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Abstract

We discuss the statistical foundations of morphological star–galaxy separation. We show that many of the star–
galaxy separation metrics in common use today (e.g., by Sloan Digital Sky Survey or SExtractor) are closely
related both to each other, and to the model odds ratio derived in a Bayesian framework by Sebok. While the
scaling of these algorithms with the noise properties of the sources varies, these differences do not strongly
differentiate their performance. We construct a model of the performance of a star–galaxy separator in a realistic
survey to understand the impact of observational signal-to-noise ratio (S/N) (or equivalently, 5σ limiting depth)
and seeing on classification performance. The model quantitatively demonstrates that, assuming realistic densities
and angular sizes of stars and galaxies, 10% worse seeing can be compensated for by approximately 0.4 mag
deeper data to achieve the same star–galaxy classification performance. We discuss how to probabilistically
combine multiple measurements, either of the same type (e.g., subsequent exposures), or differing types (e.g.,
multiple bandpasses), or differing methodologies (e.g., morphological and color-based classification). These
methods are increasingly important for observations at faint magnitudes, where the rapidly rising number density
of small galaxies makes star–galaxy classification a challenging problem. However, because of the significant role
that the S/N plays in resolving small galaxies, surveys with large-aperture telescopes, such as LSST, will continue
to see improving star–galaxy separation as they push to these fainter magnitudes.

Unified Astronomy Thesaurus concepts: Observational astronomy (1145); CCD observation (207); Astronomical
methods (1043)

1. Introduction

Classification of detected objects into stars and galaxies is a
basic ingredient for a wide range of science cases for
astronomical surveys. At bright magnitudes this problem is
relatively simple, since stars outnumber galaxies and the
galaxies that do exist are obviously extended on the sky. As
surveys push to deeper depths, certainly in the Sloan Digital
Sky Survey (SDSS) regime and even more so with surveys on
8 m class telescopes such as LSST, the statistics become much
less favorable for star/galaxy (hereafter abbreviated S/G)
separation as galaxy numbers rapidly increase and their
apparent size on the sky decreases. This poses a considerable
risk for these surveys, particularly for Galactic and stellar
science cases, where, for example, searches for rare objects or
low contrast stellar overdensities in the Galactic halo can be
particularly hampered by the “noise” of misclassified galaxies
contaminating the stellar sample.

The focus of this work is specifically on morphological
separation by distinguishing point sources from non-point
sources (other methods such as color-based separation; e.g.,
Fadely et al. 2012, are complementary but outside the scope of
this work). There are two main steps in the S/G separation
problem: the first is to perform some sort of measurement on
the pixel values obtained in an image with the goal of
constructing a sufficient statistic, and the second is to interpret
these resulting measurements as a classification into stars or
galaxies (either individually or in an ensemble).

The first automated classifiers were developed during the
advent of large digitized surveys in the 1970s, owing to the
availability of high speed microdensitometers and eventually
small CCDs. This necessitated the development of algorithms
to summarize this pixel-level data. Sebok (1979) presented one

of the first detailed analyses of the S/G separation problem in a
Bayesian framework, deriving the theoretically optimal classi-
fier under the assumption of accurate models of the point-
spread function (PSF) and galaxies (i.e., an accurate model of
the scene). Kron (1980) developed a classifier based on the
mean value of inverse squared radius of a source, which would
measure deviations from the PSF profile.
A common thread among many of these algorithms is the

comparison of a pure-PSF fit with a broadened measurement,
where the wider profile may or may not have free parameters.
Valdes (1982) compared the likelihoods of the observed source
over a set of template models, which included both stellar,
broadened stellar, and measurement artifact profiles. The SDSS
classifier used the ratio of the flux in the best-fit galaxy model
to the flux measured with a pure-PSF model. As reported in
Lupton et al. (2001), “We initially hoped to use the relative
likelihoods of the PSF and galaxy fits to separate stars from
galaxies, but found that the stellar likelihoods were tiny for
bright stars, where the photon noise in the profiles is small, due
to the influence of slight errors in modeling the PSF.”
Leauthaud et al. (2007) found that for space-based data, the
ratio of the peak surface brightness of an object to the total flux
performed better than the neural-network classifier used by
Source Extractor (known as CLASS_STAR). More recent
versions of Source Extractor have used a parameter spread_-
model (Desai et al. 2012, and also see Section 2.7 herein),
which compares the flux in the PSF fit to the flux in a PSF
broadened by a fixed factor (rather than fitting a galaxy model).
As we will argue in this work, the commonality of these
methods derives from the fact that this type of comparison is
closely related to the theoretically optimal Bayesian classifica-
tion, with the primary differences arising in the handling of
noise and deviations from any simplifying assumptions.

The Astronomical Journal, 159:65 (19pp), 2020 February https://doi.org/10.3847/1538-3881/ab6166
© 2020. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0002-0558-0521
https://orcid.org/0000-0002-0558-0521
https://orcid.org/0000-0002-0558-0521
https://orcid.org/0000-0003-1666-0962
https://orcid.org/0000-0003-1666-0962
https://orcid.org/0000-0003-1666-0962
http://astrothesaurus.org/uat/1145
http://astrothesaurus.org/uat/207
http://astrothesaurus.org/uat/1043
http://astrothesaurus.org/uat/1043
https://doi.org/10.3847/1538-3881/ab6166
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ab6166&domain=pdf&date_stamp=2020-01-23
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-3881/ab6166&domain=pdf&date_stamp=2020-01-23


After one or more measurements are produced for each
source in an image, the task of assigning S/G classifications
still remains. Approaches to this problem vary considerably,
ranging from the assignment of fixed cutoff values (e.g.,
SDSS), to decision trees (Weir et al. 1995), neural networks
(Odewahn et al. 1992), hybrid ensemble methods (Kim et al.
2015), or Bayesian methods incorporating priors on the object
populations (Henrion et al. 2011). In contrast to the similarity
of most pixel measurements, the diversity of these methods
reflects the fact that there is no single correct way to use a
classifier—for a realistic survey the desired tradeoff between
completeness and contamination, and the evolution of that
desired tradeoff with signal-to-noise ratio (S/N), is a choice
that depends on the specific scientific goals of the survey. The
tradeoff between completeness and purity of a sample is
characterized by the receiver operating characteristic (ROC)
curves, which plots these two metrics against each other for a
binary classifier.

Our goal in this work is to provide pedagogical but fully
technical answers to the following questions:

1. What is the statistical basis for the various pixel-level
measurement techniques in common use, and how do
they relate to the optimal Bayesian procedure outlined in
Sebok (1979)?

2. How can the performance of a classifier on a single object
be quantified in terms of the (candidate) galaxy size and
the S/N of the observation? In other words, what is the
theoretical information content of a single observation of
an object?

3. For a realistic population of objects observed in a survey,
what overall performance can be expected under various
observing conditions? In particular, can we expect
adequate performance in case of LSST, which will
survey the sky ∼5 mag deeper than SDSS? Should LSST
use the same star–galaxy morphological classification
algorithm as SDSS, or could it achieve better
performance?

4. How should one combine multiple independent measure-
ments of a star–galaxy separator in a statistically
justifiable way? Examples could include repeated mea-
surements of the same type, morphological measurements
in different passbands, or combinations of morphological
and color-based information.

One topic that we will not address is the treatment of closely
spaced sources, where the light from the sources overlaps on
the image and they cannot be treated as isolated from each
other. While blended sources are one of the principal
challenges of a realistic image processing pipeline, we wish
to lay out the theory for isolated sources first without the
complication of blending.

In Section 2 we review and compare a number of
classification techniques for morphological S/G separation. In
Section 3 we evaluate and compare these classifiers with
simulated observations using Gaussian light profiles. Section 4
details realistic modeling of the theoretically optimal perfor-
mance for single objects, using populations of stars and
galaxies in a survey such as LSST. We discuss a probabilistic
framework for combining multiple independent measurements
in Section 5 and summarize our conclusions in Section 6.

2. Candidate Classifiers

In this section, we derive and compare expressions for a
number of metrics derived from images that can be used for
star–galaxy separation. In the following section we compare
their performance using analytic Gaussian profiles.

2.1. Morphological Star–Galaxy Separation

Statistically speaking, the problem of morphological star–
galaxy separation represents a case of hypothesis testing in
frequentist statistics or a case of model selection in Bayesian
statistics (for an introduction and comparison of the two
frameworks, see Chapters 4 and 5 in Ivezić et al. 2014;
hereafter ICVG). Following the notation from ICVG, we ask
whether model G (galaxy) or model S (star) is better supported
by data D. Here data D are represented by measurements
(counts) fi{ } for N pixels and their uncertainties, σi.
Models G and S give model predictions for data fi{ }.

Assuming that the profile corresponding to model S is known
(e.g., from analysis of bright stars) and equal to the point-
spread-function (PSF) f,

f= +f C noise, 1i
S

ipsf ( )

the only free model parameter is the normalization factor Cpsf

or the so-called PSF counts. (It is assumed that få == 1i
N

i1 .)
To simplify our analysis, we are assuming that the position of
the source is known a priori and is not a model parameter. In
practice, uncertainty in the source center contributes to
uncertainty in S/G separation, and covariance between the
centroid and the flux measurement may need to be accounted
for in the likelihood function for accurate results.
We assume that the galaxy model G is more involved and

described by a normalization factor Cgal (galaxy model counts)
and a vector of additional free model parameters q,

q= +f C g noise. 2i
G

igal ( ) ( )

In the case of the SDSS galaxy models, for example, the vector
of free model parameters has three components: axis ratio,
position angle, and characteristic radial scale, evaluated for two
fixed Sérsic indices (exponential profile with n=1 and de
Vaucouleurs profile with n=4) with a parameter FdeV

controlling the fractional contribution of each, and normalized
such that å == g 1i

N
i1 (again neglecting the centroid). Our

parameterization assumes that the galaxy model function qg( )
“knows” the image PSF, and that the two components can be
appropriately convolved together to obtain the model pixel
values. In practice, for our modeling we will assume that the
PSF and galactic light distribution are both Gaussian, and that
the convolved light profile is a Gaussian with width equal to the
quadrature sum of the PSF and galaxy widths. This assumption
slightly overestimates the accuracy with which galaxies can be
measured, since real galaxies are less centrally concentrated
than a Gaussian. In this work we are most interested in the
galaxies that are only marginally resolved (and thus are closest
to being distinguished by a classifier), so the convolution of the
source with the PSF dominates in setting the shape more than
the detailed galaxy model. Realistic surveys will of course fit
more sophisticated models.
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2.2. The Data Likelihood

A common starting point for both Bayesian analysis and the
frequentist maximum likelihood and likelihood-ratio analysis,
is the likelihood of data. The data likelihood, given a model
M=(S, G) and the corresponding model parameters C and q,
as well as prior information I, can be expressed as



q

q
p s

s
= -

--

=

-

p D M C I

f f C

, , ,

2 exp
,

2
, 3N
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where we assume that measurements include independent
Gaussian noise parametrized by σi. Although the data
likelihood is often interpreted as “the probability of the data
given the model,” it is not properly normalized to be a
probability distribution function, PDF. (The likelihood of
individual data points is a proper PDF.)

In frequentist statistics, the maximum likelihood method
maximizes qp D M C I, , ,( ∣ ) over model parameters C and q to
obtain their best-fit values, Ĉ and q̂. (Note that the likelihood
itself cannot be interpreted as probabilities for model
parameters.) The likelihood-ratio test for two models, with
likelihoods evaluated with these best-fit parameters, is then
used to select the more likely model (when competing models
are not nested like here, where the S model is the same as a G
model with vanishing intrinsic size, various generalizations of
the likelihood-ratio test can be used instead; see Protassov et al.
2002). In other words, an object is declared a galaxy when the
maximum likelihood ratio,
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is larger than some likelihood-ratio threshold ΛSG.
The assumption of Gaussianity in the second line of

Equation (4) makes Λ very brittle, especially in the high S/N
limit and in case of non-negligible model errors (i.e., when
observed galaxies have profiles different than those included in
the model library, or when the PSF is not adequately modeled).

As discussed earlier, the optimal value of threshold ΛSG

depends on the desired completeness-purity tradeoff, which
implies that it also reflects relative numbers of stars and
galaxies in a given sample.

2.3. Maximum Likelihood Estimate for PSF Counts

Before proceeding with a discussion of Bayesian model
selection, we briefly review derivation of the maximum
likelihood estimate for PSF counts, Cpsf. Using Equations (1)
and (3), the data likelihood is

p s
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The maximum likelihood value of Cpsf, denoted as Cpsf
ˆ , can be

found by maximizing the log-likelihood ln L,

å
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that is, using the condition d(ln L)/dCpsf=0. The associated
uncertainty of Cpsf

ˆ could be estimated from

s = -d L dClnC
2

psf
2 1 2( ( ) ) , evaluated at =C Cpsf psf

ˆ .
Assuming homoscedastic noise (i.e., σi∼σ0=constant, as

is the case when the noise is dominated by the background
contribution) yields the maximum likelihood estimate
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and its uncertainty (which implies a Gaussian PDF)
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In the last expression, we have introduced the effective number
of pixels, neff

psf (the variance sC
2 is the sum of variances in each

pixel, s0
2, over the effective number of pixels). For reference,

with a Gaussian psf neff=4πα2, where α is the Gaussian
width in pixels, or neff=2. 266 (FWHM)2, in terms of the
Gaussian full width at half-maximum in pixels (a three-pixel
FWHM has neff∼20).
For the case of the broadened model, the maximum

likelihood model counts can be estimated as
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where the vector of model parameters q̂ corresponds to the
maximum likelihood point.

2.4. The Star–Galaxy Separation Based on the Likelihood-
ratio Test

Using Equations (4), (7) and (9), it can be shown that
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This expression can be recast as
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Equation (10) can also be recast as

c c cL = - º Dln
1

2

1

2
, 14psf

2
gal
2 2( ) ( ) ( )

where χ2 is the usual “goodness-of-fit” parameter, evaluated
for the maximum likelihood model; therefore, for a galaxy
image larger than the PSF size, Λ increases as the PSF profile
becomes less able to provide a good fit to the observed profile.

2.5. SDSS Classifier

The star–galaxy separator implemented in SDSS image
processing pipeline photo (Lupton et al. 2001, 2002) is equal to
the difference between the PSF magnitude and the best-fit
galaxy model magnitude. This magnitude difference was
named concentration by Scranton et al. (2002),

= -c m m . 15psf gal ( )

In the nomenclature of this section, this can also be
expressed as

=c
C

C
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ˆ
ˆ ( )

This expression shows a strong similarity to Equation (11), and
indeed these equations can be brought to a close analogy. Since
the ratio n neff

gal
eff
psf( ) increases monotonically with the ratio

C Cgal psf( ˆ ˆ ), we can write the maximum likelihood estimate as
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where ρ is some monotonic function of the C Cgal psf( ˆ ˆ ) ratio. As
a result, a source can be classified as resolved when
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Thus, for any individual object, the SDSS classifier contains
the same information as the likelihood ratio test. However, the
likelihood ratio case shows that for a range of observations, the
optimal classifier must vary with S/N. SDSS adopted a single
value that was optimized for the faint end of their data, which
in practice was very effective despite not being theoretically
optimal. Because of this, it is likely that some barely resolved
binary stars in SDSS imaging data could be recognized as such
by adopting a lower value of C Cgal psf min( ) at the bright end.

2.6. Bayesian Model Selection

To find out which of the two models is better supported by
data D, in Bayesian framework we compare their posterior
probabilities via the model odds ratio in favor of model G over
model S

ºO
p G D I

p S D I

,

,
, 19GS

( ∣ )
( ∣ )

( )

where I stands for “prior information.” Note that the concept of
“model probability” is distinctively Bayesian. The posterior
probability (a number between 0 and 1) of model M (G or S)

given data D, p M D I,( ∣ ), follows from the Bayes theorem

=p M D I
p D M I p M I

p D I
,

,
. 20( ∣ ) ( ∣ ) ( ∣ )

( ∣ )
( )

The marginal likelihood or evidence for model M, p D M I,( ∣ ),
can be obtained using marginalization (integration) over the
model parameter space (spanned by Cgal and q for model G,
and Cpsf for model S) as

ò q q q

º

=

E M p D M I

p D M C I p C M I dC d

,

, , , , , . 21

( ) ( ∣ )

( ∣ ) ( ∣ ) ( )

The evidence quantifies the probability that the data D would
be observed if the model M were the correct model. The
evidence is also called the global likelihood for model M
because it is a weighted average of the data likelihood

qp D M C I, , ,( ∣ ), with the priors for model parameters acting
as the weighting function.
The hardest term to compute is the probability of the data,

p D I( ∣ ), but it cancels out when the odds ratio is considered:

= =O
E G p G I

E S p S I
B

p G I

p S I
. 22GSGS

( ) ( ∣ )
( ) ( ∣ )

( ∣ )
( ∣ )

( )

The ratio of global likelihoods, BGS≡E(G)/E(S), is called the
Bayes factor, and is equal to

ò
ò

q q q
=B

p D G C I p C G I dC d

p D S C I p C S I dC

, , , , ,

, , ,
. 23GS

gal gal gal

psf psf psf

( ∣ ) ( ∣ )

( ∣ ) ( ∣ )
( )

The integration of the data likelihood over the model
parameter space is an expensive numerical operation. As is
well-known in Bayesian statistics, and first pointed out in this
context by Sebok (1979), the variation of data likelihood
around its maximum value can be approximated by a Gaussian
(unless the S/N is very low). In this case, the Bayes factor
reduces to the likelihood ratio given by Equation (4), with an
additional term accounting for different numbers of free model
parameters. The result is related to the Bayesian Information
Criterion (BIC; see e.g., chapter 5 in ICVG) as

» D = L - qB M N2 ln BIC 2 ln ln , 24GS( ) ( ) ( ) ( )

where Mθ is the dimensionality of the vector of free parameters
q and N is the number of data points. Although the maximum
likelihood ratio method is now extended with a “penalty” for
increased number of model parameters, this approximation
results in identical classification performance as that based on
Λ alone when the classification cutoff is optimized rather than
prescribed a priori.
In the low S/N limit, integrals from Equation (23) should be

explicitly evaluated. Assuming uniform priors for all model
parameters,

ò
ò

q q
=B k

p D G C I dC d

p D S C I dC

, , ,

, ,
, 25GS

gal gal

psf psf

( ∣ )

( ∣ )
( )

where coefficient k depends only on the limits for assumed
priors. Here, instead of comparing the maximum values of data
likelihoods as in Equation (4), the Bayes factor now compares
the mean values of the two data likelihoods over the range of
model parameters allowed by priors. Hence, the two
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classification methods should have different performance, with
the maximum likelihood method expected to be inferior. An
example of this comparison will be presented in the next
section, including a discussion of the Occam’s razor built in the
above expression.

2.6.1. Sebok’s Ansatz

Sebok (1979) performed a similar analysis to the above in a
full Bayesian framework, but added the simplifying assumption
that

ò =p D S C I p C S I dC p D C I, , , , 26psf psf psf psf( ∣ ) ( ∣ ) ( ∣ ˆ ) ( )

and similarly for galaxies. This ansatz allows the integrals from
Equation (23) to be replaced with a comparison of the
maximum likelihood flux estimates for both models and results
in a likelihood calculation of the same form as Equation (10).
Sebok (1979) then required that the term in square brackets in
Equation (11) be positive to classify an object as galaxy. This
requirement yields a condition

>
C

C

n

n
1. 27

gal

psf

eff
psf

eff
gal

1 2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ˆ
ˆ ( )

Compared to Equation (11), Sebok’s ansatz and the assumption
of equal priors on star and galaxy density results in the
dependence on S/N vanishing.

Sebok (1979) also simplifies the evaluation of this condition
by using a single fixed-size galaxy model for comparison, on
the basis that it is primarily the marginally resolved galaxies
where the classification is most sensitive and the PSF size
dominates in those cases. Despite these differences, we show in
the Section 3 that the condition given by Equation (27) acts
similarly to the SDSS galaxy separator. (In case of Gaussian
profiles, Equations (35) and (36) imply a monotonic relation-
ship between the two separators.)

2.7. New Star–Galaxy Separator in SExtractor

We also consider a parameter called spread_model,
computed by the code SExtractor (Bertin & Arnouts 1996), that
has been recently developed as part of the Dark Energy Survey
Data Management program (Mohr et al. 2012). According to
Desai et al. (2012), spread_model is a superior star–galaxy
classification parameter compared to class_star, SExtrac-
tor’s traditional star–galaxy separator (see their Figure 13). The
distribution of sources in the spread_model versus apparent
magnitude diagram is reminiscent of the mpsf − mgal versus
magnitude diagram constructed with SDSS data (Figure 1).

The spread_model parameter is a normalized simplified
linear discriminant between the best-fitting local PSF model
(Φ) and a slightly more extended model (G) made from the
same PSF convolved with a circular exponential disk model
with scale length equal to FWHM/16.(Here FWHM is the full
width at half-maximum of the PSF model.) It is defined as
(Desai et al. 2012)

=
F

-
F
F F

G x

G

x
_ , 28
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T
spread model ( )

where x is the image vector centered on the source; see also
Soumagnac et al. (2015). The corresponding expression in

Desai et al. (2012) has a sign error, which we corrected above
(E. Bertin 2019, private communication). For x=Φ,

=_ 0spread model by construction, and for resolved
sources, >_ 0spread model .
SExtractor also computes spreaderr_model, the uncer-

tainty for spread_model parameter. Using this uncertainty,
Bechtol et al. (2015) compute weighted mean of spread_-
model for a set of images with varying depth, and Koposov
et al. (2015) propose a criterion for binary star–galaxy
separation that accounts for deteriorating S/N close to the
faint end

< +_ 0.003 _ . 29spread model spreaderr model∣ ∣ ( )

Both G and Φ in Equation (28) are normalized to the
observed source flux (in the maximum likelihood sense; see
Section 2.3). It is easy to show, using nomenclature from this
section, that
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and with an important caveat that the model profile g is fixed,
rather than optimized. For a given seeing profile, η is fixed and,
with the chosen g, very close to unity (to within a few percent;
see Equation (37) below). Hence, as a comparison with
Equations (11) and (27) reveals, spread_model parameter is
essentially equivalent to the classifier proposed by Sebok (apart
from the fact that here g is fixed).

Figure 1. “PSF–Model” classification metric used by SDSS, shown for a set of
Stripe 82 observations. The PSF magnitude is the best-fitting flux, assuming the
object is unresolved, while the galaxy model magnitude also fits for an intrinsic
size of the object. The stellar locus is at PSF–model=0, and objects where
PSF–model < 0.145 (dashed vertical line) were classified by SDSS as stars.
The plume of galaxies to the right of this division shows good separation at
bright magnitudes, but at faint magnitudes tends to merge with the stellar locus
due to both the decreasing apparent size of faint galaxies and the less precise
measurements of faint objects. Density contours are shown as white dashed
lines to illustrate the shape of the distribution.
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2.8. Summary of Different Classifiers

As shown above, there are five closely related candidate
classification parameters:

1. SDSS classifer, =C
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3. From Equation (30), Cspread=η CSebok−1.
4. From Equation (11),

c c= - = -cDC CS N 1 .psf
2

gal
2 2

Sebok
2

2 ( ) ( )

5. From Equation (23), =C B2 ln .Bayes GS( ) For high S/
N, » -c qDC C M Nln .Bayes 2 ( )

In addition, when analyzing the behavior of Gaussian profiles
in the next section, we will also consider the best-fit profile
width, Cσ, as the sixth classification parameter.

Note that the first three classification parameters do not
include dependence on the S/N. In the high S/N limit, all six
classifiers are expected to have similar performance. Our aim in
the next section is to quantify their behavior in the low S/N
limit, using Gaussian profiles. On general statistical grounds,
we expect CBayes to perform the best, and seek to quantify
whether its performance gain compared to, for example, CSDSS

or cDC 2, might be significant in practice.

3. Comparison of Classifiers in Case of Gaussian Profiles

3.1. Outline

In order to compare the statistical properties of the six
classifiers summarized in the preceding section, we use an
idealized case based on Gaussian profiles for both the source
and the PSF. The main goal is to compare their performance in
the low S/N limit. Given S/N, specified by the total number of
counts and (Gaussian) noise per pixel, and the values of the
PSF width, θpsf, and the intrinsic source width, θg, we generate
a large number of sources (10,000) and equal number of the
corresponding PSFs. The profile variations are entirely due to
random realizations of the assumed noise. For each source, we
fit two free parameters, the profile width and its normalization,
using uniform priors (that is, the best fit corresponds to
maximum likelihood solution). Given these best fits, we
evaluate the six classification parameters (note that for CBayes

fitting can be bypassed) and compare their distributions for the
sources and for the PSFs. Instead of specifying a priori
classification threshold, we evaluate the full ROC curve, which
is a standard tool for quantifying the completeness versus
contamination tradeoff. Although for some classifiers there are
some predefined numerical values (e.g., a threshold value of 1
for CSebok or the properties of fixed galaxy profile in case of
Cspread), we optimize over them for a fair comparison of all
classifiers. We study the performance of classification para-
meters as a function of S/N and the (θg/θpsf) ratio. In the rest of
this section, we discuss and illustrate these steps in more detail.

3.2. Model Profiles and Fitting Method

We assume a circular Gaussian profile

a
pa a

= -p r
r1

2
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2
, 32
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which satisfies òp a =
¥

p r rdr2 1
0

( ∣ ) and θ

≡FWHM=2.355α. The counts from a source are then
described by

a s= +C r C p r n , 330( ) ( ∣ ) ( ) ( )

where n(σ) is Gaussian noise with a mean of zero and standard
deviation equal to σ. The source profile width parameter α is a
result of the convolution of the PSF and an intrinsic source
profile, and is obtained by

a a a= + . 34gpsf
2 2 1 2( ) ( )

We use αpsf=1.5 pixel, corresponding to θpsf=3.5 pixel
(motivated by the median expected seeing for LSST, which has
the same θpsf is pixel units). Given this large θpsf, for simplicity
we evaluate the profile at the pixel center. For a Gaussian
profile, p a= =n 4 pix 28.3eff

2( ) .
We get the best-fit values of C and αg by a grid search.

Given a 15 pix by 15 pix image generated with chosen input
values of C, αpsf, αg and σ0, we compute the data likelihood L
using Equation (3) as a function of two free model parameters,
C and αg (and a related quantity χ2=−2 ln(L)). The
maximum likelihood best fit is a pair of (C, αg) values that
maximizes L (or minimizes χ2). An example of such fitting is
shown in Figure 2.

3.3. Analytic Predictions for Gaussian Profiles

Before proceeding with numerical experiments, we summar-
ize analytic predictions for the behavior of classifiers for the
case of noise-free Gaussian profiles. For profiles described by
αpsf (PSF) and αg (source; before convolution with the PSF), it
can be shown analytically (and numerically in case of η) that in
the noise-free case,
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Hence, all classifiers are only functions of the ratio (αg/αpsf)
and are uniquely related to each other. The differences in the
statistical behavior of classifiers are due only to their varying
response to noise, as quantitatively discussed below.
The above expressions also elucidate the behavior of

classifiers that explicitly depend on S/N. For example, it
follows from Equation (11) that
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2 gal
2

eff
psf

psf
2

eff
gal

2
psf2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( ) ( )/ /

6

The Astronomical Journal, 159:65 (19pp), 2020 February Slater, Ivezić, & Lupton



where ρ(αg/αpsf) is a monotonic function of the ratio (αg/αpsf)
(and note a close relationship to Equation (17)). This
expression shows that, given a threshold for cDC 2, the smaller
values of αg can be “resolved” at a higher S/N. When the star–
galaxy separation threshold is optimized at the faint, low S/N,
end of the data, the ability to recognize barely resolved objects
at the bright end is not fully exploited. This behavior is generic
and not limited to Gaussian profiles as long as ρ is a well-
defined monotonic function of (αg/αpsf).

3.4. Illustration of the c2 Behavior in Low S/N Case

In the high S/N regime, the likelihood surface around the
maximum likelihood point, such as that shown in the top right
panel in Figure 2, can be well approximated by an elliptical
Gaussian. As the S/N decreases, the deviations from
Gaussianity can be large, with details depending on the profile
parameters. Examples of low S/N likelihood surfaces are
shown in Figure 3.

3.5. Comparison of Different Classifiers

To compare the behavior of the different classifiers to each
other, we created 10,000 random “star” images (with αg=0
and αpsf=1.5) and 10,000 “galaxy” images (αg=1.0), all at
S/N≈10, which were then classified by all of the algorithms

we have considered. Classifier histograms and ROC curves for
each classifier’s values are shown in Figure 4, while the
different classifiers are plotted against each other in Figure 5. In
the ROC panels of Figure 4, the CBayes curve is shown in each
panel by the black dashed line, to provide a visual reference
between panels. It is clear from these curves that none of the
classifiers do better than the Bayesian result, and with possibly
the exception of the χ2 classifier, none of them do substantially
worse either. This is despite the rather varied appearance of the
classifier histograms; these differences in the values returned
for each object do not translate into improved S/G perfor-
mance, as shown by the ROC curves.
Since we used analytic (Gaussian) profiles, this behavior is

easy to understand quantitatively. Expressions listed in
Section 2.8 and Section 3.3 imply that all classifiers are
functions of the (αg/αpsf) ratio, and thus are uniquely (though
nonlinearly) related to each other (e.g., CSDSS as a function of
the best-fit profile width; see top left panel in Figure 5). The
scatter in expected one-to-one relations is seen when at least
one of the two plotted classifiers includes explicit S/N
dependence (which varies around the input value due to
random noise). For example, using expressions listed in
Section 2.8 and Section 3.3, it is straightforward to show that

Figure 2. Illustration of fitting an image generated with noise per pixel of σ0=15 counts, PSF with αpsf=1.5 pix, the intrinsic profile width αg=1.0 pix, and a
source with C=1000 counts. With an effective number of pixels of ∼40, the S/N is ∼10. The top left panel shows a data image, and the top right panel shows the χ2

image as a function of two free parameters, αg and C. The standard 1σ, 2σ, and 3σ contours are shown by the lines; the maximum-likelihood best-fit values of the free
parameters by the ×symbol; and the input values of fitted parameters by the dot. The best-fit model is shown in the bottom left panel, and the data-model residuals are
shown in the bottom right panel.
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for Gaussian profiles (see middle left panel in Figure 5),
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The left panel of Figure 6 shows the performance of these
classifiers as a function of observation S/N. To do so, it is
necessary to distill each ROC curve into a single number; we
do so by somewhat arbitrarily reporting the value at which the
completeness is equal to the purity. While this is not
necessarily the same choice that one would make when
performing S/G separation, it is proportional to the overall
performance of the classifier (a different choice of a fiducial
point will not change the result). While the Bayesian classifier
performs somewhat better at very low S/N, at moderate and
high S/N, the behavior of all classifiers is very similar.

Figure 6 also shows how the Bayesian classifier performs for
galaxies of different sizes and at different S/N, but with fixed
PSF size. For galaxies similar in size to the PSF (blue dashed
line), the performance rapidly improves from relatively modest
increases in S/N. Similar gains are also available for objects
significantly smaller than the PSF but only at significantly
higher S/N.

We reiterate that Bayesian classifier, although statistically
optimal in cases when profile models are known, is brittle in
practice and very sensitive to deviations of the observed
profiles from assumed models (e.g., galaxies with dust lanes or
tidal tails, stars at high S/N).

4. Modeling Star–Galaxy Separation Performance

In this section, we show how to predict the star–galaxy
separation performance of a particular set of observations,
starting only from a pixel-level statistical model of the
measurement of individual objects and a simple model of the
population of stars and galaxies in the target field. The goal of
this modeling is to extract the dependence of star–galaxy

separation on the seeing and the S/N of a given set of
observations, and also to show how high S/N observations are
able to resolve galaxies with angular size smaller than the size
of the PSF.
We first describe how to compute the covariance matrix for

objects of a given size and flux using the Fisher matrix
formalism. We then combine this result with the true
population of stars and galaxies in a given field to obtain a
distribution of classifier values as it would be measured in those
observations. This is effectively a convolution of the under-
lying distribution, with the convolution kernel varying across
the size–magnitude plane.

4.1. Modeling Individual Objects

For modeling S/G performance, we need to predict the
uncertainty distribution of a chosen star–galaxy separation
metric for an object of a given size—which could be zero in the
case of a star—and magnitude, under any set of observing
conditions. While the Monte Carlo approach from the previous
section could be extended to this use case, it is both more
illustrative and computationally tractable to approach this
analytically using toy models. As we have shown, the various
candidate classifiers are in general more similar than they are
different, so we will focus on measuring the width of a
Gaussian PSF, which may be broadened if the object is a
galaxy. We assume that the galaxy light profile is also
intrinsically Gaussian. Because the galaxies that are on the
verge of being resolved will still have their shape dominated by
the PSF, the detailed light distribution in the galaxy is a
secondary effect in this context.
We can compute the minimum variance that an unbiased

estimator of the observed object size â would have via the

Figure 3. Left panel shows the two-dimensional log-likelihood surface (ln(L)=−χ2/2) for fitting the intrinsic profile width (αg) and normalization (C, see
Equation (33)) of an image generated with noise per pixel of σ0=15 counts, PSF width αpsf=1.5 pixels, and αg=1.0 pixels (same image as shown in the top left
panel in Figure 2). The circle marks the true values, and the × symbol marks the maximum likelihood point. Marginal probability distributions for each parameter are
shown to the left and below the panel with solid lines. The dashed line in the panel to the left is the conditional distribution of the normalization C given αg=0. (Note
that its peak corresponds to the maximum likelihood value of PSF counts, Cpsf.) The right panel is analogous, except for a profile with αg=0 (a noisy realization of
the PSF profile). Note that the marginal distributions for αg deviate from a Gaussian shape, especially in the right panel.
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Fisher information matrix q . This is defined as

q
q= ¼q ~ q
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where In is the measurement of the nth pixel, q is a vector of
parameters, and  denotes the expectation value with respect to
the function qf from which pixel values are drawn.
Our treatment of the Fisher information follows that of

Mendez et al. (2013), which showed how to compute the

Figure 4. Comparison of the performance of six different classifiers (see Section 2.8 for definitions) for simulated data. The left column shows distributions of
classifier values for 10,000 realizations of a star or galaxy, with noise per pixel of σ0=15 counts, with blue histograms corresponding to PSF-like sources (S/
N=12.5) and red histograms to a profile with αg=1.0 pix and the same total source counts (S/N=10.4). The right column shows purity versus completeness ROC
curves stars (blue line) and galaxies (red line), where the number of true stars and galaxies in the sample are equal. The dashed black line is the stellar ROC curve for
CBayes, replicated to the other plots to aid comparison.
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Cramér–Rao bound on astrometric measurements. In this case
our interest will be in the accuracy of object size measurements,
though the methodology is largely similar. By assuming that
the likelihood function can be separated into the product of the
likelihoods for each pixel in an object (that is, the noise is not
correlated between pixels), one can show that the Fisher
information for the measurement of model parameter θ is

å
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¶
¶

q
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, 41
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where Fi(θ) denotes the expected value for pixel i of the model
being fit to the observations—that is, the noise-free version of
Equation (2). The full derivation of this equation is presented in
the Appendix. That derivation assumes a Gaussian noise
distribution on each pixel, but the result is the same for Poisson
noise.

For star–galaxy separation, we will evaluate the Fisher
information for the measurement of both the Gaussian width
(α) and the total flux of the object (Cgal) under the assumed

model

a a= +F C C g r B, , , 42i igal gal( ) ( ) ( )

where g(ri, α) denotes the value of a unit-normalized Gaussian
of width α, evaluated at the radius ri of pixel i, the total flux is
given by Cgal, and the background flux B.
Evaluating Equation (41) with this model, we obtain
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The Fisher matrix containing these elements must then be
inverted to obtain the covariance matrix.
In the modeling that follows, we evaluate these functions

numerically to compute the S/G performance. To guide our

Figure 5. Illustration of correlations between six different classifiers (see Section 2.8 for definitions). The values for 10,000 random draws are shown, with noise per
pixel of σ0=15 counts, with blue symbols corresponding to PSF-like sources (αpsf=1.5 pix, αg=0) and red symbols to a profile with the same PSF and αg=1.0
pix. The distributions of classifier values are shown in Figure 4.
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understanding of these results, however, we will also derive a
simplified version that characterizes the overall behavior.

Our main quantity of interest is a , which is inversely
proportional to the variance in estimates of the object size.
Inserting the Gaussian derivatives into Equation (43) produces
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For background-limited observations, we can make the
simplifying assumption that individual pixels in the object
have values significantly less than the background, such that
Cgal g(ri, α)<B. This produces
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This expression can be simplified further by incorporating
Equations (12) and (13), and noting that that the ari

3 3 term is
only significant compared to the 2/α term at large radii, but
these radii have low weighting in the summation because of the
Gaussian function g(ri, α). The resulting simplified version is
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Seeing and S/N thus have similar effects on the ability to
resolve galaxies. But while seeing has traditionally been
understood as the key variable in S/G separation, in practice
typical seeing for modern ground-based observatories rarely
varies by more than a factor of three to four, even between
different sites. The S/N is far less constrained and, for objects
of a given brightness, can grow by significant factors either
through longer exposure times, larger telescopes, or reduced
background. This makes the S/N the key factor to consider
when planning observations or analyzing S/G separation
results.

With this qualitative understanding in hand, we can now
proceed to a quantitative estimation of S/G performance.

4.2. Modeling Object Populations

We model here distributions of two populations, stars and
galaxies, as functions of flux (magnitude) and size.

4.2.1. Galaxy Size and Magnitude Distribution

The general behavior of the underlying distribution of
galaxies in the size–magnitude plane is that galaxies become
smaller and significantly more numerous at fainter magnitudes.
The quantitative description of this distribution is best extracted
from space-based data, where there is little confusion between
stars and galaxies at the angular sizes that we are concerned
with in ground-based observations. For this purpose, we use a
model that was developed for LSST performance optimization
studies, which models the galaxy size distribution as a log-
normal function. This was fit to the HST COSMOS-based
mock catalogs of Jouvel et al. (2009), which were constructed
for optimization of dark energy experiments.
The size distribution as a function of magnitude is well

described by a log-normal distribution,
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whose parameters are linear functions of the i-band magnitude:

m = - +q i0.24 5.02 ln arcsec 50( ) ( )

and

s = - +q i0.0136 0.778 ln arcsec . 51( ) ( )

The median intrinsic galaxy size (FWHM, in arcsec) is equal to
exp(μθ), and it varies from ∼1 0 at i=21–0 35 at i=25.3.
An illustration of this model is shown in Figure 7. Figure 8
shows a comparison between these model predictions and the
observed COSMOS catalogs from Capak et al. (2007). The
observed sizes show a somewhat broader distribution than the
log-normal model, but the trends with magnitude are overall
sufficiently representative for our modeling.

Figure 6. Left panel compares classification performance of different classifiers using the Completeness=Purity point on the ROC curves as metric, for the case
αpsf=1.5 pix and αg=1.0 pix. The blue dashed line corresponds to CBayes, the red dashed line corresponds to CΔ χ2, and the other four classifiers are
indistinguishable from the black solid line. Note that at S/N=5, CBayes exceeds the performance of other classifiers by about 7%. The right panel compares the
performance of CBayes for three different values of αg (solid: 0.5 pix; blue dashed: 1.0 pix; red dashed: 1.5 pix).
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For modeling the density of galaxies on the sky, we use a fit
to data from the CFHTLS Deep survey (Hoekstra et al. 2006;
Gwyn 2008) from the LSST Science Book (LSST Science
Collaboration 2009). The cumulative galaxy counts between

20.5<i<25.5 are given by

= ´ - -N 45 10 arcmin . 52i
gal

0.31 25 2 ( )( )

4.2.2. Stellar Density Distribution

In addition to the model of galaxy counts, our model must
also incorporate a stellar density distribution as a function of
apparent magnitude. This choice of distribution is subject to
much greater variation than the galaxy distribution, as the
position of any given survey pointing relative to the Milky Way
disk has a very significant impact on the overall normalization
and shape of the observed distribution.
Additionally, studies that target stellar samples (and for

whom galaxies are the contaminant) are in general not
interested in any star, they are nearly always tuned to select
stars with specific properties that make them tracers of some
target phenomenon. For example, studies of the Milky Way
stellar halo often select main sequence turn-off (MSTO) stars
via their color because they have roughly constant luminosity
and can be used to probe varying distance intervals. The
apparent magnitude distribution of MSTO stars thus acts
primarily as a proxy for the density distribution as a function of
distance, and it essentially reflects the structure of the Milky
Way. In contrast, the apparent magnitude distribution of a
sample of stars without this color-based selection tends to show
increasing numbers of red, low-luminosity disk stars at faint
magnitudes, even at high Galactic latitudes, and thus also
reflects the steepness of the main sequence luminosity function.
In our modeling, we will assume that the target stellar

sample is the Milky Way halo, rather than nearby stars in the
disk. The density profile of the halo can be modeled as a power
law that transitions from -r 2.5 inside of ∼25 kpc (Jurić et al.
2008) to approximately ~- -r r3.6 4 in the outer halo (Slater
et al. 2016; Cohen et al. 2017). Rather than creating a detailed
model for the density distribution along a particular line of
sight through the halo, we adopt a constant stellar number
density per unit magnitude, which corresponds to an r−3

density profile. This is meant to provide a broadly representa-
tive approximation of the true halo density profile. As
discussed above, the normalization of this profile is strongly
dependent on Galactic latitude and longitude, along with color-
based selection criteria. We chose to normalize the stellar
density such that it equals the density of galaxies at magnitude
20.5, and emphasize that because of the uncertainties in this
choice, our focus will be on the variation in S/G separation
performance rather than any absolute statements about
completeness or purity in a given scenario. Figure 9 shows
the ratio of stars to galaxies in our model as a function of
magnitude.

4.2.3. Convolving the Galaxy Distribution

The left panel of Figure 10 shows examples of the
covariance contours from the Fisher matrix modeling that we
use as convolution kernels. On a dense grid covering the size–
magnitude space, we evaluate for each grid cell the number of
galaxies that would be intrinsically present in that cell, then
compute the covariance matrix and thus the contribution of that
cell to each cell in the as-observed size–magnitude distribution.
Summing over these cells produces the distributions shown in
the center and right panels of Figure 10. The trend for the
“observed” distribution of galaxies to be both wider (due to

Figure 7.Model for the distribution of galaxies in the size–magnitude plane, as
described in Section 4.2.1. The model assumes a log-normal distribution in size
and an exponential distribution over magnitude. The contours are labeled in
thousands of stars per square degree per arcsecond FWHM per magnitude.

Figure 8. Comparison of the galaxy size distribution from our model (points
connected by lines) and the measured object sizes from COSMOS (stepped
histogram), in three i-band magnitude bins. While the log-normal model is
somewhat more peaked and the real distribution slightly flatter, the overall
trend of size and the number counts as a function of magnitude are sufficiently
similar for our modeling needs.
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increased counts and observational scatter) and shifted toward
smaller sizes at faint magnitudes can be clearly seen.

4.3. Defining the S/G Separation Criterion

The result of this model is a map of the observed sizes and
magnitudes of a set of stars and galaxies in a given set of
observations. In order to enable quantitative discussion of S/G
classification, hereafter we adopt CSDSS classifier. We have yet
to apply any sort of classification to the observed set of objects,
though, and there are many issues that now arise when trying to
do so. Defining a morphological classifier is equivalent to
drawing some line through the size–magnitude plane that
defines two regions. (We will focus on a binary classification at
the moment and defer discussion of probabilistic classifiers to
Section 5.) How one defines this line is entirely dependent on
the scientific goals one is trying to achieve. Different levels of
contamination and completeness may be acceptable to different
science programs, and thus a binary classifier that is universally
applicable cannot be uniquely defined. We therefore define
here a classifier that is sufficiently representative of S/G
performance but is not necessarily what one would always use
in practice. We draw a line in size–magnitude space such that at
any given magnitude, the purity of the stellar sample (defined
as the number of correctly labeled true stars divided by all
objects classified as stars) is equal to the completeness of the
sample of stars (correctly labeled true stars divided by all true
stars).

This separator is illustrated in Figure 11. For a given
magnitude column, these plots show what the purity and
completeness of a stellar sample would be if everything lower
than a chosen y-axis point was classified as a star. This choice
of the classifier cutoff can vary with magnitude. As our desired
classification goal is for completeness to equal purity, we draw
our cutoff (dashed black–white line in Figure 11) such that for
every magnitude, the cutoff sits on the same color in both left
and right panels of the plot. This is equivalent to a diagonal line
in the ROC curve plots. One can see that at faint magnitudes,
the classifier must be exceedingly stringent to maintain this
criterion, to the extent of reaching 30% completeness or less
even by selecting only objects that appear smaller than the PSF
(purely for statistical reasons). At some point we decide that
such a diminished sample of stars is no longer useful, and we
thus define a fiducial completeness level and define the

magnitude at which this level is reached as the S/G separation
“limit” for this set of observations. This choice is again
arbitrary in detail but will be useful for characterizing the
relative S/G performance between different observations.
These choices act as means of reducing the dimensionality of
the model output, from the completeness and purity planes
down to a single number.

4.4. Validating the Model with Stripe 82

Before any extensive usage of this model, we need to verify
that its results accurately characterize the S/G separation
performance of real observations. To do so, we need a set of
observations under varying seeing and depth conditions, along
with a set of “truth” labels for objects in these observations.
SDSS Stripe 82 fits these criteria as it consists of numerous
repeat observations of the same equatorial stripe, yielding
approximately 80 measurements of any given patch of sky, and
which were observed in both photometric and various degraded
observing conditions (Abazajian et al. 2009). We compare the
S/G measurements from these observations those from the
Dark Energy Survey, Data Release 1 (Abbott et al. 2018),
which is significantly deeper and has better seeing than the
SDSS data. In the r-band, the DES data reaches a S/N=10 at
24.08 and has a median seeing of 0 96. This extra depth
enables us to use this deep catalog as an approximate “truth”
table, since objects that are on the verge of being resolved in
the single epoch data, and thus contribute most to any changes
in S/G performance, will be identified in the coadd data. There
will still be some unresolved galaxies in this coadded data, and
we will discuss the implications and effects of this contamina-
tion below.
To model these Stripe 82 performance, we created a stellar

density distribution that was normalized to the galaxy density at
an r-band magnitude of 20.8, as is seen in the observed Stripe
82 coadd data. The galaxy distribution was the same as
measured in COSMOS (see Section 4.2.1). The stellar density
model was slightly rising, such that it doubled after two
magnitudes of increased depth, again to approximate the
observed density distribution.
While our model allows us to specify the observed depth,

often characterized by the 5σ limiting magnitude or “m5,”
separately from the seeing, in practice these variables are
strongly correlated for data from a single telescope even under
varying observing conditions. For this reason, we test our
model on SDSS assuming that only the m5 depth varies
independently, and the seeing is linked to this by

q= +m Clog 0.75 ( ) , where θ is the seeing FWHM and C
is a constant fit to the SDSS data (Ivezić et al 2019). Reducing
the model to one parameter simplifies validation and
visualization, but this restriction will be lifted when using the
model to make predictions.
For computing the S/G limiting magnitude of the individual

Stripe 82 runs, we follow a similar procedure as in the
modeling to define the value of CSDSS for each magnitude bin
at which the stellar completeness is equal to the purity. This
takes advantage of the deeper data in measuring completeness
and purity, which most surveys normally lack (otherwise they
would simply use the deeper data), but does not introduce the
extra uncertainty of trying to estimate these parameters from
only the shallow data. This additional information does not
improve S/G separation; it only improves our measurement of
S/G performance.

Figure 9. Ratio of the galaxy density to stellar density in the input model. The
galaxy and stellar densities are equal at magnitude 20.5.
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Figure 12 shows the result of this verification exercise. The
blue points show the depth of individual Stripe 82 runs, while
the solid orange line shows the depth estimated using our
modeling. In general, the reported Stripe 82 S/G depth is
somewhat deeper that predicted by the modeling, but some of
this difference certainly comes from the ground-based
reference catalog used for the comparison, which itself has
some contamination fraction. Thus the measured Stripe 82
points slightly overestimate the S/G depth, by failing to
recognize some unresolved objects as contaminant galaxies.
We roughly estimate the significance of this effect by drawing
the dashed line in Figure 12, which mimics this unrecognized
contamination by modeling a less-stringent S/G separation
purity, equivalent to a 20% unrecognized contamination rate.
The resulting model tracks the change of S/G performance
with observation depth quite well, although there remains a
modest offset of ∼0.3 mag between the absolute predicted
performance and the measured performance. As our main
interest is in using the model for understanding the seeing and
depth dependence of S/G performance, we consider this level
of agreement acceptable.

4.5. Model Lessons

For the purpose of discussion in this section, we adopt as the
S/G limiting depth the magnitude at which both purity and
completeness for stellar sample are 80%. We evaluate it over a
grid of 5σ limiting depths and seeing values, as illustrated in
Figures 13 and 14. Vertical and Horizontal slices through
Figure 13 can be seen in Figure 15. Several qualitative and
quantitative conclusions can be readily derived from features
visible in these figures.

These figures show that at constant seeing the S/G limiting
depth does not improve as fast as 5σ limiting depth. For
example, in 1″ seeing, the difference m5−mSG increases from
about 1.5 mag at m5=22.5 to about 2.5 mag at m5=24.5. In
other words, although m5 improved by 2 mag, mSG improved

by only 1 mag. The same conclusion is valid for other values of
seeing (the lines of constant m5−mSG difference in Figure 14
are nearly straight and parallel to each other), and it is a direct
result of increasing galaxy-to-star count ratio and decreasing
intrinsic galaxy size with magnitude.
When seeing varies, its impact on m5 has to be taken into

account via q qD =m 2.5 log ;5 10 2 1( ) for example, when seeing
improves from 1 4 (typical for SDSS) to 0 7 (anticipated as
typical for LSST), m5 improves by 0.75 mag. In this case,
figures show that m5−mSG difference stays approximately
constant and thus mSG improves by about 0.75 mag. In order to
improve mSG by the same amount in constant seeing, m5 would
have to be improved by at least 0.75 mag, which implies an
increase of exposure time (assuming that background bright-
ness and other observing properties remain unchanged) of at
least a factor of four.
Finally, it is illustrative to compare the performance of star–

galaxy separation in our model for fiducial seeing and m5

corresponding to SDSS (seeing of 1 4 and m5=22.5) and
LSST (seeing of 0 7 and m5=27). While the LSST
performance, relative to that of SDSS, will be affected
negatively by the increasing galaxy-to-star count ratio and
decreasing intrinsic galaxy size with magnitude, it will benefit
from better seeing and deeper data. As Figures 13 and 14 show,
if LSST had the same seeing as SDSS, due to m5 improvement
of 4.5 mag, mSG would improve by (only) 1.5 mag (from about
21.0 to 22.5). However, because the seeing is also improved,
mSG would improve by about 2.0–2.5 mag (to 23.0–23.5).
However, note that this statement is valid only for the definition
of mSG adopted here (and it depends strongly on the actual star-
to-galaxy count ratio).

5. Probabilistic S/G Separation Cookbook

While the preceding sections have focused on the measure-
ment of images and the expected performance of a classifier,
they have not addressed how to best use the results from a

Figure 10. Illustration of the modeling procedure described in Section 4. The left panel shows the covariance ellipses for observations of a grid of galaxies; galaxies at
faint magnitudes (or alternatively, low S/N) have large uncertainties in the S/G separation parameter CSDSS, while high S/N objects are tightly constrained. The
middle panel shows the distribution of measured stellar parameters (magnitude and CSDSS) after convolution by the covariance ellipses, while the right panel shows the
same model output for galaxies. The contours are labeled with the fraction of objects falling inside each contour. The stars intrinsically lie along CSDSS=0, while the
galaxies are intrinsically distributed over a wide range of widths (as shown in Figure 7).
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catalog of measurements. In this section we present a brief
“cookbook” for how a measurement such as CSDSS can be used
to construct a probabilistic S/G separator, which will enable
the combination of information from multiple measurements in
a theoretically sound manner.

The basic outline of the process is as follows:

1. Obtain both survey data and a set of accurate labels. The
most common method for obtaining star and galaxy
labels is with space-based observations, where galaxies
are readily resolved, but other methods such as
spectroscopy could also provide this classification. We
will assume that these labels are perfectly accurate in our
description below. It is also important that data used for
training spans the range of S/N and seeing conditions
present in the survey for which the classifier will be used,

as the probabilistic classification is dependent on the
noise properties of the training set matching that of the
target observations.

2. Compute qp c m, , S N, S Gpsf( ∣ [ ]). That is, we must
construct a function that transforms the raw measurement
c from the classifier algorithm (e.g., the SDSS model
minus PSF magnitude, and which can have arbitrary
scaling) into a properly normalized probability p c ...( ∣ ).
One simple way to do this, ignoring for the moment the
dependence on magnitude, S/N, and seeing, is to use the
high resolution data to separate stars from galaxies; then
for each set compute a kernel density estimator on the
classifier values measured in the target survey data. (One
can think of this as a slightly more sophisticated version
of histogramming the data as a function of c.) This

Figure 11. Stellar completeness (left) and purity (right) for an example model (m5=24.5 and seeing FWHM of 0 7). At bright magnitudes, the completeness rapidly
transitions from 0% to 100% as one moves vertically across the stellar locus at CSDSS=0, and the loss of purity (alternatively, increasing contamination) does not
begin until very high CSDSS values. At faint magnitudes, the stellar locus is more diffuse and the galaxies begin to dominate in number at small sizes, causing a
reduction in stellar purity for separator values close to the stellar locus. Our fiducial separator metric is shown by the dashed black–white line, which traces the point at
each magnitude where the completeness is equal to the purity. Areas of very low stellar density are omitted from the colored shading.

Figure 12. The blue points indicate measured star/galaxy performance for
several Stripe 82 runs (measured at a fiducial point where completeness is equal
to purity at 80%) compared to the 5σ limiting depth of each run. The orange
dashed–dotted line shows the model prediction for S/G performance over this
range of depths (assuming Gaussian PSFs), while the dashed green line
accounts for the overestimation of S/G performance due to the imperfect
ground-based “truth” catalog. The black line shows where S/G performance
equals 5σ depth, which is unrealistic in practice but shown as a visual aid.

Figure 13. S/G separation limit, defined as completeness equal to purity
reaches 80%, as a function of survey seeing and 5σ limiting depth. The bottom
left arrow indicates the vector of changing observational seeing (i.e., the
difference between the head and tail represents the m5 improvement resulting
from a change in seeing alone).
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function must then be normalized such that the integral
over the classifier value c, at a given magnitude, is unity.
This is p c m, S G ,...( ∣ [ ] ). Note that this function encodes
information about how the measurement of c responds to
intrinsic object sizes and shapes in the presence of
measurement noise, along with the distribution of object
shapes and sizes in the sample. Because of this
complexity, it is more effective to fit p c m ,...( ∣ )
empirically than to develop a forward model for this
function. Additional parameters could be included here to
handle effects such as, for example, PSF chromaticity
(Carlsten et al. 2018).

3. Combine multiple measurements of p c S ,...( ∣ ). For objects
that are measured multiple times, either in different
images or different filters, the appropriate way to combine
these measurements is by computing p c S ,...( ∣ ) for each
of the different measurements individually and multiply
these factors together, that is,

 q=
=

L p c m S, , S N, , 53S
i

N

i
1

psf( ∣ ) ( )/

and analogously for LG. This cannot be done with the
classifier value c directly, which is why step 2 in our
outline is critical. While it is important that all individual
probabilities are properly normalized (the integral over c
must be unity), the combined data probability need not be
a proper PDF since we will only use it in the ratio of
LS/LG, where the normalization cancels.

4. Use Bayes’ theorem to obtain p G c ,...( ∣ ) and p S c ,...( ∣ ).
Because we require that + =p S P G... ... 1( ∣ ) ( ∣ ) , we can
use Bayes’ theorem to obtain

q

= +
-

p G c m

L p S m

L p G m

, , , S N

1 . 54

i

S

G

psf
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⎤
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( ∣ )
( ∣ )
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This equation combines all of the measurements of an
object with a prior on the ratio of stars to galaxies. This
choice of prior is extremely important, as the ratio of stars
to galaxies can vary by more than an order of magnitude
across the sky. While one could have empirically used the
fitting of the training sample to estimate p(S) or p(G)

directly, it would have then carried an assumption that the
relative number density of stars and galaxies is the same
in the training sample as in the target sample of interest.
Computing p c S G( ∣[ ]) first decouples these two samples,
enabling a training sample at high Galactic latitude, for
example, to be used for calibrating S/G separation of a
survey at a wide range of stellar densities (though the
effects of crowding will at some point alter the properties
of the classifier measurement).

The resulting probabilities p G ...( ∣ ) and p S ...( ∣ ) can be
directly used in analysis, or as an input to a judiciously chosen
classification procedure. For example, if the use case needs a
very complete sample of stars, then all objects with

>p S ... 0.5( ∣ ) could be classified as stars, but if a very clean
sample of stars is required, then >p S ... 0.99( ∣ ) might be a
more appropriate condition. As before, there is no universal
optimum and the choice of a position on ROC curve depends
on the chosen completeness versus purity tradeoff. Alterna-
tively, if the desired scientific quantity is the number of stars or
galaxies in a region of sky or other parameter space, simply
summing the p(S) or p(G) over all objects in the target region
produces an estimate of the number in either class.
As an illustration of probabilistic combination of multiple

measurements using Equation (54), we consider a simple case
of just two measurements (note that they correspond to
likelihoods),

qºp p c m G, , S N, , 55G
i

i psf( ∣ ) ( )

with i=1, 2 and = -p p1S
i

G
i . These two measurements could

be based on two images in the same bandpass, two images in
different bandpasses, or perhaps correspond to one morpholo-
gical and one color-based measurement. It follows from
Equation (54) that the final probability that the source under
consideration is resolved is

=
+

- -
p G

1

1
. 56

p S m

p G m

p p

p p

1 1G G

G G
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Note that p(G)=0 when at least one of pG
1 and pG

2 is zero, and

p(G)=1 when at least one of pG
1 and pG

2 is unity, as intuitively
expected. For a given value of the prior p S m p G m( ∣ ) ( ∣ ), p(G)
is a two-dimensional function of pG

1 and pG
2, illustrated in

Figure 16. The figure shows how high confidence measure-
ments (>0.9) can outweigh ambiguous measurements, leading
to high confidence of the resulting classification.
Further insight can be obtained by taking the =p pG G

1 2 slice
through the top panel of Figure 16. With abbreviations

ºp p S m p G mSG ( ∣ ) ( ∣ ) and º =x p pG G
1 2,

=
+ -

p G
x

x p x1
, 57

2

2
SG

2
( )

( )
( )

which is illustrated in the lower panel of Figure 16. As evident,
p(G) is a monotonic function of x, with a value of x that
corresponds to p(G)=0.5 strongly dependent on the prior pSG.
Consider two uninformative measurements, x=0.5. When
pSG=1, the final probability remains uninformative, p
(G)=0.5. However, when pSG=10, for example, this prior
that strongly favors S results in p(G)=0.09 (and symme-
trically, p(G)=0.91 for pSG=0.1). On the other hand, when

Figure 14. Same as Figure 13, but S/G limiting magnitudes have had the 5σ
depth subtracted. This figure thus shows how the S/G limit diverges from the
photometric depth at faint magnitudes.
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measurements strongly favor G (e.g., x=0.9), then p
(G)=0.99 for pSG=1 and p(G)=0.89, even when
pSG=10 (and p(G)=0.999 for pSG=0.1). Overall, ambig-
uous measurements lean toward the prior, while high
confidence measurements are required when the underlying
prior strongly disfavors a particular classification. As always,
an evaluation of the ROC curve is still required to deliver the
desired completeness and contamination properties for a given
scientific use case.

6. Discussion and Conclusion

Our work has also shown that many of the commonly used
measurement techniques for S/G separation are all closely
related to each other and also related to the theoretically
optimal technique described by Sebok (1979). The resulting
performance of these classifiers is thus very similar, with the
primary differences resulting from their treatment of noise and
the evolution of their numerical values with S/N or depth.
These similarities suggest that the measurements on the pixels
themselves are unlikely to see dramatic improvement from new
algorithms. There are, of course, simplifying assumptions in
our analysis that may be addressed by practical implementa-
tions of these techniques, and gains in S/G performance to be
had from such methods, but the basic comparison of a
broadened profile with a PSF profile appears firmly planted.

Our modeling of the theoretical performance of an idealized
S/G classifier emphasizes the importance of the image S/N on
the resulting completeness and contamination. This is often
under-appreciated, and angular resolution is often assumed to
be the key factor in S/G performance. The distinction between
these two mechanisms is subtle but significant. Low S/N
objects have poorly constrained size measurements, making it
difficult to distinguish PSF-shaped objects from broadened
ones. Deeper observations can increase the S/N of objects,
which enables more precise shape measurement and thus better
S/G separation. Such deeper observations can come from
longer exposure times, better seeing, or by observing on a
larger-aperture telescope.

Improved seeing also increases the observed size difference
between point sources and galaxies of a given size, and hence
enables less precise (lower S/N) size measurements to
successfully distinguish stars from galaxies. This effect is
obviously well-known, but we emphasize in this work that a
substantial portion of its apparent effectiveness is due to the
improved S/N in better seeing conditions.
To fully take advantage of the information in high S/N

images, however, the image PSF must be precisely character-
ized. It is beyond the scope of this work to quantify the effect
of errors in the PSF model, but it is clear that systematic errors
in S/G separation can be introduced by the use of a poor
quality PSF model. Extra caution must be used when trying to
classify small objects (relative to the PSF size) using high S/N
data, since spatial or chromatic PSF variations or detector
effects may be relatively more significant, rather than obscured
in the noise.
Surveys on 8 m class telescopes, such as the Hyper Suprime-

cam Survey and LSST, will place strong demands on S/G
separation, relying on S/N to overcome the increasing numbers
of galaxies at faint magnitudes. Extracting the most stellar and
Galactic science from these surveys will require careful
attention at all stages of survey design, image processing,
and statistical treatment of the resulting catalogs.
Additionally, the challenge of deep S/G separation on 8 m

class surveys will increase the importance of combining all
available information when classifying objects, across images,
passbands, and including non-morphological information such
as colors or proper motion measurements. We have outlined a
blueprint of a procedure for this. Converting each individual
type of measurement to a probabilistic form also enables the
user to apply appropriate priors, such as models of the star and
galaxy density distributions or measurements from other
surveys. Placing S/G separation on a rigorously probabilistic
basis will maximize the scientific return of these surveys.

The authors thank Michael Wood-Vasey, Sophie Reed, and
the anonymous referee for their helpful comments which
improved the work, and Peter Yoachim for work on the galaxy
count and size model.

Figure 15. Left: predicted S/G limiting depth for three example seeing values. These correspond to horizontal slices of Figure 13 and have an average slope of 0.27
mag S/G per mag m5. Right: predicted S/G depth for example m5 depths, corresponding to vertical slices of Figure 13. The average slope is −1.0 mag S/G per
arcsecond of seeing.
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Appendix
Fisher Information Calculation

In this appendix, we derive the Fisher information for a set of
pixels fn that are drawn from a Gaussian distribution, in which
the expected mean values are

q= +f C g B, 58n igal ( ) ( )

where gi(θ) is the galaxy model with a vector of shape
parameters θ, B is a constant background level across all pixels,
and Cgal is the total flux of the object.

The Fisher information is defined as
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where fn is the measured value of pixel n. Our likelihood
function L( f1, ..., fn; θ) was defined earlier in Equation (3) as

qp D M C, ,( ∣ ). Inserting this likelihood function and dropping
terms inside the partial derivative with no dependence on θ

yields
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where Fi(θ) denotes the expected value for pixel i of the model
being fit to the observations (i.e., the noise-free version of
Equation (2)).
Evaluating the derivative,
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We then assume that the measurement residuals are
uncorrelated, that is,
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for all (i, j) where ¹i j. This enables us to obtain
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Pulling the summation out of the expectation value and using
the fact that
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This is directly analogous to the solution in the case of
Poisson noise (from Mendez et al. 2013), which is
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where λi is the expected value in pixel i.
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