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ABSTRACT

We apply Principal Component Analysis (PCA) to ∼100,000 stellar spectra obtained by the Sloan Digital Sky
Survey (SDSS). In order to avoid strong nonlinear variation of spectra with effective temperature, the sample is
binned into 0.02 mag wide intervals of the g − r color (−0.20 < g − r < 0.90, roughly corresponding to MK
spectral types A3–K3), and PCA is applied independently for each bin. In each color bin, the first four eigenspectra
are sufficient to describe the observed spectra within the measurement noise. We discuss correlations of eigencoef-
ficients with metallicity and gravity estimated by the Sloan Extension for Galactic Understanding and Exploration
Stellar Parameters Pipeline. The resulting high signal-to-noise mean spectra and the other three eigenspectra are
made publicly available. These data can be used to generate high-quality spectra for an arbitrary combination of
effective temperature, metallicity, and gravity within the parameter space probed by the SDSS. The SDSS stellar
spectroscopic database and the PCA results presented here offer a convenient method to classify new spectra, to
search for unusual spectra, to train various spectral classification methods, and to synthesize accurate colors in
arbitrary optical bandpasses.
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1. INTRODUCTION

A large number of homogeneously obtained stellar spectra
have recently become available. For example, the Sloan Digital
Sky Survey (SDSS; York et al. 2000) has made publicly avail-
able1 over 460,000 stellar spectra as a part of its Data Release
7 (Abazajian et al. 2009), and Radial Velocity Experiments2

(RAVE) may provide up to a million spectra over the next few
years. This rapid progress in the availability of stellar spectra re-
opens the old question of optimal stellar parameter extraction.
For example, the SDSS estimates effective temperature, gravity,
and metallicity using a variety of standard methods implemented
in an automated pipeline (Sloan Extension for Galactic Under-
standing and Exploration Stellar Parameters Pipeline, hereafter
SSPP; Beers et al. 2006). A detailed discussion of these meth-
ods and their performance can be found in Allende Prieto et al.
(2006, 2008) and Lee et al. (2008a, 2008b). The results of dif-
ferent methods implemented in the SSPP are averaged to obtain
the final adopted values in the SDSS Spectral Parameter Pipeline
table (sppParams). Although a detailed analysis by Lee et al.
(2008a, 2008b) demonstrates that systematic metallicity differ-
ences between the methods used in averaging do not exceed
∼0.1 dex (with random errors in the range 0.1–0.3 dex), it is fair
to ask whether a single method could be used to obtain the same
level of systematic and random errors, instead of combining
different methods with varying error properties.

Principal Component Analysis (PCA) has been demonstrated
as a viable tool in solving this classification problem (Connolly
et al. 1995; Connolly & Szalay 1998; Bailer-Jones et al. 1998;
and references therein). Yip et al. (2004) have developed a PCA-
based analysis code specialized to SDSS spectra. Here, we use
the same code to investigate whether the PCA eigencoefficients
(ECs) are correlated with the metallicity and gravity obtained

1 See http://www.sdss.org/dr7
2 See http://www.rave-survey.aip.de/rave

by the SSPP. Byproducts of this analysis are high signal-to-
noise eigenspectra that can be used to generate spectra for any
combination of basic stellar parameters (effective temperature,
metallicity, and gravity) within the parameter space probed by
SDSS. Hence, given an arbitrary spectrum, one can attempt a
low-dimensional fit using our library of eigenspectra. Among
numerous drivers for such a library, we single out a photomet-
ric calibration scheme for the Large Synoptic Survey Telescope
(LSST).3 LSST plans to use an auxiliary spectroscopic telescope
to obtain spectra of standard stars at the same time as the main
imaging survey is performed (see Ivezić et al. 2008a). The at-
mospheric transmission properties, required to photometrically
calibrate the imaging survey, will be obtained by simultane-
ously fitting the stellar spectrum and a sophisticated atmospheric
model with six free parameters for each observation. The ability
to describe the expected stellar spectra in a low-dimensional
continuous space by using a small number of eigencomponents,
with ECs that are not defined on a fixed grid, might increase the
fidelity of the fitted model.

In Section 2, we describe our sample selection and the
application of PCA to SDSS stellar spectra. We discuss our
results in Section 3, and end with a summary in Section 4.

2. PRINCIPAL COMPONENT DECOMPOSITION OF SDSS
STELLAR SPECTRA

2.1. The Properties of SDSS Spectra

In addition to massive amounts of optical photometry of
unprecedented quality, the SDSS has also produced a large
spectroscopic database. A compendium of technical details
about SDSS can be found on the SDSS web site,4 which also
provides an interface for public data access. Targets for the
spectroscopic survey are chosen from the SDSS imaging data
based on their colors and morphological properties (Strauss

3 See http://www.lsst.org/
4 See http://www.sdss.org/

1261

http://dx.doi.org/10.1088/0004-6256/139/3/1261
http://www.sdss.org/dr7
http://www.rave-survey.aip.de/rave
http://www.lsst.org/
http://www.sdss.org/


1262 MCGURK, KIMBALL, & IVEZIĆ Vol. 139

et al. 2002; Eisenstein et al. 2001; Richards et al. 2002). In the
spectroscopic survey, stars are targeted either as calibrators or
for scientific reasons in specific parts of the four-dimensional
SDSS color space (Yanny et al. 2009).

A pair of multi-object fiber-fed spectrographs mounted onto
the SDSS 2.5 m telescope (Gunn et al. 2006) is used to take
640 simultaneous spectra within a radius of 1.49◦, each with a
wavelength coverage of 3800–9200 Å and a spectral resolution
of ∼2000, and with a signal-to-noise ratio of >4 per pixel at
g = 20.2. Spectro-photometric calibration of these spectra is
exquisite; for example, the imaging magnitudes and the stellar
magnitudes synthesized from SDSS spectra agree with an rms
of only ∼0.05 mag (see Smolčić et al. 2004).

2.2. Sample Selection

We begin by selecting bright stars in SDSS Data Release 6
that have colors consistent with the main stellar locus (Lenz
et al. 1998; Fan 1999; Finlator et al. 2000), or are found in the
regions populated by RR Lyrae stars (Ivezić et al. 2005) and
blue horizontal branch stars (Sirko et al. 2004). Stars that are
probable white dwarf–red dwarf pairs (Smolčić et al. 2004) or
single hot white dwarfs (Eisenstein et al. 2006) are not selected.
We only use stars from the sky regions with modest interstellar
dust extinction, determined using the interstellar dust maps of
Schlegel et al. (1998).

The specific criteria applied to 130,620 entries from the SDSS
DR6 version of sppParams table5 that have log(g) > 0 are the
following (the number in brackets indicates the number of stars
remaining after each selection step):

1. The interstellar extinction in the r band below 0.3; [106,
816].

2. 14 < g < 19.5; [104,844].
3. −0.2 < g − r < 0.9; [103,588].
4. 0.7 < u − g < 2.4; [101,630].
5. {−0.2 < g−r−0.5(u−g−0.5) < 0.4 } OR {u−g < 1.4

AND g − r < 0.25}; [100,759].
6. −0.2 < 0.35(g − r) − (r − i) < 0.20; [98,063].
For each star, the data analyzed in this work include the ugriz

photometry, SDSS spectrum, and SSPP estimates of effective
temperature (Teff), metallicity ([Fe/H]), and gravity (log(g)).
The selected stars span the range of effective temperature from
∼4500 K to ∼9000 K (see below), and 99.4% have metallicity
in the range −3 < [Fe/H] < 0 with a median of −1.0. While
the sample is dominated by main-sequence stars (the median
log(g) is 4.1 ± 0.44 dex), a small fraction of stars (∼3%) have
lower gravity estimates consistent with giants (see Figure 1).

2.3. The g − r Color Binning

Stellar spectra are to the zeroth order similar to the Planck
(blackbody) function controlled by the effective temperature;
however, their variations of spectral line width and strength
depend not only on effective temperature but also on metallicity
and gravity. At a chosen effective temperature, the metallicity
affects the strength of the spectral line and gravity can broaden
or narrow the spectral line. In order to study these variations
due to metallicity and gravity at a given effective temperature,
we group the stars with SDSS spectra into 55 color bins with a
width of 0.02 mag, in the range −0.2 < g − r < 0.9. As shown
by Ivezić et al. (2008b), this color is strongly correlated with the
effective temperature determined by the SSPP: a 0.02 mag wide
bin in the g − r color roughly corresponds to one MK spectral

5 See http://www.sdss.org/dr6/products/spectra/spectroparameters.html

Figure 1. Linearly spaced contours show the distribution of ∼100,000 stars
with g < 19.5 from the SDSS DR6 spectroscopic sample in the log(g) vs. g − r
plane. The multi-modal distribution is a result of the SDSS target selection
algorithm. The color scheme shows the median metallicity in all 0.02 mag by
0.06 dex large pixels that contain at least 10 stars (according to the legend
shown in the bottom left corner). The fraction of stars with log(g) < 3 (giants)
is 4%, and they are mostly found in two color regions: −0.1 < g − r < 0.2
(blue horizontal branch stars) and 0.4 < g − r < 0.65 (red giants). They are
dominated by low-metallicity stars ([Fe/H] < −1). The dashed lines roughly
outline the main-sequence (MS) region; see Ivezić et al. (2008b).

subtype. The best-fit expression derived by Ivezić et al. (2008b),

log(Teff/K) = 3.882 − 0.316(g − r) + 0.0488(g − r)2

+ 0.0283(g − r)3, (1)

achieves systematic errors below 0.004 dex and overall rms of
0.008 dex, within the −0.3 < g − r < 1.3 color range. The
temperature range corresponding to the g − r limits adopted
here (−0.2 < g − r < 0.9) is 4550 K–8850 K. The number of
stars per g − r bin ranges from 430 to 9104, with a median of
1571. The variation of the number of stars in a bin, the median
apparent magnitude, metallicity, gravity, and the fractions of
low-metallicity stars ([Fe/H] < −1) and giants (log(g) < 3)
are shown in Figure 2.

Most of the stars in our sample are main-sequence stars
with log(g) > 3 and [Fe/H] > −1. The impact of metallicity
and gravity on stellar spectra, as well as the fraction of stars
in the sample that are not main-sequence disk stars, varies
with effective temperature, i.e., with the g − r color. For the
purposes of presentation, we single out two bins in g − r. For
the 4556 stars in bin 23 (0.24 < g − r < 0.26), we expect a
strong correlation between the u − g color and metallicity, as
discussed in detail by Ivezić et al. (2008b). We use this bin to
compare the random errors for metallicity estimates obtained
from the SSPP and obtained here using PCA. For bin 37, with
0.52 < g−r < 0.54 and 5195 stars, the fraction of giants is near
its maximum (∼10%). This bin enables a study of correlations
between log(g) and PCA ECs. The color range of bin 37 was
deliberately targeted for SDSS spectroscopy because giant stars
are good probes of distant halo structure. The distribution of

http://www.sdss.org/dr6/products/spectra/spectroparameters.html


No. 3, 2010 PRINCIPAL COMPONENT ANALYSIS OF SDSS STELLAR SPECTRA 1263

-0.2 0 0.2 0.4 0.6 0.8
2

3

4

  -0.2 0 0.2 0.4 0.6 0.8
2

3

4

-0.2 0 0.2 0.4 0.6 0.8
20

18

16

14

  -0.2 0 0.2 0.4 0.6 0.8
20

18

16

14

-0.2 0 0.2 0.4 0.6 0.8
-2

-1

0

  -0.2 0 0.2 0.4 0.6 0.8
-2

-1

0

-0.2 0 0.2 0.4 0.6 0.8

3

4

5

  -0.2 0 0.2 0.4 0.6 0.8

3

4

5

-0.2 0 0.2 0.4 0.6 0.8
0

0.2
0.4
0.6
0.8

1

-0.2 0 0.2 0.4 0.6 0.8
0

0.2
0.4
0.6
0.8

1

-0.2 0 0.2 0.4 0.6 0.8
0

0.1

0.2

-0.2 0 0.2 0.4 0.6 0.8
0

0.1

0.2

Figure 2. Top to bottom: solid lines show the variation of the number of stars
in a given g − r bin, the median apparent r-band magnitude, metallicity, gravity,
and the fraction of low-metallicity stars ([Fe/H] < −1) and giants (log(g) < 3).
Dashed lines show the 1σ envelope around the medians. Stars with g − r > 0.2
are dominated by main-sequence stars, and the bluer stars are dominated by blue
horizontal branch stars, RR Lyrae stars, and blue stragglers. The approximate
g − r colors for several MK spectral types (luminosity class V) are taken from
Covey et al. (2007).

stars from these two bins in the log(g) versus [Fe/H] metallicity
diagram is compared to the full sample in Figure 3.

2.4. Principal Components Decomposition

For a thorough discussion of PCA and several of its various
applications, we refer the reader to Connolly et al. (1995)
and Yip et al. (2004). Briefly, PCA calculates eigenspectra, or
characteristic averaged spectral shapes, from the input batch
of spectra, and measures ECs that represent how strongly
each eigenspectrum is present in a data spectrum. The PCA
package we used was specifically developed for use with SDSS
spectra (Yip et al. 2004). Before PCA decomposition occurs,
the package shifts the spectra to their rest frames (zero radial
velocity) and rebins them to a common wavelength range. The
spectra are then repaired in gappy regions (i.e., bad pixels
or missing data) using the iterative KL-correction formalism
developed by Connolly & Szalay (1999). The PCA code outputs
eigenspectra, ECs, and repaired data spectra.

We investigated spectral decompositions using varying num-
bers of eigenspectra and found that the first four eigencompo-
nents are sufficient to describe the observed spectra within the
measurement noise (for a single spectrum). Figure 4 compares

Figure 3. Bivariate metallicity–gravity distribution for two color bins. In both
panels, the linearly spaced contours show the log(g) vs. [Fe/H] distribution
of the ∼100,000 stars in the analyzed sample. The symbols in the top panel
show stars from bin 23, and the bottom panel shows stars from bin 37. Bin 37
(log(g) < 3.5 and [Fe/H] < −1) contains many low-metallicity giant stars.

Figure 4. Median difference spectra and median noise spectra for bins 23 (top)
and 37 (bottom). The median difference spectra are black and the median noise
spectra are red. The median difference spectra were constructed by taking the
absolute value of the difference of each original spectrum and its reconstructed
spectrum and then taking the median of the difference spectra in vacuum
wavelength bins of width 5 Å. We took the median of the noise spectra in
similar wavelength bins to create the median noise spectra. We demonstrate in
both bins that the use of four ECs reconstructs the original spectra to within the
measurement noise.

(A color version of this figure is available in the online journal.)
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Figure 5. Comparison of the median difference spectra for PCA decompositions
based on four and six eigenspectra for bins 23 (top) and 37 (bottom). The median
difference spectra were constructed by taking the absolute value of the difference
of each original spectrum and its reconstructed spectrum and then taking the
median. The results for PCA decomposition based on four eigenspectra are
shown in Figure 4. These two panels show the difference between the results
from Figure 4 and analogous median difference spectra for six eigencomponents.

Figure 6. Four eigenspectra (Fλ) generated for the 4556 stars in bin 23
(0.24 < g − r < 0.26), plotted at vacuum wavelengths. The first eigenspectrum
closely resembles a metal-poor ([Fe/H] ∼ −1.5) subdwarf. The variation
of spectra in this bin is expected to be dominated by the variation of stellar
metallicity.

the median difference between the original and reconstructed
spectra with the median noise in the original spectra for bins 23
and 37. As shown, the spectra reconstructed using four eigen-
components are consistent with the original spectra to well
within the typical measurement error. Furthermore, Figure 5
demonstrates that the difference between PCA decompositions

Figure 7. Four eigenspectra generated for the 5195 stars in bin 37 (0.52 <

g − r < 0.54), plotted at vacuum wavelengths. The first eigenspectrum closely
resembles a metal-rich ([Fe/H] ∼ −0.7) dwarf. The variation of spectra in this
bin is expected due to a high fraction of giant stars (which presumably also have
lower metallicity than the majority of stars in the sample).

based on four and six eigenspectra is minor (a few percent or
less over most of the wavelength range).

This is a much smaller number of eigencomponents than
typically required. For example, Bailer-Jones et al. (1998) used
the first 10 components to expand stellar spectra in their sample.
The reason for this difference is that here we individually treat
very narrow bins of the g − r color. In order to describe spectral
variations due to metallicity and gravity in each bin (i.e., at
nearly a constant effective temperature), a large number of
eigencomponents are not necessary. Figures 6 and 7 show the
eigenspectra for bins 23 and 37, respectively (the spectra are
plotted in vacuum wavelengths).

3. ANALYSIS OF PCA DECOMPOSITION RESULTS

3.1. Correlations Between Eigencoefficients and SSPP
Parameters

For each g − r bin, the ECs are expected to encode informa-
tion about metallicity and gravity. Figures 8 and 9 demonstrate
correlations between PCA ECs and SSPP metallicity and gravity
for bins 23 and 37. For bin 23, a correlation between metallicity
and EC2, EC3, and EC4 is present in the data, while there is no
correlation with gravity. Note, however, that this bin includes
only a small fraction of giant stars (3% with log(g) < 3). For bin
37, ECs are correlated with both metallicity and gravity. How-
ever, as demonstrated in Figure 3, the metallicity and gravity are
correlated for stars in this bin (due to SDSS spectroscopic target
selection criteria, for more details see Yanny et al. 2009), and
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Figure 8. Eigencoefficients (ECs) for bin 23, corresponding to eigenspectra
shown in Figure 6, shown as a function of metallicity (left column) and
gravity (right column) computed by SSPP. Note a small fraction of giant stars
(log(g) < 3) and a correlation between metallicity and EC2, EC3, and EC4.
The bimodal metallicity distribution reflects the SDSS targeting algorithm and
significantly different metallicity distributions for halo ([Fe/H] < −1) and disk
([Fe/H] > −1) stars.

Figure 9. Eigencoefficients (ECs for bin 37, corresponding to eigenspectra
shown in Figure 7, shown as a function of metallicity (left column) and gravity
(right column) computed by SSPP. Note a much larger fraction of giant stars
than in Figure 8. The ECs seem correlated with both metallicity and gravity.
The sample does not include high-metallicity giants.

Figure 10. Comparison of the metallicity estimates obtained by the SDSS SSPP
pipeline (solid histogram) and our PCA-based estimates (dashed histogram).

Figure 11. Independent test of two metallicity estimators based on a correlation
of metallicity and the u − g color. In the top plot, black points illustrate SSPP-
measured metallicities, while the red contours illustrate our new metallicity
measurements. The green and blue lines are the best-fit lines to the two data
sets, respectively the SSPP fit and the new PCA fit. The bottom plot illustrates
the scatter of each data set around the best-fit lines, with black being the SSPP
data and red being the new metallicity data.

(A color version of this figure is available in the online journal.)

thus it is not clear which parameter drives the correlation with
the ECs. A sample of high-metallicity giants or low-metallicity
dwarfs is required to decouple the effects of these two param-
eters. Such stars are not present in the sample; the former are
mostly nearby disk stars and thus too bright and saturated in
SDSS data, while the latter are distant halo stars and too faint
to be included in the SDSS spectroscopic survey (Ivezić et al.
2008b).
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Figure 12. Progression of mean spectra (Fλ) plotted in vacuum wavelengths
as a function of the g − r color determined using PCA. The values increase
logarithmically from blue to red. The two panels on the right side show the
mean number of stars per 0.02 mag wide g − r bin and the corresponding
median effective temperature. A few spectral absorption lines are marked
on top.

For a more quantitative investigation of the correlation ob-
served in bin 23, we fit straight lines to the three relationships
between metallicity and ECs 2, 3, and 4 (best-fit parabolas lead
to the same conclusions). We then average the three best-fit
metallicity estimates obtained using each EC and compare the
result to values reported by the SSPP (Figure 10). The resulting

bimodal distributions look similar, though one could argue that
the values determined with PCA have slightly larger random
errors (by about 20%) than the official SDSS values because the
distinction between the two peaks in metallicity distribution is
somewhat erased.

For another comparison of the two metallicity estimators,
we use the u − g color obtained from imaging data. As shown
by Ivezić et al. (2008b), for stars with blue g − r colors,
spectroscopic metallicity is strongly correlated with the u − g
color (see the top panel in Figure 11). They estimate that the
random photometric metallicity errors are even smaller than the
random metallicity errors determined by the SSPP from SDSS
spectra (a random u − g error of 0.02 mag induces a metallicity
error in [Fe/H] that varies from 0.02 dex at [Fe/H] = −0.5
to 0.11 dex at [Fe/H] = −1.5). Hence, for stars from bin 23,
we can compare the spectroscopic metallicities determined by
PCA and by the SSPP using the scatter around an average fit (see
the bottom panel in Figure 11; a best-fit parabola leads to the
same conclusion); the better metallicity determination would
have less scatter. We find essentially identical error behavior,
which suggests that the parameter precision obtained by PCA
is comparable to that achieved by the SSPP for stars with
0.2 < g − r < 0.3.

3.2. Mean Stellar Spectra Determined by PCA

One of the PCA products derived in this work is a set of
high signal-to-noise gap-repaired mean spectra at each g − r
color. We show a stack of 55 such spectra in Figures 12 and 13.
The variation of absorption line strengths and overall continuum
shape with the g − r color are easily discernible. For example,
the depth of the Hα line steadily decreases as the g − r color
becomes redder.

Figure 13. Analogous to Figure 12, except that the wavelength range and the g − r range are split in halves, and each panel is separately color-coded to increase the
contrast of spectral features.
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Figure 14. Top panels show two reconstructed spectra in three characteristic vacuum wavelength ranges for bin 23. The spectra are generated using mean ECs of the
two clumps separated by [Fe/H] = −1.05 (see Figure 8; the blue line corresponds to the clump with [Fe/H] < −1.05 and the red line to the more metal-rich clump).
Bottom panels show the ratio of the low-metallicity ([Fe/H] ∼ −1.5) and the high-metallicity spectrum ([Fe/H] ∼ −0.6).

(A color version of this figure is available in the online journal.)

Figure 15. Similar to Figure 14, except that spectra are reconstructed for bin 37. The two reconstructed spectra are generated using mean ECs for the clump with
log(g) < 3.7 (blue line) and the clump with log(g) > 3.7 (red line); see Figure 9 for the distribution of ECs.

(A color version of this figure is available in the online journal.)

In addition to mean spectra that roughly correspond to stars
with median metallicity and gravity in a given g − r bin, the
remaining eigenspectra can be used to generate high signal-to-
noise spectra for any combination of basic stellar parameters
(effective temperature, metallicity, and gravity), within the
parameter space probed by SDSS. Hence, given an arbitrary
spectrum, one can attempt a low-dimensional fit using our
library of eigenspectra, which we make publicly available.6

6 http://www.astro.washington.edu/users/ivezic/rmcgurk/PCApublic.shtml

3.3. Variation of Mean Stellar Spectra with Metallicity and
Gravity

The mean spectra shown in Figures 12 and 13 are averaged
over metallicity and gravity distributions in the corresponding
color bins. The small variations of stellar spectra with metallicity
and gravity, at a fixed g − r color, can be studied by drawing ECs
from their observed distribution in a given bin. Given the quality
of SDSS spectra and the high signal-to-noise ratio of the mean
spectra (due to large number of stars per bin), these variations
can be studied in great detail. An example of such a study
is shown in Figures 14 and 15, where we contrast low- and

http://www.astro.washington.edu/users/ivezic/rmcgurk/PCApublic.shtml
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high-metallicity stars from bin 23, and low (giants) and high
(dwarfs) log(g) stars from bin 37. For example, the sensitivity
of the Ca triplet (around ∼8600 Å) to both metallicity and
gravity is easily discernible (this wavelength range is exploited
by the RAVE and Gaia surveys).

4. SUMMARY

We have applied PCA to ∼100,000 stellar spectra obtained
by the SDSS. After binning the sample using the g − r color to
study line variation at a nearly constant effective temperature as
a function of metallicity and gravity, we find that the first four
eigenspectra fully capture the observed spectral variations in
each bin (within the noise in individual SDSS spectra). We an-
alyze correlations between our PCA ECs and SSPP metallicity,
and then use these correlations to measure metallicity. We find
similar performance between the PCA-measured metallicity and
the SSPP metallicity. This similarity suggests that random errors
of SSPP parameters are just about as small as the signal-to-noise
ratios of SDSS spectra allow.

We make publicly available the resulting high signal-to-
noise mean spectra and the other three eigenspectra for all 55
color bins. These data can be used to generate high-quality
spectra for an arbitrary combination of effective temperature,
metallicity, and gravity, within the parameter space probed by
SDSS. The utility of such spectra is wide and varied. Most
obvious applications include searching for unusual spectra,
training of various spectral classification methods, and color
synthesis in arbitrary optical photometric systems, as well as
various educational programs.
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