best-fit multiband period
matches the S10 period in 79% of cases (382/483). The modes
of failure are instructive: when the SuperSmoother model
misses the S10 period, it tends to land on a harmonic alias (i.e.,
the dashed line). This is due to the flexibility of Super-
Smoother: a doubled period spreads the points out, leading to
fewer constraints in each neighborhood and thus a smaller
average residual around the model. In other words, the
SuperSmoother tends to over-fit data that are sparsely sampled.
On the other hand, when the multiband model misses the S10
period, it tends to land on a beat alias between the S10 period
and the one-day observing cadence (i.e., the dotted lines). This
is due to the fact that the single-frequency periodic model is
biased, and significantly under-fits the data: it cannot
distinguish residuals due to underfitting from residuals due to
window function effects.
In both models, the S10 period appears among the top five

periods 99% of the time: 477/483 for the SuperSmoother

5 The SuperSmoother “periodogram” PSS is constructed from the minimum
sum of weighted model residuals rmin¯ analogous with Equation (8):
P r r1 ,SS min 0( ) ¯ ( ) ¯w w= - where r0¯ is the mean absolute residual around a
constant model.
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periodogram and 480/483 for the multiband periodogram.6

This suggests that had S10 used the multiband Lomb–Scargle
rather than the SuperSmoother in the first pass for their study,
the final results presented there would be for the most part
unchanged.

The results of this subsection show that the shared-phase
multiband approach is comparable to the single-band Super-
Smoother approach for densely sampled multiband data,
although it has a tendency to get fooled by structure in the
survey window. A correction for this phenomenon based on the
estimated window power may alleviate this problem (see
Roberts et al. 1987 for an example of such an approach) though
in practice, selecting from among the top five peaks appears to
be sufficient.

6.2. Sparsely Sampled Multiband Data

Above we saw that the multiband model is comparable to
methods from the literature for densely sampled data. Where
we expect the multiband approach to gain an advantage is when
the data are sparsely sampled, with data through only a single
band at each observation time. To simulate this, we reduce the
size of the Stripe 82 RR Lyrae data set by a factor of five,
keeping only a single band of imaging each night: an average
of 11 observations of each object per band. This is much closer
to the type of data that will be available in future multiband
time-domain surveys.
The upper panels of Figure 8 show an example light curve

from this reduced data set along with the SuperSmoother and
multiband periodograms derived from this data. Analogously to
the lower panels of Figure 5, the single-band SuperSmoother
model loses the true period within the noise, while the shared-
phase multiband model still shows prominent signal near the
S10 period.

Figure 5. Illustration of the performance of the multiband periodogram. The upper panels show simulated ugriz observations of an RR Lyrae light curve in which all
five bands are observed each night. With 60 observations in each band, a periodogram computed from any single band is sufficient to determine the true period of
0.622 days. The lower panels show the same data, except with only a single ugriz band observed each night (i.e., 12 observations per band). In this case, no single
band has enough information to detect the period. The shared-phase multiband approach of Section 5 (lower-right panel) combines the information from all five bands
and results in a significant detection of the true period. This indicates that while methods based on the standard periodogram are suitable for densely sampled
multiband data, the multiband periodogram is superior for sparsely sampled multiband observations.

6 We might expect this correspondence to be 100% in the case of the g-band
SuperSmoother, which was the model used in the first pass of the S10
computation. This discrepancy here is likely due to the slightly different
SuperSmoother implementations used in S10 and in this work. Objects
showing this discrepancy are those with very low signal-to-noise.
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The lower panels of Figure 8 show the relationship between
the S10 periods (based on the full data set) and the periods
derived with each model from this reduced data set, and these
results are summarized in the lower rows of Table 1. It is clear
that the SuperSmoother model is simply over-fitting noise with
these few data points: the top period matches S10 in only 23%
of cases (compared to 87% with the full data set), and the top
five periods contain the S10 period only 45% of the time. The
failure mode is much less predictable as well: rather than being
clustered near aliases, most of the period determinations are
scattered seemingly randomly around the parameter space.

While the multiband method performed comparably to the
S10 method on dense data, it far outperforms S10 on the sparse
data set. Even with an 80% reduction in the number of
observations, the multiband method matches the S10 period
64% of the time (compared to 79% with the full data set), and
the top five peaks contain the S10 period 94% of the time
(compared to 99% with the full data set). This performance is
due to the fact that the multiband algorithm has relatively few
parameters, yet is able to flexibly accommodate noisy data
from multiple observing bands. In particular, this suggests that
with the multiterm periodogram, the S10 analysis could have
been done effectively with only a small fraction of the available
data. This bodes well for future surveys, where data on variable
stars will be much more sparsely sampled.

6.3. Potential Improvements to the Multiband Method

A well-known (though often unrecognized) difficulty of
Lomb–Scargle-type periodograms on unevenly sampled data is
that they do not measure the power of the signal in question but
the power of the signal convolved with observing with the
survey window function. For regularly sampled time series, this
convolution is the source of the perfect aliasing beyond the
Nyquist sampling limit; for non-regular sampling, this aliasing
generally happens to some degree at all frequencies! Because
of this, even a signal with a single well-defined period will
result in a Lomb–Scargle periodogram with multiple maxima at
locations that depend on both the underlying signal and the
precise observing window.

The multiband periodogram, as a generalization of Lomb–
Scargle, shares this difficulty: it tends to respond to frequency
structure in the window function as well as frequency structure
in the data. This can be viewed as a result of the very model
simplicity which causes its success in the case of sparse
multiband data: it cannot disentangle bias in the model from
bias due to features in the survey window.
This could potentially be accounted for by correcting for the

effect of the estimated window function; one potential method
for this involves estimating the deconvolution of the window
power and the observed power (Roberts et al. 1987). It may
also be possible to propose a multiband extension of, e.g.,
CARMA (Kelly et al. 2014) or another forward-modeling
approach to detecting periodicity.
Another potentially fruitful avenue of research that we do not

study here is the adjustment of the regularization terms in the
model, and the application of other types of regularization to
the higher-order periodogram. In particular, L1 regularization
(also known as Lasso regression) could lead to interesting
results: L1 regularization is similar in spirit to the Tikhonov
regularization discussed in Section 4.3, but tends toward
sparsity in the model parameters (see, e.g., Ivezić et al. 2014,
for a discussion). Such an approach could provide a useful
tradeoff between model complexity and bias in the case of
higher-order truncated Fourier models, though comes at a
higher computational cost.
Another potentially interesting extension of the multiband

case would be to define and make use of physically motivated
priors in the light-curve shape. This approach could allow the
model bias to be decreased without a commensurate increase in
model complexity, which is what causes poor performance in
the case of sparsely sampled noisy data. As an example of such
a physically motivated prior, consider that the paths of RR
Lyrae stars through color–color and color–magnitude space are
constrained by known astrophysical processes in the structure
of the stars (e.g., see Figure 5 in Szabó et al. 2014). Making use
of this information could help break degeneracies in period
determination with higher-order models.

7. PROSPECTS FOR MULTIBAND
PERIODOGRAMS WITH LSST

Previously, Oluseyi et al. (2012) evaluated the prospects of
period finding in early LSST data, and found results which
were not encouraging. Using the conservative criterion of a 2/3
majority among the top single-band SuperSmoother periods in
the g, r, and i bands, they showed that, depending on spectral
type, finding reliable periods for the brightest (g ∼ 20) RR
Lyrae stars will require several years of LSST data, while
periods for some of the faintest (g ∼ 25) stars will not be
reliable with even 10 years of data!
One potential remedy is to move away from general models

like SuperSmoother and Lomb–Scargle to specific template-
fitting methods such as those used in S10. Indeed, such
methods perform well even for sparsely sampled multiband
data such as those from the PanSTARRS survey; the primary
drawback is that such blind template fits are computationally
extremely expensive: they involve nonlinear optimizations over
each of several hundred candidate templates at each of tens of
thousands of candidate frequencies (B. Sesar 2015, private
communication). Thus the template-fitting method, though it
can produce accurate periods, in practice requires several hours
of CPU time for a well-sampled period grid for a single source

Figure 6. Comparison of the periodograms produced by various multiband
models. The data are the same as those used in Figure 5. Nbase gives the number
of Fourier terms in the base model, and Nband gives the number of Fourier terms
used to fit the residuals around this model within each band. The characteristics
discussed with previous figures are also seen here: in particular, the level of
“background noise” in the periodogram grows with the model complexity M.
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(compared to several seconds for the multiband periodogram
proposed here). Note that several hours per object is orders-of-
magnitude too slow in the case of LSST; to estimate periods for
a billion stars on a 1000 core machine in a year requires a
compute-time budget of only 30 s per light curve.

Because of the computational expense of the pure template-
fitting method, when working with SDSS II data S10
performed a first-pass with a single-band SuperSmoother to

establish candidate periods, which were in turn evaluated with
a template-fitting approach. Here we show that such a hybrid
strategy of combining the multiband periodogram and the S10
template fits will be useful for determining periodicity of
variables in early LSST data releases, greatly improving on the
outlook presented in Oluseyi et al. (2012).
We suggest the following procedure for determining periods

in future multiband data sets:

Figure 7. Comparison of the multiband algorithm and single-band SuperSmoother algorithm on 483 well-sampled RR Lyrae light curves from Stripe 82. The upper
panels show a representative light curve and periodogram fits, while the bottom panels compare the derived periods to the template-based periods reported in S10.
Shown for reference are the beat aliases (dotted lines) and the first harmonic alias (dashed lines): numbers along the top and right edges of the panels indicate the
number of points aligned with each trend. The single-band SuperSmoother model tends to err toward harmonic aliases, while the multiband model tends to err toward
beat frequency aliases. Both methods find the correct period among the top five significant peaks around 99% of the time. This suggests that for densely sampled
multiband surveys, the multiband periodogram will match the results of standard methods (but see Figure 8).

Table 1
Period Determination from Dense and Sparse Data (483 Total)

Data Method Match Among Top 5 Top Peak Matches Beat Aliases Harmonic Aliases

Dense data (Figure 7) g-band SuperSmoother 477 (98.8%) 421 (87.2%) 31 34
Multi-band periodogram 480 (99.4%) 382 (79.1%) 94 5

Sparse data (Figure 8) g-band SuperSmoother 219 (45.3%) 113 (23.4%) 101 4
Multi-band periodogram 449 (93.0%) 308 (63.8%) 136 7
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1. As a first pass, find a set of candidate frequencies using
the multiband periodogram. This is a fast linear
optimization that can be straightforwardly parallelized.

2. Within these candidate frequencies, use the more costly
template-fitting procedure to choose the optimal period
from among the handful of candidates.

3. Compute a goodness-of-fit statistic for the best-fit
template to determine whether the fit is suitable; if not,
then apply the template-fitting procedure across the full
period range.

Here we briefly explore simulated LSST observations of RR
Lyrae stars in order to gauge the effectiveness of the first step in
this strategy; the effectiveness of the template-fitting step will
be explored further in future work. Rather than doing the full
analysis including the final template fits, we will focus on the
ability of the multiband periodogram to quickly provide
suitable candidate periods under the assumption that the S10
template algorithm will then select or reject the optimal period
from this set.

7.1. LSST Simulations

We use a simulated LSST cadence (Delgado et al. 2006;
Ridgway et al. 2012; Jones et al. 2014) in 25 arbitrarily chosen
fields that are representative of the anticipated main survey
temporal coverage. We simulate a set of 50 RR Lyrae
observations with the S10 templates, with a range of apparent
magnitudes between g = 20 and g = 24.5, corresponding to a
bright-to-faint range of LSST main-survey observations, and
with expected photometric errors computed using Equations
(4)–(6) from Ivezić et al. (2008). Given the capability of
template-fitting to choose among candidate periods, we use a
more relaxed period-matching criterion than in Oluseyi et al.
(2012): when evaluating the single-band SuperSmoother, we
require that the true period is among the five periods
determined independently in the u, g, r, i, z bands; in the
multiband case we require that the true period is among the top
five peaks in the multiband periodogram.
Figure 9 shows the fraction of stars where this period

matching criterion is met as a function of g-band magnitude

Figure 8. This figure repeats the experiment shown in Figure 7 (see caption there for description), but the data are artificially reduced to only a single-band observation
on each evening, a situation reflective of the observing cadence of future large-scale surveys. In this case, the single-band SuperSmoother strategy used as a first pass
in S10 fails: there is simply not enough data in each band to recover an accurate period estimate. The correct period is among the top five candidates in fewer than 50%
of cases. The shared-phase multiband approach utilizes information from all five bands and returns much more robust results: even with the greatly reduced data, the
true period is among the top five candidates in 93% of cases. This suggests that for sparsely sampled multiband survey data (such as that expected from LSST) the
multiband periodogram will produce superior results when compared to standard methods—see Figure 9.
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and subset of LSST data. The solid lines show the multiband
results, the dashed lines show the single-band SuperSmoother
results, and the shading helps guide the eye for the sake of
comparison. Because of our relaxed matching criteria, even the
single-band SuperSmoother results here are much more
optimistic than the Oluseyi et al. (2012) results (compare to
Figure 15 in that work): the SuperSmoother result here can be
considered representative of a best-case scenario for ad hoc
single-band fits. Without fail, the multiband result exceeds this
best-case single-band result; the improvement is most apparent
for faint stars, where the greater model flexibility of the
SuperSmoother causes it to over-fit the noisy data.

The performance of the multiband periodogram points to
much more promising prospects for science with variable stars
than previously reported. In particular, even with only six
months of LSST data, we can expect to correctly identify the
periods for over 60% of stars brighter than g = 22; with the first
two years of LSST observations, this increases to nearly 100%;
with five years of data, the multiband method identifies the
correct period for 100% of even the faintest stars. Part of this
improvement is due to the performance of the shared-phase
multiband model with noisy data, and part of this improvement
is due to the relaxed period-matching constraints enabled by the
hybrid approach of periodogram-based and template-based
period determination.

8. DISCUSSION AND CONCLUSION

We have derived a multiband version of the classic Lomb–
Scargle method for detecting periodicity in an astronomical
time series. Experiments on several hundred RR Lyrae stars
from the SDSS Stripe 82 data set indicate that this method
outperforms methods used previously in the literature,
especially for sparsely sampled light curves with only single
bands observed each night. While there are potential areas of
improvement involving corrections to window function
artifacts and accounting for physically motivated priors, the
straightforward multiband model outperforms previous ad hoc
approaches to multiband data.

Looking forward to future variable star catalogs from
PanSTARRS, DES, and LSST, there are two important
constraints that any analysis method must meet: the methods
must be able to cope with heterogeneous and noisy observa-
tions through multiple bandpasses, and the methods must be
fast enough to be computable on millions or even billions of
objects. The multiband method, through its combination of
flexibility and model simplicity, meets the first constraint: as
shown above, in the case of sparsely sampled noisy multiband
data, it outperforms previous approaches to period determina-
tion. It also meets the second constraint: it requires the solution
of a simple linear model at each frequency, compared to a rank-
based sliding-window model in the case of SuperSmoother, a
nonlinear optimization in the case of template-fitting, and a
Markov Chain Monte Carlo analysis in the case of CARMA
models. In our own benchmarks, we found the multiband
method to be several times faster than the single-band
SuperSmoother approach and several orders of magnitude
faster than the template-fitting approach.
The strengths and weaknesses of the multiband method

suggest a hybrid approach to finding periodicity in sparsely
sampled multiband data: a first pass with the fast multiband
method, followed by a second pass using the more computa-
tionally intensive template-fitting method to select among these
candidate periods. Despite pessimism in previous studies, our
experiments with simulated LSST data indicate that such a
hybrid approach will successfully identify periods in the
majority of RR Lyrae stars brighter than g ∼ 22.5 in the first
months of the survey, and the majority of the faintest detected
stars with several years of data. This finding suggests that the
multiband periodogram could have an important role to play in
the analysis of variable stars in future multiband surveys.
We have released a Python implementation of the multiband

periodogram on GitHub, along with Python code to reproduce
all results and figures in this work; this is described in
Appendix A. As we were finalizing this manuscript, we were
made aware of a preprint of an independent exploration of a
similar approach to multiband light curves (Long et al. 2014);
we discuss the similarities and differences between these two
approaches in Appendix B.
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Washington Research Foundation. The authors thank GitHub
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APPENDIX A
PYTHON IMPLEMENTATION OF
MULTIBAND PERIODOGRAM

The algorithm outlined in this paper is available in gatspy,
an open-source Python package for general astronomical time-
series analysis7 (Vanderplas 2015a). Along with the period-
ogram implementation, it also contains code to download all
the data used in this work. Code to reproduce this paper,
including all figures, is available in a separate repository.8

gatspy is a pure Python package written to be compatible
with both Python 2 and Python 3 and performs fast numerical

Figure 9. Fraction of periods correctly determined for LSST RR Lyrae as a
function of the length of the observing season and the mean g-band magnitude
for the multiband periodogram approach (method of this work, solid lines) and
single-band SuperSmoother approach (method of Oluseyi et al. 2012, dashed
lines). The multiband method is superior to the single-band SuperSmoother
approach in all cases and especially for the faintest objects.

7 http://github.com/astroml/gatspy/
8 http://github.com/jakevdp/multiband_LS/
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computation through dependencies on numpy (van der Walt
et al. 2011)9 and astroML (Vanderplas et al. 2012),10 which
offer optimized implementations of numerical methods in
Python.

The API for the module is largely influenced by that of the
scikit-learn package (Pedregosa et al. 2011; Buitinck
et al. 2013),11 in which models are Python class objects which
can be fit to data with the fit() method. Here is a basic
example of how you can use multiband_LS to download the
data used in this paper, fit a multiband model to the data, and
compute the power at a few periods:

from gatspy.periodic import LombScargleMultiband
import numpy as np
# Fetch the Sesar 2010 RR Lyrae data
from gatspy.datasets import fetch_rrlyrae
data = fetch_rrlyrae()
t, mag, dmag, filts = data.get_lightcurve(data.ids[0])
# Construct the multiband model
model = LombScargleMultiband(Nterms_base = 0,

Nterms_band = 1)
model.fit(t, mag, dmag, filts)
# Compute power at the following periods
periods = np.linspace(0.2, 1.4, 1000) # periods in days
power = model.periodogram(periods)

Other models are available as well. For example, here is how
you can compute the periodogram under the SuperSmoother
model; this implementation of the SuperSmoother periodogram
makes use of the supersmoother Python package
(Vanderplas 2015b).

from gatspy.periodic import supersmoother
# Construct the supersmoother model
model = supersmoother()
gband = (filts == ’g’)
model.fit(t[gband], mag[gband], dmag[gband])
# Compute power at the given periods
power = model.periodogram(periods)

The models in the gatspy package contain many more
methods, and much more functionality that what is shown here.
For updates, more examples, and more information,
visit http://github.com/astroml/gatspy/.

APPENDIX B
COMPARISON WITH LONG (2014)

As we were finishing this study, we learned that another
group had released a preprint independently addressing the
multiband periodogram case and had come up with a solution
very similar to the one presented here (Long et al. 2014,
hereafter LCB14). They present two methods, the “Multiband
Generalized Lomb–Scargle” (MGLS) which is effectively
identical to the (1, 0) multi-phase model here, and the
“Penalized Generalized Lomb–Scargle” (PGLS), which is
similar in spirit to our (0, 1) shared-phase model.

In the PGLS model, they start with a multi-phase model,
fitting independent N = 1 term fits to each band, and they apply
a nonlinear regularization term that penalizes differences in the

amplitude and phase. In terms of the formalism used in this
work, the PGLS model minimizes a regularized χ2 of the form

D J A J . 24
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k
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k k
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2

1
GLS
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where K is the number of bands, D k
GLS
2 ( )( )c is the χ2 of the

standard floating mean model on the single-band data Dk, and
JA and Jf are regularization/penalty terms that are a function of
the amplitude Ak and phase f k of each model. In terms of our
linear model parameters θ k, this amplitude and phase can be
expressed as:
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The selected form of these regularization terms penalizes
deviations of the amplitude and phase from a common mean
between the bands; in this sense the PGLS model can be
considered a conceptual mid-point between our shared-phase
and multi-phase models. Within the formalism proposed in the
current work, such a mid-point may be alternatively attained by
suitably increasing the regularization parameter λ used in our
shared-phase model, though the precise nature of the resulting
regularization will differ.
Computationally, the PGLS model requires a nonlinear

optimization at each frequency ω and is thus much more
expensive than the straightforward linear optimization of our
shared-phase model. For this reason, LCB14 proposes a clever
method by which nested models are used to reduce the number
of nonlinear optimizations used: essentially, by showing that
the (linear)MGLS χ2 is a lower-bound of the (nonlinear) PGLS
χ2, it is possible to iteratively reduce the number of PGLS
computations required to minimize the χ2 among a grid of
frequencies. Such an optimization could also be applied in the
case of our shared-phase model, but is not necessary here due
to its already high speed. Nevertheless, when applying the
method to a very large number of light curves as in, e.g., LSST,
such a computational trick may prove very useful.
Given these important distinctions between the models

proposed here and in LCB14, in future work we plan to do a
detailed comparison of the two approaches to multiband model
regularization.
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