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ABSTRACT

We describe the construction of a highly reliable sample of ∼7000 optically faint periodic variable stars with
light curves obtained by the asteroid survey LINEAR across 10,000 deg2 of the northern sky. The majority of these
variables have not been cataloged yet. The sample flux limit is several magnitudes fainter than most other wide-angle
surveys; the photometric errors range from ∼0.03 mag at r = 15 to ∼0.20 mag at r = 18. Light curves include on
average 250 data points, collected over about a decade. Using Sloan Digital Sky Survey (SDSS) based photometric
recalibration of the LINEAR data for about 25 million objects, we selected ∼200,000 most probable candidate
variables with r < 17 and visually confirmed and classified ∼7000 periodic variables using phased light curves.
The reliability and uniformity of visual classification across eight human classifiers was calibrated and tested using
a catalog of variable stars from the SDSS Stripe 82 region and verified using an unsupervised machine learning
approach. The resulting sample of periodic LINEAR variables is dominated by 3900 RR Lyrae stars and 2700
eclipsing binary stars of all subtypes and includes small fractions of relatively rare populations such as asymptotic
giant branch stars and SX Phoenicis stars. We discuss the distribution of these mostly uncataloged variables in
various diagrams constructed with optical-to-infrared SDSS, Two Micron All Sky Survey, and Wide-field Infrared
Survey Explorer photometry, and with LINEAR light-curve features. We find that the combination of light-curve
features and colors enables classification schemes much more powerful than when colors or light curves are each
used separately. An interesting side result is a robust and precise quantitative description of a strong correlation
between the light-curve period and color/spectral type for close and contact eclipsing binary stars (β Lyrae and
W UMa): as the color-based spectral type varies from K4 to F5, the median period increases from 5.9 hr to 8.8
hr. These large samples of robustly classified variable stars will enable detailed statistical studies of the Galactic
structure and physics of binary and other stars and we make these samples publicly available.

Key words: binaries: eclipsing – blue stragglers – catalogs – Galaxy: halo – stars: statistics – stars:
variables: general
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1. INTRODUCTION

Variability is an important phenomenon in astrophysical
studies of structure and evolution, in stellar, Galactic, and
extragalactic realms. Its importance will only increase with
the advent of massive time domain surveys such as Gaia
(Eyer et al. 2012) and LSST (Ivezić et al. 2008b), where
the expected number of identified variable stars will reach
hundreds of millions—roughly the same as the number of all
the stars detected by the Sloan Digital Sky Survey (SDSS; York
et al. 2000). Such a large number of light curves can be fully
analyzed only using automated machine learning methods (e.g.,
Debosscher et al. 2007; Dubath et al. 2011; Richards et al. 2011).
Most such methods require reliable training samples; in addition
to the astrophysical motivation for improved understanding of

the optical variability of faint sources, a goal of the analysis
presented here is to construct a large training sample of periodic
variable stars that probes both a large sky area and a faint
magnitude range.

This paper is the third in a series based on light-curve
data collected by the LINEAR (Lincoln Near-Earth Asteroid
Research) asteroid survey over a period roughly from 1998 to
2009. In the first paper (hereafter Paper I; Sesar et al. 2011), we
described the LINEAR survey and photometric recalibration
based on SDSS stars acting as a dense grid of standard stars.
In the overlapping ∼10,000 deg2 of sky between LINEAR and
SDSS, photometric errors range from ∼0.03 mag for sources not
limited by photon statistics to ∼0.20 mag at r = 18 (here, r is the
SDSS r-band magnitude). LINEAR data provide time domain
information for the brightest 4 mag of the SDSS survey, with
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250 unfiltered photometric observations per object on average
(rising to ∼500 along the ecliptic). The public access to the
recalibrated LINEAR data, including over 5 billion photometric
measurements for about 25 million objects (about three quarters
are stars; ∼5 million objects have r < 17 and photometric errors
below about 0.1 mag) is provided through the SkyDOT Web
site (https://astroweb.lanl.gov/lineardb/). Positional matches to
SDSS and Two Micron All Sky Survey (2MASS; Skrutskie et al.
2006) catalog entries are also available for the entire sample. In
this work, we also provide positional matches to the Wide-field
Infrared Survey Explorer (WISE) catalog entries (Wright et al.
2012) for confirmed periodic variables.

In Paper I, we compared the LINEAR dataset with other
prominent contemporary wide-area variability surveys com-
parable in terms of depth and cadence. LINEAR extends the
deepest similar wide-area variability survey, the Northern Sky
Variability Survey (Woźniak et al. 2004), by 3 mag. This im-
provement in depth is significant; for example, it can be used
to extend the distance limit for Galactic structure studies based
on RR Lyrae stars by a factor of four (to about ∼30 kpc; see
the second paper in this series for details, hereafter Paper II;
Sesar et al. 2013). Thanks to the improved faint limit, the sam-
ple includes over a thousand quasars (for r < 17; for a detailed
analysis see Ruan et al. 2012). The large sky area, with a re-
sulting increase in sample size, enables robust statistical studies
of samples such as eclipsing binary stars and searches for rare
objects (e.g., field SX Phoenicis (SX Phe) stars and asymptotic
giant branch (AGB) stars). In addition to these specific pro-
grams, the depth improvement of 3 mag will help quantify the
variation of the composition of the variable source population
with depth. For example, Eyer & Blake (2005) determined that
83% of variable objects with V < 14 are red giants, while in
contrast Sesar et al. (2007) found that two thirds of variable
objects with 14 < V < 20 are RR Lyrae and quasars.

In order to make scientific use of the LINEAR dataset, the
completeness and purity of samples of selected variable ob-
jects need to be understood and quantified. There are a number
of automated methods proposed in the literature for selecting
variable objects and classifying their light curves (e.g., Eyer
& Blake 2005; Debosscher et al. 2007; Dubath et al. 2011;
Richards et al. 2011, and references therein). Measuring the
performance of these methods in the LINEAR dataset requires
a reliable training sample and a full understanding of the pho-
tometric error distribution. It would be difficult to quantify the
performance of these methods in the LINEAR dataset because
there are no reliable training samples and the photometric error
distribution is not yet fully understood. The LINEAR survey
was not designed as a photometric survey and, more impor-
tantly, it accepted data obtained in non-photometric conditions.
Although the LINEAR photometric error distribution obtained
in Paper I is close to a Gaussian, various tests show that of the
order of 1% of measurements can have anomalous errors (de-
fined here as errors at least three times larger than the reported
errors) that are hard to recognize using the available metadata
(such as photometric zeropoint information and the photometric
scatter for calibration stars). This problem could be explained
by the acquisition of data in non-photometric conditions (e.g.,
thin clouds or haze). A part of the problem may also be the fact
that a large fraction of observations were obtained along the
ecliptic where contamination by blended main belt asteroids is
non-negligible.

Despite the fraction of measurements with anomalous errors
being as small as 1%, the resulting sample contamination can

still be substantial. According to Sesar et al. (2007), about 2%
of objects with 14 < V < 20 are variable at the 0.05 mag level
(root-mean-square scatter, rms). Given that a practical cutoff in
rms is about 0.1 mag for the LINEAR dataset and excluding
quasars that are not numerous at the magnitudes probed by
LINEAR (fewer than 0.1% of objects in the LINEAR sample
with r < 18 are quasars), robustly detectable variability is
expected for much less than 1% of the sample. Hence, even
if only 1% of the LINEAR sample is spuriously selected as
variable star candidates, the resulting false positives would
dominate the sample.

The LINEAR observing strategy produces repeat photometric
data for stars on several timescales ranging from 15 to 20 minute
intervals between images within a frameset to a few days
between repeat visits during one lunation to the month-long
timescale between lunar months to yearly timescales. More
details on the sampling patterns can be found in Appendix A of
Paper I.

In order to better understand the behavior of photometric
errors in the LINEAR sample and to ultimately enable the de-
ployment of automated methods for selecting variable objects
and classifying their light curves, we have undertaken an ex-
tensive program of visual classification of about 200,000 light
curves by eight human classifiers. Further details about the vi-
sual classification and the construction of the resulting sample of
about 7000 robust periodic variables are described in Section 2.
The distribution of periodic variables, dominated by roughly
equal fractions of RR Lyrae stars and eclipsing binary stars, in
various color–color diagrams and other diagrams, is discussed
in Section 3. We compare our results with existing variable star
catalogs in Section 4 and with supervised and unsupervised ma-
chine learning classification methods in Section 5. Our main
results are discussed and summarized in Section 6.

2. VISUAL CLASSIFICATION OF LINEAR
LIGHT CURVES

The main goal of our analysis is the selection of a large
robust sample of periodic variable stars with a high purity
(i.e., low contamination) within adopted flux, amplitude, and
period limits. To improve the sample robustness and light-
curve classification, we undertook three successive selection
and classification steps. After the initial sample selection, period
estimation, and construction of the phased light curves, eight
human classifiers extracted about 7000 likely periodic variables
from a starting set of about 200,000 candidate variables and also
obtained initial light-curve classifications. In the following two
steps, a single expert refined the selection and classification of
the smaller sample of 7000 likely periodic variables, first by
repeating the visual classification and then by further refining
the candidate sample by adding into the classification procedure
the parameters measured from the light curves and other
information such as multicolor photometry. In this section, we
first describe the initial sample selection and period estimation
and then we discuss the visual classification procedures in detail.
A preliminary analysis of the resulting sample of robust periodic
variables is presented in the next section.

2.1. Sample Selection

We start by selecting candidate variables from the public
LINEAR database12 using the following criteria:

12 Available at https://astroweb.lanl.gov/lineardb/
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1. Brightness limit. 14.5 < 〈mLINEAR〉 < 17, where
〈mLINEAR〉 is the median value of the white-light LINEAR
magnitude.13

2. Likely variability. χ2
dof > 3, where the χ2 per degree of

freedom is computed using the unweighted mean magni-
tude and the photometric errors reported in the database.

3. Variability amplitude. σ > 0.1 mag, where σ is the rms
scatter (standard deviation) of the recalibrated LINEAR
magnitudes.

The majority of about 200,000 selected objects are found
in the region bounded by 125◦ < R.A. < 268◦ and −13◦ <
decl. < 69◦ (corresponding to the North Galactic Cap scanned
by SDSS). An additional ∼8000 objects are found in the SDSS
Stripe 82 region (−50◦ < R.A. < 60◦ and |decl.| < 1.◦266).
The selected objects contain both true variable objects and
spurious candidates. We limit our classification to objects
exhibiting mono-periodic variability (light curves m(t) that
satisfy m(t + P ) = m(t), where P is the period and t is positive;
assuming no noise) and use phased light curves for visual
inspection. Phased light curves are constructed by plotting m(t)
as function of phase:

φ = t

P
− int

(
t

P

)
, (1)

where the function int(x) returns the integer part of x. The likely
periods were determined as described next.

2.2. Period Finding Methods

For each selected object, the three most likely periods were
found using an implementation of the Supersmoother algorithm
(Friedman 1984; Reimann 1994). This non-parametric method
smooths the light curve using a variable smoothing length and
uses a cross-validation method to pick a best-fit period with
the smallest phased light-curve dispersion. The Supersmoother
algorithm was extensively used by the MACHO survey and
should be robust for a large variety of variable stars because
it makes no explicit assumptions about the shape of the light
curve.

During the classification, it soon became apparent that the
Supersmoother algorithm often had problems finding the cor-
rect period; for eclipsing binaries in particular, a large fraction
of best-fit periods were twice as short as the true period (we
will return to this discussion in Section 2.3.7). For this reason,
we also included two additional algorithms for estimating peri-
ods: the Lomb–Scargle (LS) and the generalized Lomb–Scargle
(GLS) parametric methods (Lomb 1976; Scargle 1982;
Zechmeister & Kürster 2009). We used the code implemented
in Gaia’s Coordination Unit 7 pipeline (Eyer et al. 2013).

The LS method essentially fits a single sine wave to the light
curve and is capable of using heteroscedastic errors. It assumes
that the true light-curve mean is equal to the mean of the sampled
data points. In practice, the data often do not sample all the
phases equally; the dataset may be small, or it may not extend
over the whole duration of a cycle. The resulting error in the
estimated light-curve mean can therefore cause problems such as
aliasing. A simple remedy implemented in the GLS algorithm
is to add a constant offset term to the single sinusoid model
(Zechmeister & Kürster 2009).

13 The faint magnitude limit adopted in Paper II is 0.5 mag fainter than that
adopted here because the ab type RR Lyrae discussed in Paper II are easier to
recognize than other types of variable objects discussed here.

We note that when the light-curve shape significantly differs
from a single sinusoid, the LS and GLS methods may easily fail.
Possible remedies in such cases are to fit pre-defined light-curve
templates (e.g., Sesar et al. 2010) or to use multiple harmonics
in the Fourier expansion, which we have not considered here
(e.g., Figures 4 and 5).

2.3. Visual Classification Methodology

Visual classification was performed on a per-object basis.
There were three classification/validation runs; the first run
pruned the list of candidates by more than a factor of 20 and
the subsequent two runs further improved the sample purity and
light-curve classification precision. In the first run, 200,000 vari-
able star candidates were divided roughly equally among eight
human classifiers, using right ascension boundaries, and each
classifier processed approximately 30,000 light curves. Over-
laps of 2500 light curves between the samples of the “adjacent”
classifiers were used to verify classification consistency (which
was assessed as described in Sections 2.3.2 and 2.3.4).

2.3.1. Initial Visual Classification

The initial visual classification was performed using the user
interface shown in Figure 1. The automated classification tool
displayed three phased light curves, folded with the periods
found by the Supersmoother period finding algorithm, as well
as five templates of folded (phased) light curves spanning the
predicted classes of variable objects. Classifiers answered three
questions with fixed possible answers.

The first question was whether the displayed phased light
curves have a “reasonably small” dispersion around some imagi-
nary smooth shape, following the phase dispersion minimization
idea of Stellingwerf (1978). There were four possible answers to
this question (coded by numerical values in parentheses): “defi-
nitely no” (0), “probably no, but not sure” (1), “probably yes, but
not sure” (2), and “definitely yes” (3). Unless the answer to the
first question is “definitely no,” classifier proceeds to the second
question related to the light-curve shape. Possible answers are:
“does not look like any template” (0), “RR Lyr ab” (1), “RR
Lyr c” (2), “single minimum on top of a flat light curve” (3),
“two minima on top of a flat light curve with some flat part”
(4), and “two minima without the flat light-curve part” (5). The
third question asks the user to choose which of the three folded
light curves of the given object shows the smallest dispersion
(the intention was to determine which of the three periods is
the best). In addition, there was an option to add comments if
necessary (e.g., about period aliasing, or any problems with the
data) or to go back and repeat the classification for the object if
an error was made. By design, only the light-curve shape was
used in this first classification stage.

After a brief training period, it takes about 5 s on average to
answer all three questions, for a throughput of ∼700 objects hr−1

(about a week’s worth of full-time work per classifier or about
two full-time-equivalent person months for the whole effort,
assuming an unrealistic efficiency of 100%).

2.3.2. Tests of the Initial Classification Uniformity and Repeatability

In order to assess the uniformity and repeatability of the visual
classification, a subsample of 8044 light curves was classified
by all eight classifiers. These objects were selected from the
SDSS Stripe 82 region so that a comparison with an SDSS-
based variable object catalog could also be performed (described
further below).
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Figure 1. User interface for the classification tool. The three bottom right panels show phased LINEAR light curves of the given object for the three most probable
periods calculated by the Supersmoother algorithm. The five top right panels represent light-curve templates used in the classification.

(A color version of this figure is available in the online journal.)

For each light curve, we averaged the eight answers to
question 1 (ranging from 0 for “definitely not variable” to 3
for “definitely variable”) to obtain its A1 “grade.” We also
computed its standard deviation among the eight classifiers, σA1,
to quantify the dispersion in the classification grades. Based on
the morphology of the A1 distribution, we divided the sample
into four subsamples using A1, as summarized in Table 1. The
317 light curves with A1 > 1.8 have the smallest σA1 = 0.15;
that is, most classifiers agree that these 3.9% of objects are
“definitely variable.” The classification robustness of other light
curves is lower, as seen from the increased dispersion among
the classifiers.

After sorting light curves by A1, two coauthors re-inspected
all 438 light curves with A1 > 1.1 (classes 1–3), as well as
1000 light curves from class 0 with the highest A1 values. No
spurious classifications were found in class 3. Objects in class
2 seem definitely variable, but many appear to have incorrect
periods. Class 1 is similar to class 2, except for a larger fraction of
unconvincing periodic cases. Therefore, there are between 317
and 438 definite periodic variables in this sample, depending on
how conservative a selection cut is adopted, implying an upper

Table 1
The Classification Statistics for the SDSS Stripe 82 Subsample

Class A1min A1max σA1 N 〈χ2
dof〉 〈Rχ2

dof〉
0 0.0 1.1 0.38 7606 9.1 1.9
1 1.1 1.2 0.60 75 35.4 5.9
2 1.2 1.8 0.73 46 24.8 4.7
3 1.8 3.0 0.15 317 28.1 13.3

Notes. Class is defined by the A1 range, the mean classification grade among
eight classifiers, specified in the second and third columns. The standard
deviation among the eight classifiers is listed in the fourth column and the
fifth column lists the number of light curves in each class. The sixth column
lists the median χ2 per degree of freedom and the last column lists the median
robust χ2 per degree of freedom (5% of the most outlying points are excluded
from the computation).

limit for the sample contamination of 28%. Our main conclusion
is that human classifiers are mutually consistent when their
answer to the first classification question is 2 or 3, that is, when
they are highly confident about detected variability.

4



The Astronomical Journal, 146:101 (30pp), 2013 October Palaversa et al.

2.3.3. Robust χ 2 Selection

The LINEAR light-curve database contains two values of χ2:
the standard value and the so-called robust χ2, Rχ2, determined
by excluding both the brightest and faintest 10% of the points
from the computation (note that despite its name, the measured
χ2 does not follow the statistical χ2 distribution expected for
Gaussian photometric errors). The robust χ2 might be efficient
at minimizing the impact of photometric outliers, but at the
same time it may decrease the sample completeness for light
curves where variability is not always present (e.g., bursts and
Algol-like light curves).

We have investigated whether Rχ2 can be used to signifi-
cantly prune the initial sample without a large decrease in the
final sample completeness (that is, whether Rχ2-based selection
could be used instead of visual pruning of the candidate sample).
If an Rχ2 > 3 selection is adopted (instead of χ2 > 3), the size
of the initial sample decreases from ∼200,000 to ∼80,000. Of
all the light curves with A1 > 1.2 (classes 2 and 3 above; see
Table 1), 86% have Rχ2 > 3. Therefore, the initial sample could
be made smaller by a factor of 2.5, while losing 10%–20% of
true variables. This tradeoff reflects both the properties of faint
variable stars and the behavior of the LINEAR photometry.

About 14% of light curves with A1 > 1.2 (robust variables,
as suggested by visual classification) have Rχ2 < 3 (no strong
evidence for variability). We re-inspected these puzzling cases
and found that they all were indeed real variables. In other words,
visual classification is correct but Rχ2 < 3 is too conservative a
cut—these objects mostly have small amplitudes, short-duration
peaks, or are faint (and thus their photometric errors are large).
Therefore, it should be possible to extract additional variable
stars from the LINEAR database because our initial sample of
200,000 candidates had to satisfy χ2 > 3.

We have also re-inspected a random sample of light curves
with A1 < 1.2 and Rχ2 > 3, that is, light curves that show
significant variability according to Rχ2 but were not visually
classified as periodic variables. About a half of these light curves
show significant variability that appears aperiodic. A subset of a
few hundred light curves with periods exceeding 1000 days and
Rχ2 > 10 seem consistent with being semi-regular variable
AGB stars. Therefore, their rejection from the periodic light-
curve sample during visual classification is justified.

In summary, the Rχ2 parameter cannot be used to replace
the visual classification step with automated selection without a
significant drop in the sample completeness.

2.3.4. Comparison with the Variable Star Sample
from the SDSS Stripe 82

SDSS has obtained multiple observations (about 50 on
average) in the 300 deg2 large, so-called Stripe 82 region.
These data were used to select 67,507 candidate variable point
sources14 (for details, see Ivezić et al. 2007a; Sesar et al.
2007, and references therein). There are many more candidate
variables per unit sky area in the SDSS Stripe 82 catalog than
in the LINEAR sample because the former is much deeper
(g < 20.5 versus r < 17.5) and has a more inclusive cutoff for
variability rms (0.05 versus 0.1 mag). We have used this SDSS
catalog to assess the reliability and completeness of candidate
variables visually selected from the LINEAR database.

Out of the 8044 LINEAR objects found in the Stripe 82 re-
gion, 543 have positional matches within 2 arcsec with candidate

14 Light curves are publicly available from
http://www.astro.washington.edu/users/ivezic/sdss/catalogs/S82variables.html

0 0.2 0.4 0.6 0.8 1
phase

14.75

15.00

15.25

15.50

15.75

m
a
g

c
o
l
o
r

ID 24503711

P = 1.6125 d

LINEAR

r

u-g

g-r

r-i

i-z

< σLIN >

< σr >

1.25

1.00

0.75

0.50

0.25

0

Figure 2. Example of LINEAR/SDSS synergy. The scale on the left corresponds
to unfiltered LINEAR magnitudes and the scale on the right corresponds to
SDSS colors. The top and bottom bars (black and red in the online version)
show the average LINEAR and SDSS errors, respectively. LINEAR provides a
better cadence for studying variable objects, while SDSS provides multi-band
photometry that encodes valuable additional information about the variable
object.

(A color version of this figure is available in the online journal.)

SDSS variables that show periodic behavior. Of those, 301 have
A1 > 1.2, that is, 83% of 363 robust LINEAR variables are con-
firmed by SDSS data. Therefore, there are 62 robust LINEAR
variables that are not in the SDSS variable sample, representing
an 11% addition to the SDSS sample. These 62 LINEAR vari-
ables are dominated by detached eclipsing binaries with most
SDSS observations falling along the flat part of the light curve.
An example is shown in Figure 2. Therefore, the implied pu-
rity of A1 > 1.2 LINEAR variables must be higher than 83%
and is consistent with 100% (that is, we did not find a sin-
gle questionable case among these 62 variables). Figure 2 also
demonstrates synergy between the SDSS and LINEAR datasets:
while LINEAR provides much better time-resolved photometry
for studying variable objects, SDSS provides very informative
five-band photometry.

About 45% of SDSS variables that are sufficiently bright to
be in the LINEAR sample are not selected from the LINEAR
database using the criteria listed in Section 2.1 and A1 > 1.2
based on visual classification. About one third of those variables
could be recovered by relaxing the A1 limit. The remaining
two thirds (∼30% of all SDSS variables) typically have sparse
LINEAR data and/or small variability amplitudes and thus
were justifiably rejected in the visual classification. Therefore,
relative to the SDSS subsample limited to a similar depth,
the completeness of the LINEAR sample is in the range of
55%–70%, depending on the adopted A1 cut (most of the
LINEAR incompleteness is due to the larger adopted minimum
rms variability, 0.1 mag versus 0.05 mag).
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Table 2
The Rectangular Boundaries in the Period–Amplitude–Skewness–Color Space Used for Classification

Type log(P ) log(A) Skewness g − i
(days) (mag)

ab RR Lyr 〈−0.36,−0.05〉 〈−0.55, 0.05〉 〈−1.2, 0.2〉 〈−0.42, 0.5〉
c RR Lyr 〈−0.59,−0.36〉 〈−0.55,−0.15〉 〈−0.4, 0.35〉 〈−0.20, 0.35〉
Single min >−0.6 〈−0.7, 0〉 〈0.32, 3.6〉 〈−0.2, 3〉
Algol >−0.6 〈−0.67, 0.14〉 〈1, 3.7〉 〈−1.2, 3.8〉
β Lyr and W UMa 〈−0.67,−0.4〉 〈−0.56,−0.09〉 〈−0.1, 1.6〉 〈0.1, 1.8〉
SX Phe/δ Sct 〈−1.38,−1.05〉 〈−0.63,−0.12〉 〈−1.0, 0.7〉 〈−0.5, 0.2〉

Note. The boundaries were iteratively tuned to maximize the ratio of correctly selected and classified objects (with respect
to the visual classification).

Finally, out of 301 stars that are recognized as periodic
variables by both SDSS and LINEAR, 184 have LINEAR and
SDSS periods that agree within 2%. An additional 57 objects
have periods aliased by a factor of two in either SDSS or
LINEAR (for one third of those, the SDSS periods are larger);
they include a large fraction of eclipsing binary systems with
similar primary and secondary minima depths.

2.3.5. Iterative Improvements to Visual Classification

The first classification step, which pruned the initial list
of 200,000 candidate variables by more than a factor of 20,
was performed by eight different classifiers that must have
introduced some non-uniformity in the resulting classification.
In addition, the resulting sample contamination could be as
high as 17%, as discussed in Sections 2.3.2 and 2.3.4. To
improve the sample purity and the classification uniformity,
all the objects tagged as plausibly variable in the first round
were re-examined in the second round by the first author. Only
a few percent of objects had their classification changed as a
result of this re-examination. Generally, no significant variations
among the eight subsamples were noticed, in agreement with
the conclusions from the previous sections.

When the available source attributes (period, amplitude, and
skewness of light curves, and optical and infrared colors) were
analyzed for the sample obtained in the second classification
round, it became apparent that different types of variable stars
cluster in different regions of the multi-dimensional attribute
space. Using selection boundaries based on the color, period,
amplitude, and light-curve skewness listed in Table 2 and
discussed in more detail in the next subsection (Section 2.3.6),
an additional sample of about 750 objects was selected from the
initial candidate sample of 200,000 objects. That is, about 10%
more potential variables than extracted in the first classification
round were selected for further inspection.

Visual inspection of these 750 candidates (by the first author)
in the third classification round revealed that only about 10%
represented convincing cases of periodic variability. They were
added to the initial list to produce the final sample of 7194
visually selected and classified periodic variables. Among those,
6876 light curves (96%) have been assigned a definite type,
while the remainder are classified as “Other.” The latter group
contains objects that are variable, but not periodically, and
objects for which the exact variability type could not be reliably
determined.

The six main light-curve types are listed in Table 2 and a
few supplemental ones are listed in Table 3 and discussed in
more detail in the next section. Hereafter, we refer to this entire
sample as the “visually confirmed sample of periodic LINEAR

Table 3
The Main Light-curve Classification Results

Class Type F N
(%)

1 RRAB 41 2923
2 RRC 14 990
3 SM <1 20
4 EA 5 357
5 EB/EW 33 2385
6 SXP/DSCT 2 112
7 LPV 1 77
8 Heartbeata <1 1
9 BL Her <1 6
11 ACEP <1 5
0 Other 4 318

Total 100 7194

Notes. The first column lists a numerical class name used
in the public catalog and the second column lists its more
descriptive name. The fraction of all cataloged objects in
a given class is listed in the third column. The number of
visually confirmed variable stars exceeding 98% is listed
in the fourth column. Class “SM” corresponds to flat light
curves with a single minimum and class “Other” contains
periodic variables that could not be reliably classified and
non-periodic variables. During the submission process we
received information that 59 likely d type RR Lyrae can be
found in the PLV (Poleski 2013).
a Candidate for a class of stars with tidally induced distortions
and oscillations.

variables,” or simply the “PLV” sample. The resulting catalog
is made publicly available.15

Table 3 quantitatively summarizes the results of the visual
classification. The first column “translates” our numerical codes
used during visual classification to the adopted variability types.
We hypothesize that the class “3” (“a single minimum on top of a
flat light curve”) mostly consists of EA type binaries (Algols) for
which our data did not show a discernible secondary minimum
(i.e., it was either too shallow to be detected or too similar in
depth to the primary minimum; recall Section 2.3). For that class
of objects, correct periods could be twice as long as those listed
in the catalog. The light curves classified as “5” include two
types of eclipsing binaries: EB (or β Lyrae) and EW (W Ursae
Majoris), which are grouped together because they are hard to
distinguish using only LINEAR light curves. Motivated by the
distribution in period–color and period–amplitude diagrams, we
introduced two additional classes: class “6” (containing SX Phe

15 Available from http://www.astro.washington.edu/users/ivezic/r_
datadepot.html.
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and δ Scuti candidates) and class “7” (long-period variables
defined here as variables with periods longer than 50 days and
as semi-regular variables). Further explanations regarding the
introduction of these two additional classes can be found in
Sections 3.4 and 3.5.

2.3.6. Simple Automated Classification with
the Aid of Other Attributes

The clustering of objects in different regions of the multi-
dimensional attribute space offers an opportunity to develop
automated classification methods. Here, we define selec-
tion boundaries using simple, rectangular cuts in the four-
dimensional attribute space (period, amplitude, skewness, and
g − i color). Alternative approaches based on machine learning
algorithms are discussed in Section 4. The adopted boundaries
are listed in Table 2. We limit quantitative analysis of the perfor-
mance of this classification scheme to ab and c type RR Lyrae,
EB/EW eclipsing binaries, and SX Phe/δ Scuti (δ Sct) can-
didates. We do not include classes whose sizes fail to exceed
1% of the full sample, nor Algols (EA eclipsing binaries) and
objects classified as “Other.” We do not include Algols because
their distribution does not have well-defined boundaries (not
too surprising since in the case of detached binaries we could
easily have an ensemble of paired objects with presumably few
common physical characteristics). An analogous diversity is
expected among long-period variables that include both Miras
and semi-regular variables and possibly other classes of vari-
able stars. Indeed, even the definition of Mira stars suffers from
quantitative ambiguity (“red, long-period variables with visual
amplitudes exceeding 2.5 mag”), although it has been shown
that Miras are actually fundamental mode pulsators—a physi-
cal characteristic that differentiates them from other long-period
variables (e.g., Wood & Sebo 1996; Soszyñski et al. 2009; Spano
et al. 2011).

In order to maintain analysis uniformity, we use best-fit
periods found by the classic LS method. Objects with unreliably
measured SDSS colors and LS periods close to one day and
half a day (±0.05 tolerance in log(P )) were excluded from the
analysis. The performance of this supervised classification is
statistically compared with our visual classification results in
Figure 3. We have visually re-examined all 3270 light curves
with differing visual and automated classifications.

The automated method selected 74% of PLV objects from
the four analyzed types. This result does not imply a 26%
contamination in the PLV catalog but rather an incompleteness
of the automated selection method; the majority of missing
objects had unreliable SDSS colors, were rejected by the period
cut, or had at least one of the attributes outside the allowed
interval. This selection fraction varies little among the four types
(see the bottom row in Figure 3).

The automated selection method selected an additional 835
objects that are not included in the PLV catalog (a 12% addition,
varying from 4% for c type RR Lyrae to 23% for EB/EW).
Of those 835 objects, 246 correspond to ab type RR Lyrae;
the majority are located very close to the red cutoff for g − i
color. Approximately 15% of these 246 objects have light curves
hinting at ab type RR Lyrae, but are not of sufficient quality to
enable a reliable visual confirmation. Therefore, at most about
40 ab type RR Lyrae included in the initial sample of 200,000
candidates are missing from the PLV catalog (a 1.4% effect). In
case of c type RR Lyrae, 44 objects not in the PLV catalog are
uniformly distributed throughout the selection volume. About
30% of these objects have light curves that might be classified
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Figure 3. Statistical performance comparison between the visually confirmed
and classified variable sample listed in the final PLV catalog (7194 objects) and
a simple supervised classification algorithm applied to the full sample of all
200,000 candidate variables. The selection boundaries for the latter are listed in
Table 2. The columns correspond to light-curve types used in the PLV catalog;
in addition, the column labeled “Other” corresponds to variable PLV objects that
do not belong to any of other chosen variability types and the “NotPLV” column
corresponds to objects that satisfy the selection cuts applied to the full sample
but that were not visually tagged as variable and included in the PLV catalog.
The first four rows correspond to the four analyzed subsamples of variables
defined by the applied selection cuts. The last column lists the total number
of objects selected by each automated cut. The fifth row, labeled “NotSel,”
corresponds to PLV objects not selected by automated selection cuts and the
sixth row, labeled “TotalPLV,” gives the sum of the fifth row and the number
of PLV objects of a given type correctly classified by the automated method.
The intersection regions are color-coded by the fraction of objects in each row
falling into a given region, that is, the fraction of selected objects with a type
confirmed by the PLV catalog, that are also listed in the penultimate row. The
last row, labeled “C,” lists the completeness of the automated selection method
compared to the PLV catalog for the four analyzed variability classes.

as c type RR Lyrae, although not reliably. A similar behavior
is displayed in the EB/EW case, with only about 10% of 545
objects not in the PLV catalog being potentially classifiable as
reliably periodic. Therefore, the PLV catalog is only slightly
incomplete relative to the initial sample of 200,000 candidates
(by about 1%–2% at most).

The automated classification is correct for a high fraction of
PLV objects: 97% for ab type RR Lyrae, 78% for c type RR
Lyrae, 87% for EB/EW, and 100% for SX Phe/δ Sct. In sum-
mary, this analysis provides further support that the PLV catalog
is highly complete relative to the initial sample of 200,000 can-
didate variables, has exceedingly low contamination, and has a
high rate of correct light-curve classification.

2.3.7. Comparison of Period Finding Methods

As we already indicated earlier, period finding algorithms
often had problems with choosing the correct period. For
example, for eclipsing binaries, a large fraction of best-fit
periods were twice as short as the true period. In this particular
case, such behavior is easy to understand: the primary and
secondary minima are often of similar depths and are therefore
often misidentified as the same feature in the phased light curve.
This error, however, is not seen consistently: not all of the objects
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Figure 4. Comparison of the three period finding methods, shown separately
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type RR Lyrae, c type RR Lyrae, EA eclipsing binaries (Algol), SX Phe/δ
Sct variables, EW/EB eclipsing binaries (β Lyr and W UMa), and long-period
variables (asymptotic giant branch stars)). The abscissa shows the logarithm of
the ratio of the period computed by each method and the visually confirmed true
period (note that a factor of two bias corresponds to 0.30 on a logarithmic scale).
Note that the Lomb–Scargle methods consistently underestimate the period of
EA and EW/EB light curves by a factor of two (this systematic effect has been
corrected in the public catalog).

(A color version of this figure is available in the online journal.)

with similar minima depths have periods that are too short by a
factor of two.

Given the final sample of 6876 reliably classified light curves,
we tested period finding methods for each of the six main light-
curve types separately. Our results are summarized in Figure 4.
We left the “single minima on top of a flat light curve” class out
of the analysis, as the sample is small (20 objects) and the correct
period for those objects could not be identified with certainty.
We speculate that those objects could correspond to eclipsing
binaries of EA (Algol) type with similar minima depths, but with
periods that are too short by a factor of two. Another explanation
could be that the secondary minima for these objects are too
shallow to be detected in the LINEAR data.

Our results show that the LS and GLS methods typically
outperform the Supersmoother algorithm for all variability
types. For c type RR Lyrae, long-period variables, and SX
Phe/δ Sct type light curves, Supersmoother has a much larger

fraction of overestimated periods (typically by a factor of two,
but sometimes more) than the other two methods. In addition,
when the period is approximately correct, the uncertainty is
typically larger for Supersmoother values (that is, the width of
the central peak in the histograms shown in Figure 4 is larger).

The performance of the period finding algorithms for eclips-
ing binaries is rather different: while the LS and GLS methods
produce narrower histogram peaks than Supersmoother, their
periods are consistently (at the >90% level) too short by a fac-
tor of two! After an overall correction of the periods by this
factor for eclipsing binaries, the LS and GLS methods perform
better than Supersmoother.

The reason for this consistent bias in period estimation by
the LS and GLS methods is their fundamental assumption that
the shape of the underlying light curve can be described by a
single sinusoid. A remedy is to fit a Fourier series with many
terms (but this method is more computationally expensive). As
illustrated in Figure 5, a Fourier series model with six terms
correctly recognizes the two minima in the light curve of an
eclipsing binary star. For an additional discussion, please see
Hoffman et al. (2009) and Wyrzykowski et al. (2003).

During the visual inspection, it was relatively easy, albeit
time consuming, to apply this correction factor to the periods.
In a fully automated classification scheme that has only single
band light curves and no color information, this implementation
might be more difficult since the values of period, amplitude, and
skewness are in large part similar for c type RR Lyrae and EB and
EW binaries. The addition of appropriate color information (e.g.,
g − i) easily breaks this degeneracy (see Sections 3.1 and 3.2).
Ultimately, the performance of period-finding algorithms based
on a single sinusoid can be significantly improved by including
more Fourier terms.

3. ANALYSIS OF PERIODIC LINEAR VARIABLES

The remainder of our analysis is performed using the public
version of the PLV catalog. We show in this section that the
distribution of selected periodic variables displays distinctive
features in the multi-dimensional attribute space spanned by the
light-curve parameters (period, amplitude, shape) and optical/
infrared colors. This behavior enables a robust and efficient
classification of objects into various classes of the variable pop-
ulation. These features are not seen in the full sample of 200,000
candidate variable objects and thus strongly suggest that visual
classification successfully extracted the true variables.

We first discuss the distribution of classified variables in
diagrams constructed with the three light-curve parameters and
then we investigate the correlation of light-curve parameters
with optical and infrared colors. We quantify a strong correlation
between the period and optical color for contact eclipsing
binaries, provide evidence that the sample contains a large
number of likely Population II field SX Phe stars (compared
with the number of currently known objects), and demonstrate
that the infrared colors from the WISE survey provide further
support that long-period variables are correctly classified.

3.1. Analysis of Light-curve Properties

The light-curve amplitude is estimated non-parametrically
from the cumulative magnitude distribution as the range between
the 5% and 95% points. The light-curve skewness is computed
as described in Sesar et al. (2007). Therefore, light curves
are quantitatively described using three parameters: period,
amplitude, and skewness. This choice is of course not unique.
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Figure 5. Illustration of the failure of the Lomb–Scargle method to find the correct period when the light-curve shape significantly differs from a single sinusoid.
The two top panels show the Lomb–Scargle periodogram (left) and phased light curves (right) for truncated Fourier series models with one and six terms. Symbols
with error bars represent LINEAR data for a star with ID = 14752041 (the data and the python code to produce this figure, including the period estimation, are
publicly available from the astroML site, http://astroml.github.com). Phased light curves are computed using the aliased period favored by the single-term model and
the model light curves are shown by lines using the same line styles as in the top-left panel. The correct period is favored by the six-term model but unrecognized by
the single-term model, as illustrated in the bottom left panel. The phased light curve constructed with the correct period is shown in the bottom right panel. This figure
is adapted from Ivezić et al. (2013) and can be reproduced using code available at http://www.astroML.org (VanderPlas et al. 2012).

For example, in addition to, or instead of, amplitude, other
estimators of the width of the observed magnitude distribution
could be used such as standard deviation (which is not robust to
outliers) and the inter-quartile range (which, depending on the
sampling, might not be sensitive to single minima in otherwise
flat light curves). Similarly, the light-curve shape could be
further quantified using higher moments (such as kurtosis, but
it quickly becomes very noisy), Fourier coefficients (which
help greatly in classifying eclipsing binary subtypes; Pojmański
2002, or RR Lyrae subtypes; Soszyński et al. 2011), or even
non-parametrically using principal component analysis (e.g.,
Deb & Singh 2009). In this preliminary analysis, we find that
even our simple approach based on period, amplitude, and
skewness provides an informative description of the light-curve
behavior. Nevertheless, exploring these other options would be
a worthwhile analysis to undertake.

The distribution of variables in period–amplitude–skewness
space is illustrated separately for each of the six main variability
classes in Figure 6. The period distribution of the PLV sample is
multi-modal, as further quantified in Figure 7. Even the period
alone enables a remarkable, although not perfect, classification
of periodic variables: SX Phe/δ Sct candidates clearly stand out
(P < 0.1 days) and ab type and c type RR Lyrae are fairly well
separated by P = 0.4 days. Nevertheless, eclipsing binaries
overlap with the period range of RR Lyrae stars (especially
EW/EB type eclipsing binaries and c type RR Lyrae). In
addition, the light-curve amplitude distributions are similar for c
type RR Lyrae and EB/EW eclipsing binaries. This degeneracy
can be readily lifted using the light-curve skewness (and object
color; see below). Indeed, all six classes can be readily defined
when all three light-curve parameters are considered (i.e., the
EB/EW class has a much larger skewness than c type RR
Lyrae; compare the symbol color in the top-right and bottom-

left panels in Figure 6). In other words, the visual classification
of light curves in essence reflects the distribution of these three
parameters (and also the light-curve smoothness). We analyze
the performance of automated classification methods based on
this behavior in Section 4.

It is possible to further separate ab type RR Lyrae into
Oosterhoff type I and Oosterhoff type II stars (Sesar et al. 2010),
as shown in the top-right inset in the “RRAB” panel of Figure 6
(note also the strong correlation between amplitude, skewness,
and period for ab type RR Lyrae). The average periods of the
Oosterhoff type I and type II ab RR Lyrae for the PLV sample are
〈P I

ab〉 = 0.56 days and 〈P II
ab〉 = 0.65 days. This result is in good

agreement with Oosterhoff’s conclusion that the periods of RR
Lyrae ab stars in Oosterhoff type I clusters are 0.1 days shorter
than those in Oosterhoff type II clusters (Oosterhoff 1944). For
a more detailed analysis of the Oosterhoff’s dichotomy for field
RR Lyrae stars based on this sample, see Sesar et al. (2013).

3.2. Correlations between Colors and Light-curve Properties

The addition of the color information to light-curve param-
eters significantly improves the separation of visually defined
classes and ultimately enables a better performance from the
automated classification methods. For a detailed discussion of
the distribution of stars in various color–color diagrams con-
structed with SDSS and 2MASS photometry, see Covey et al.
(2007) and references therein. The most useful SDSS–2MASS
colors are u − g, g − r (or g − i), i − K, and J − K, which
are sensitive to various combinations of effective temperature,
metallicity, and surface gravity. Therefore, the minimal useful
dimensionality (the number of measured attributes that are in-
dependent for at least some subsamples) of this dataset is five
(the three light-curve attributes and at least two color attributes).
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Figure 6. Period–amplitude diagram for visually confirmed periodic LINEAR variables. Each panel represents a given class of variable stars confirmed by visual
classification. The width of the bins is 0.03 in the color dimension and 0.02 in the log(P/day) dimension. Bins are color coded by the median value of skewness (per
bin). The gray background corresponds to all PLV sample variables. The insets in the panels show a typical light curve for the variability type in the given panel. N is
the total number of objects of a given type. The top-right inset in the “RRAB” panel shows the separation between Oosterhoff type I and type II RR Lyrae ab, where
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(A color version of this figure is available in the online journal.)

We emphasize that both SDSS and 2MASS photometry
are single-epoch measurements obtained at random light-curve
phases. Therefore, while the observed color range tracks the
intrinsic color range of a given population, the distribution of
objects within that range is affected by the color light-curve
shape (i.e., ab type RR Lyrae stars spend more time close to
minimum than to maximum light; since RR Lyrae are redder
when fainter, their instantaneous color distribution is skewed
redward compared to their mean color distribution).

Figure 8 demonstrates that the addition of just one color to the
period, here the SDSS g − i color, which is a good measure of
the effective temperature (Ivezić et al. 2008a), helps to clearly
separate c type RR Lyrae from EB/EW binaries. A more detailed
illustration of the correlations between the g − i color and light-
curve properties is shown in Figure 9. Note in particular how
EA and EB/EW objects are well separated in this diagram. The

EB/EW subsample displays a good correlation between period
and color, discussed in more detail in Section 3.3.

3.2.1. The g − r versus u − g Diagram

In addition to the three-dimensional g − i color–period–
amplitude projection of the full multi-dimensional attribute
space discussed above, the three-dimensional projection
spanned by the SDSS u − g and g − r colors and light-curve
skewness is also rich in content. The g − r versus u − g diagram
is one of the most informative SDSS color–color diagrams; it
clearly distinguishes quasars from stars, main sequence stars
from binary stars and white dwarfs, and it contains information
about effective temperature and even metallicity for blue main
sequence stars (Smolčić et al. 2004; Ivezić et al. 2007a, 2008a).

The distribution of variables in the g − r versus u − g versus
skewness space is shown separately for each of the six main
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(A color version of this figure is available in the online journal.)

variability classes in Figure 10. As known from previous work
based on SDSS data, the RR Lyrae color distribution is localized
to the region populated by spectral types A and early F (Sesar
et al. 2010 and references therein). Only about 1%–2% of light
curves classified as RR Lyrae fall outside the expected small
color regions discernible in Figure 10.

Based on the g − r versus u − g color–color diagram
and the skewness distributions, we identified approximately
25% suspected misclassifications between c type RR Lyrae
and EB/EW eclipsing binaries (from the first classification
round) and visually re-inspected their light curves. We found that
approximately 80% of those classifications were indeed likely
incorrect and their type was subsequently revised. The cross-
contamination of these two subsamples is easy to understand;
a light curve of an eclipsing binary with similar minima depths
can easily be misidentified as a nearly symmetric (sinusoidal)
c type RR Lyrae light curve. This ambiguity is particularly
problematic in the case of faint objects, or objects with sparsely
sampled light curves. We note that the color distribution of c
type RR Lyrae has a well-defined red edge—it is thus easy to
prevent the contamination of EB/EW subsample by c type RR
Lyrae but the converse is not true because EB/EW stars can
have colors as blue as RR Lyrae colors.

We have also explored a few other three-dimensional pro-
jections of the seven-dimensional attribute space (there are 35
possible independent attribute combinations) and did not find

diagrams as revealing as the g − i color versus period versus
amplitude diagram and the g − r versus u − g versus skewness
diagram. A noteworthy color is the 2MASS J − K color, which
is capable of separating main sequence stars from quasars and
late-type giants (including the long-period AGB stars); for main
sequence stars, the 2MASS J − K color and the SDSS g − i
color are highly correlated (both are by and large driven by
the effective temperature), while for those other populations the
measured J − K color is redder than the J − K color of main
sequence stars of the same g − i color (for more details, see
Covey et al. 2007).

3.3. Period–Color Correlation for Contact Eclipsing Binaries

The distribution of EB (β Lyrae) and EW (W Ursae Majoris)
eclipsing binary stars is remarkably well outlined in the period
versus g − i color diagram (see the bottom left panel in
Figure 9 and a zoomed-in version in Figure 11). Since the
sample selection is primarily driven by the light-curve shapes
and substantial selection effects in the g − i color and period in
the relevant ranges are not expected, this strong correlation is
likely of astrophysical origin. A similar result was reported for a
much smaller sample of contact binary systems by Eggen (1967;
see also Rucinski & Duerbeck 1997, and references therein). The
range of observed g − i colors corresponds to spectral types from
F5 (g − i = 0.3) to K4 (g − i = 1.4) (see Table 3 in Covey et al.
2007). Rucinski & Duerbeck (1997) used Hipparcos distance
estimates for 40 W Ursae Majoris (W UMa) stars to derive a
relationship between the absolute V-band magnitude, period,
and color. According to their results, our sample includes stars
with 1 < MV < 6.

We compute the median log(P ) in bins of g − i color for stars
with 0.2 < g − i < 1.6 and −0.4 < log(P ) < −0.67 and fit a
parabola to the resulting points:

log(P/day) = 0.05 (g − i)2 − 0.24 (g − i) − 0.37. (2)

Due to the large sample size, the random errors on the fitted
data points are sufficiently small to rule out a linear relationship.
This best-fit relation implies that the median period for EB/EW
eclipsing binaries increases from 5.9 hr to 8.8 hr as the color-
based spectral type varies from K4 to F5. An alternative form
based on the Johnson B − V color, derived using transformations
between the SDSS and Johnson systems from Ivezić et al.
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Figure 9. Distribution of visually confirmed periodic LINEAR variables (PLV) in the color–period diagram. Each bin has been color coded by the median amplitude
of objects inside it, according to the color bar above. The width of the bins is 0.03 in the color dimension and 0.02 in the log(P/day) dimension. The gray background
represents all PLV sample variables. The insets in the panels represent a typical light curve for the variability type in that given panel. N is the number of objects of
a given type. The axes in the folded light-curve diagrams correspond to phase and magnitude. The dashed lines outline the selection boundaries listed in Table 2 and
discussed in Section 2.3.6.

(A color version of this figure is available in the online journal.)

(2007b), is

log(P/day) = 0.038 (B − V )2 − 0.29 (B − V ) − 0.33, (3)

and valid over the range 0.3 < B−V < 1.1. This relation agrees
well with a similar relation obtained by Rucinski (1997) for
∼400 W UMa stars observed by the OGLE project in Baade’s
Window (note that we fit the median relation while Rucinski
obtained the short-period limit as a function of color; the two
sequences are offset by about 0.1–0.15 mag at a given period).

These findings are related to the fact that the period distri-
bution for contact binary star systems appears to have a well-
defined lower limit at 0.22 days (Rucinski 1992). More recent
data show that this limit may be a bit smaller (∼0.20 days; see
Dimitrov & Kjurkchieva 2010; Davenport et al. 2013), but the
existence of a well-defined boundary is not disputed. Indeed,

the falloff of the distribution at small periods for M dwarf sys-
tems (see Figure 6 in Becker et al. 2011) is very similar to the
falloff for EB/EW systems in our Figure 6. If we extrapolate
our best-fit to g − i = 2.0 corresponding to spectral type M0,
we obtain a period of 0.22 days, in good agreement with other
studies.

In Figure 12, we show several examples of these short-period
binaries. Several objects have periods below 0.2 days and test
the value of the aforementioned period boundary.

3.4. Candidate SX Phe Stars

The PLV sample presented here includes a class of 112 blue
stars (−0.3 < g − i < 0.2, bluer than thick disk and halo
turn-off stars and corresponding to −0.2 < B − V < 0.3
using transformations between the SDSS and Johnson systems
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Figure 10. Analogous to Figure 9, except that the PLV sample distribution is shown in the SDSS u − g vs. g − r color–color diagram and the color coding is based
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(A color version of this figure is available in the online journal.)
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Figure 11. Quadratic fit to the correlation between the period and the color of EB/EW binaries. Selected objects were visually classified as EB/EW binaries and satisfy
the following criteria: 0.1 < g − i < 1.8 and −0.67 < log(P ) < −0.4. Data were binned in 0.1 wide bins in (g − i) and 0.05 wide bins in log(P ). Objects outside
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(A color version of this figure is available in the online journal.)
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Figure 12. Examples of short-period contact binaries. Some periods are shorter than 0.2 days and test the value of the boundary mentioned in Section 3.3. Our most
likely candidate for the eclipsing binary with the shortest period is in the top left corner. Vertical error bars show the typical photometric errors for each light curve.
Note the unusual light curve of the object with LINEAR ID 5927155 (follow-up is in progress.).

(A color version of this figure is available in the online journal.)

from Ivezić et al. 2007b) with very short periods (1–2.5 hr) and
asymmetric light curves (see bottom-right panel in Figures 6
and 9). These stars can be identified as a mixture of δ Sct and
SX Phe stars (e.g., see Figure 8 in Eyer & Mowlavi 2008).
Both types of stars are usually considered variable counterparts
of blue straggler stars (main sequence stars in open or globular
clusters that appear younger than they should be given the cluster
age), with the δ Sct subsample belonging to Population I disk
stars and the SX Phe subsample belonging to Population II halo
stars (see, e.g., Jeon et al. 2004).

In a recent study based on the largest catalog of SX Phe
stars assembled to date (about 250 stars identified in globular
clusters), Cohen & Sarajedini (2012) demonstrate that this
population appears to occupy a narrow region at the bottom
of the instability strip with 1.5 < MV < 3.5 and that all of these

objects are likely radial mode pulsators. Given the apparent
magnitude limits of our sample, the implied distances span the
range 2–10 kpc, that is, many disk scale heights away, and thus
SX Phe stars probably dominate because they are Population II
(halo) objects. We note that the B − V color distribution of our
sample extends to bluer colors than the range displayed by the
Cohen & Sarajedini (2012) sample (their range is approximately
0.1 < B −V < 0.4, corresponding to 0.0 < g − i < 0.3; about
20% of our candidates have g − i < −0.1).

SDSS spectra for 34 stars from the SX Phe candidate sample
are available. A much higher fraction of those spectra is con-
sistent with the SX Phe hypothesis. All the spectra appear very
uniform and characteristic for A stars; an example is shown in
Figure 13. Using the default SDSS metallicity and radial velocity
estimates (see Figure 14), we find that the sample is dominated
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Figure 13. Default SDSS visualization of the SDSS spectrum for an SX Phe candidate (LINEAR ID = 11375941). The inset shows the observed and phased LINEAR
light curves.

(A color version of this figure is available in the online journal.)

Figure 14. Radial velocity vs. metallicity for 34 candidate SX Phe stars with
SDSS spectra (the repeated measurements for seven stars are also shown). The
histogram shows the marginal distribution of the metallicity. The two Gaussians
illustrate the expected metallicity distributions for halo stars (left) and disk stars
(right), taken from Ivezić et al. (2008a). The metallicity is below the traditional
boundary for separating halo and disk stars at [Fe/H] = −1.0 dex for 57% of
the measurements. For these stars, the radial velocity dispersion is 135 km s−1,
fully consistent with the halo hypothesis (Bond et al. 2010). Only the four stars
with [Fe/H] > −0.5 dex and small radial velocities are consistent with the disk
hypothesis.

(A color version of this figure is available in the online journal.)

by stars with [Fe/H] < −1, low metallicities characteristic of
halo stars, with a large velocity dispersion (134 km s−1) that is
also consistent with a presumed halo population (for a review of
recent observational constraints on the differences between the
metallicity and kinematic distributions of disk and halo stars;
see, e.g., Ivezić et al. 2012).

Assuming that our conclusion about the sample being dom-
inated by halo stars is correct, these 112 candidates likely rep-
resent a major addition to the total number of known SX Phe

stars (according to Cohen & Sarajedini 2012, fewer than 300
SX Phe stars are known). Our sample would also increase the
number of known field SX Phe stars by as much as a factor of
six (according to Rodrı́guez & Breger 2001, there are only 17
known field SX Phe stars). This large increase in the sample size
of field SX Phe stars is due to the fact that the LINEAR dataset
is among the first to explore sufficiently faint flux levels, over
a large sky area, with an appropriate cadence. We are currently
undertaking photometric and spectroscopic follow-up efforts to
better characterize this sample.

3.5. Candidate AGB Stars and WISE Color Distributions

The PLV sample includes 77 light curves that can be described
as “semi-regular variables” or “long-period variables,” defined
here as variables with periods longer than 50 days. These stars
are expected to be dominated by AGB stars that often display
excess infrared emission due to their dusty envelopes (see, e.g.,
Ivezić & Elitzur 1995 and references therein). The correctness
of this classification can thus be tested by inspecting these stars’
infrared colors.

The best available infrared sky survey was conducted by the
recent WISE mission (launched in 2010); its all-sky catalog in-
cludes about 560 million objects (Wright et al. 2012). WISE
mapped the sky at 3.4, 4.6, 12, and 22 μm with 5σ point source
sensitivities better than 0.08, 0.11, 1, and 6 mJy (corresponding
to Vega-based magnitudes of 16.5, 15.5, 11.2, and 7.9, respec-
tively) in unconfused regions on the ecliptic. The astrometric
precision for high signal-to-noise sources is better than 0.′′15.
WISE is photometrically calibrated to the Vega system and thus
objects with infrared excesses should have colors greater than
zero (not accounting for the measurement noise).

We have positionally matched the PLV catalog and the WISE
catalog with a matching radius of 3 arcsec and obtained 7123
WISE matches for objects listed in the PLV catalog. Our analysis
of this sample is shown in Figure 15. The distribution of
WISE colors for objects classified as “long-period variables”
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Figure 15. Symbols in the middle panel show the distribution of a subsample of
7123 variables (out of 7194) in the PLV catalog that are detected by the WISE
survey and have WISE magnitudes W1 < 16.5 and W2 < 15.5 (5σ detection
limits). Objects classified as “long-period variables” (defined as variables with
periods longer than 50 days, and semi-regular variables) are shown as open
circles (74 objects); the majority display infrared excesses compared with the
colors of dust-free stars (W1−W2 ∼ 0). Nine objects with light curves classified
as “Other” and quasar-like infrared colors, W1 −W2 > 0.7, are shown as large
triangles. The top panel shows a WISE color–color diagram for the subset of 99
objects that have W3 < 11.2 (note that the majority of objects without significant
infrared emission do not satisfy this condition; out of 74 long-period variables,
49 satisfy the W3 brightness limit, as well as nine objects with quasar-like colors
and 41 other objects). The bottom panel shows the period–color diagram for the
74 long-period variables. Examples of their light curves are shown in Figure 16.

(A color version of this figure is available in the online journal.)

is consistent with the majority of them being genuine AGB stars
(Tu & Wang 2013; Tisserand 2012). Indeed, the brightest and
most famous carbon-rich AGB star, CW Leo (IRC + 10216),
is recovered in our sample (LINEAR ID = 17154286; P =
632.511 days based on 475 LINEAR measurements; see also
Section 3.6.1). The paucity of long-period variables with W1 >
13 is a Galactic structure effect—at the high latitudes probed by
the LINEAR sample (due to the requirement of overlap with the
SDSS footprint) this magnitude cutoff corresponds to several
tens of kpc and thus reaches many disk scale heights away from
the plane (N. Hunt-Walker et al., in preparation).

The top panel in Figure 15 shows the period–color relation
for long-period variables. Although there is some correlation
between the quantities, the scatter is substantial. The observed
scatter in log(P ) at a fixed color of about 0.2 dex is in good
agreement with earlier work (e.g., see Whitelock et al. 2006 and

references therein). Examples of LINEAR light curves for long-
period variables are shown in Figure 16. We note that the scatter
in the phased light curves is much larger than the photometric
errors and reflects the fact that light curves for these stars are
not exactly reproducible between different cycles.

There are nine objects with light curves classified as “Other”
that show infrared colors consistent with quasars (W1 − W2 >
0.7; see, e.g., Yan et al. 2013). In addition, there are 14 objects
with W2 − W3 > 2.0, implying strong infrared excesses that
are likely inconsistent with AGB stars, but also with blue
W1 − W2 < 0.5 colors inconsistent with quasars (R. Nikutta
et al., in preparation). A few but not all of these results could
be chance positional coincidences with background quasars that
would mostly affect the W3 and W4 measurements (based on a
quasar surface density of several hundred per square degree and
a matching radius of 3 arcsec).

3.6. Noteworthy Objects

There are six interesting sources that deserve direct mention
by name. There is one case of a likely Type Ia supernova
(LINEAR ID = 7682813; see the bottom-left panel in Figure 17)
that increased in brightness by 0.8 mag over about 10 days
and then gradually returned to its initial brightness over about
90 days. The corresponding SDSS image clearly shows a
positionally coincident blue emission-line galaxy at a redshift
of 0.028. For the standard cosmology, the implied absolute
magnitude at maximum light is M = −19.4, which is consistent
with a supernova classification. The absolute magnitude of its
blue host galaxy is M = −18.6, in agreement with expectations.
The object with LINEAR ID = 17655724 (see the bottom-right
panel in Figure 17) steadily increased in brightness by 0.5 mag
over about 5 yr. If this trend continues, in 400 yr it would
outshine the Sun; nevertheless, this fact is unlikely because its
SDSS spectrum confirms that this object is a quasar at a redshift
of 0.531 (we note that this variability behavior is a bit unusual
when compared to typical quasar variability properties; see,
e.g., MacLeod et al. 2012). In addition, the Catalina Sky Survey
(Drake et al. 2009) data demonstrate that the brightness increase
is slowing down.

Given its light curve that shows large variations (i.e., a
decrease in brightness of ∼1 mag over ∼200 days; see the
top left panel in Figure 17) and its WISE colors, the object with
LINEAR ID = 2752114 is a good candidate for an R Coronae
Borealis star, a supergiant carbon-rich star with episodic mass
loss (Tisserand 2012; Tisserand et al. 2013). On the other hand,
an object with a similar light curve and WISE colors, LINEAR
ID = 3766947, is a confirmed BL Lac object at a redshift of
0.1325. The object LINEAR ID = 7455728 (see the top right
panel in Figure 17) is classified as an Algol (EA); it displays a
flat-bottom primary minimum and frequent faint outliers. While
these outliers could be due to the effects of a nearby star (6 arcsec
away), it is not obvious what is the origin of its very red WISE
colors (W2 − W3 = 2.58). Possibly the most curious case is an
optically resolved (see the next section) and spectroscopically
confirmed quasar at a redshift of 0.152, with quasar-like WISE
colors, but with an apparently periodic light curve (LINEAR
ID = 23417507, P ∼ 604 days, amplitude ∼0.4 mag; see
the bottom-right panel in Figure 18). A periodogram of this
object shows a strong peak, however the shape of the light curve
is not fully repeatable. A periodic quasar light curve might
have interesting astrophysical implications and searches for
such objects have been reported in the literature. In the largest
such search, MacLeod et al. (2010) found 66 candidates in a
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Figure 16. Examples of light curves for objects classified as long-period variables. Each panel lists LINEAR ID, best-fit period in days, and the WISE W1 magnitude
and W1 − W2 color (see Figure 15). The scatter in the light curves is much larger than the photometric errors and reflects the fact that the light curves for these stars
are not exactly reproducible between different cycles.

sample of ∼9000 quasars from the SDSS Stripe 82 region with
spectroscopic confirmation and SDSS light curves. MacLeod
et al. (2010) declared all the objects to be unconvincing cases of
periodicity because their best-fit periods were roughly the same
as the span of the observations—that is, only a single putative
oscillation was detected. In contrast, our object displays three
full oscillations in the LINEAR light curve and may be worthy
of a follow-up study.

3.6.1. Optically Resolved, Periodically Variable Objects

Among the 7194 objects listed in the PLV catalog, 18 are
optically resolved (sufficiently large difference between the
point spread function (PSF) and model magnitudes) in the SDSS
imaging data and an additional 116 objects have unreliable
size measurements. Their SDSS image stamps are shown in

Figure 19. As is evident, eight objects are clearly galaxies
and their variability may be at least to some extent due to
photometric measurement difficulties when using the LINEAR
images. Nevertheless, three objects (LINEAR IDs = 7682813,
8440571, and 9183803) show spectroscopic evidence for active
galactic nucleus (AGN) activity and their variability may be real
(the last object is also listed in the X-ray ROSAT catalog).

The light curves for the 10 objects that do not appear to be
well-resolved galaxies are shown in Figure 18. The object in the
middle-right panel (LINEAR ID = 22993473; the fourth object
in the third row in Figure 19) is beyond doubt a barely resolved
binary system, with a light curve classified as EW/EB. A few
sources show color gradients in their SDSS PSFs (including the
known RR Lyrae star V368 Her, shown in the top-left panel);
such gradients can be a sign of a binary nature or possibly fast
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Figure 17. LINEAR light curves for four objects with unusual light curves (top left: an R Coronae Borealis candidate; top right: an Algol-like variable; bottom left: a
supernova candidate; bottom right: a quasar with steady brightness increase; for more details see Section 3.6). Each panel lists the object’s LINEAR ID and its visual
light-curve classification from the PLV catalog. The vertical error bars show typical photometric errors for each light curve. The top right panel shows a phased light
curve. The bottom right panel also shows the Catalina Sky Survey data (small crosses).

(A color version of this figure is available in the online journal.)

changes in the PSF that led to their misclassification as resolved
objects by the SDSS image processing pipeline (Lupton et al.
2002). The objects shown in the bottom row in Figure 18 have
already been discussed: the carbon-rich AGB star CW Leo and a
quasar with a nearly periodic light curve. For the latter, we have
added data from the Catalina Sky Survey; in the overlap with
the LINEAR data, the two light curves are consistent. These
additional data provide further support for the quasi-periodic
light variations displayed by this quasar.

4. CLASSIFICATION BASED ON MACHINE
LEARNING ALGORITHMS

We have demonstrated in the preceding section that the
distribution of visually selected periodic variables displays
distinctive features in the multi-dimensional attribute space
spanned by the light-curve parameters (period, amplitude,
skewness) and optical/infrared colors. In this section, we
explore to what extent this behavior can enable robust and
efficient automated classification of objects into various classes
of the variable population. We consider two classification
methods based on machine learning algorithms.

First, we analyze the performance of an unsupervised classi-
fication algorithm that attempts to recognize existing variability
classes in the PLV catalog using only their clustering in the
multi-dimensional attribute space, but not the results of the vi-
sual light-curve classification. The motivation here is that these
clusters correspond to different physical classes of objects (dif-
ferent types of variable stars) and an automated method might

pick additional clusters. We also perform the so-called “super-
vised classification,” where a training sample is used to define se-
lection boundaries. The main goal is to quantify whether visual
classification could be improved, or perhaps entirely bypassed.

In order to avoid the impact of objects with unreliable
measurements, the starting sample of 7194 variables is cleaned
of sources with unreliable periods, bad SDSS photometry, and
sources without 2MASS detections. We consider only the five
most populous classes (ab type and c type RR Lyrae, EA and
EW/EB eclipsing binaries, and SX Phe/δ Sct candidates). The
resulting cleaned sample of 6146 variables is publicly available
from the same site as the main catalog.16

4.1. Unsupervised Classification Based
on a Gaussian Mixture Model

The strong clustering of objects in the multi-dimensional at-
tribute space, visually classified in six different types using their
light curves, suggests that an automated unsupervised classifi-
cation scheme might be at least as successful as visual classifi-
cation (and definitely easier!). To investigate this possibility, we
used a machine learning algorithm based on a Gaussian mixture
model (GMM) to describe the observed distribution of objects.
We note that the only attribute describing light-curve shape is
skewness. More sophisticated schemes, such as those based on
best-fit parameters for a multi-harmonic Fourier series fit to

16 Available from http://www.astro.washington.edu/users/ivezic/r_
datadepot.html
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Figure 18. LINEAR light curves for 10 objects that are optically resolved in the SDSS imaging data but do not appear as well-resolved galaxies. Each panel lists the
object’s LINEAR ID, its visual light-curve classification from the PLV catalog, and the best-fit period (in days). The vertical error bars show typical photometric errors
for each light curve. All panels except the bottom right panel display phased light curves. The light curve of a quasar in the bottom right panel combines LINEAR
(circles; red in the online version) and CSDR2 (crosses; blue in the online version) data and confirms its quasi-periodic behavior (note that its full light curve, and not
its phased light curve, is shown in this panel).

(A color version of this figure is available in the online journal.)

a light curve, are also possible (e.g., Debosscher et al. 2007;
Richards et al. 2011, and references therein).

The GMM describes the density of data points using a sum
of multi-variate Gaussians. Statistically significant clusters of
points are assigned a Gaussian and, in case of complex cluster
morphology, multiple Gaussians are assigned. This clustering
method does not require a training sample and thus belongs
to the class of unsupervised classification (clustering) methods.
The number of required clusters and their best-fit parameters are
typically obtained using the expectation maximization method
(Dempster et al. 1977). We used a GMM implementation from
astroML, a set of publicly available17 (VanderPlas et al. 2012)

17 See http://www.astroML.org

data mining and machine learning tools implemented in python.
Figures 20 and 21 show the GMM results for two cases.

The top panel in Figure 20 shows a 12-component GMM
using only the two most discriminative data attributes, the g − i
color and log(P ). The number of components is determined
automatically using the Bayesian Information Criterion (see
astroML documentation for details). Out of the 12 clusters, 6 are
very compact, while the rest seem to describe the background.
Three clusters correspond to ab and c type RR Lyrae stars.
Interestingly, the former are separated into two clusters. The
reason is that the g − i color is a single-epoch color from
SDSS that corresponds to a random phase. Since ab type RR
Lyrae stars spend more time close to minimum than maximum
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Figure 19. Default SDSS gri composite images of 18 resolved objects that display visually confirmed variability in the LINEAR data. The top number in each panel
is the object’s LINEAR ID. The first eight objects are clearly galaxies. The light curves for the remaining 10 objects are shown in Figure 18. The extremely red source
(the second panel in the bottom row) is the brightest carbon-rich AGB star, CW Leo (IRC + 10216).

(A color version of this figure is available in the online journal.)

light, when their colors are red compared with their colors at
maximum light, their color distribution deviates strongly from
a Gaussian. The elongated sequence populated by various types
of eclipsing binary stars is also split into two clusters because
its shape cannot be described by a single Gaussian either. The
upper-right panel shows the clusters in a different projection,
log(P ) versus light-curve amplitude. The top four clusters are
still fairly well localized in this projection due to log(P ) having
significant discriminative power.

In another instance of GMM analysis, the clustering at-
tributes included four photometric colors based on SDSS and
2MASS measurements (u − g, g − i, i − K, and J − K)
and three parameters determined from the LINEAR light-curve
data (log(P ), amplitude, and light-curve skewness). A

15-component GMM to this seven-dimensional dataset yields
the clusters shown in the bottom panels of Figure 20. The clus-
ters derived from all seven features are remarkably similar to the
clusters derived from just two features; this result shows that the
additional data add very little new information (equivalently, this
result shows that the seven attributes are strongly correlated).
The main difference compared with the two-attribute case is that
the EB/EW sequence is now described by a single component.
Figure 21 shows the locations of the six most compact clusters
in the space of the other attributes.

As is evident from a visual inspection of Figures 20 and 21,
the most discriminative attribute is the period. A few clusters
that have very similar period distributions are separated in g − i
and i − K colors, which are a measure of the star’s effective
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Figure 20. Unsupervised clustering analysis of periodic variable stars from the LINEAR dataset using the astroML code for the GMM algorithm. The top row shows
clusters derived using two attributes (g − i and log(P )) and a mixture of 12 Gaussians. The colored symbols mark the six most compact clusters. The bottom row
shows analogous diagrams for clustering based on seven attributes (colors u − g, g − i, i − K, and J − K, log(P ), light-curve amplitude, and light-curve skewness)
and a mixture of 15 Gaussians. See Figure 21 for data projections in the space of other attributes for the latter case. This figure is adapted from Ivezić et al. (2013) and
can be reproduced using code available at http://www.astroML.org (VanderPlas et al. 2012).

(A color version of this figure is available in the online journal.)

temperature; see Covey et al. (2007). In summary, although
there are many Gaussian components in the chosen mixture
models, no new compact classes were revealed by this automated
analysis.

4.2. Supervised Classification with Support Vector Machine

Given the results of visual classification, we attempt to re-
produce it in an automated fashion using supervised classifi-
cation and a machine learning method called support vector
machine (SVM; Cortes & Vapnik 1995). SVM uses linear clas-
sification boundaries, but unlike our simple method described in
Section 2.3.6, it does not need to be aligned with the coordinate
axes. The optimal classification boundaries are those that maxi-
mize the class separation or margin (the training points that are
found on the margin are called support vectors).

We used a multi-label SVM from the scikit-learn package
(Pedregosa et al. 2011), via astroML. A randomly selected third

of the sample is used for training SVM and the remaining two
thirds of the sample is used for measuring the classification
performance. Figures 22 and 23 illustrate the SVM results for
two cases,18 and Table 4 provides a quantitative summary.

As with unsupervised GMM clustering, both the two-attribute
and seven-attribute cases are considered. SVM assigns a large
fraction of the EA class (Algol-type eclipsing binaries) to the
EB/EW class (contact binaries). This result is not necessarily
a problem with the SVM method because these two classes
are hard to distinguish given LINEAR light curves. Com-
pared with the simple method discussed in Section 2.3.6, the
precision of the SVM classification relative to visual clas-
sification is a bit better (especially for c type RR Lyrae
stars). Furthermore, the SVM code from astroML was much

18 This part of the analysis can be easily reproduced using the public and
open-sourced astroML code and the datasets available at
http://www.astroML.org
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Figure 21. Unsupervised clustering of periodic variable stars from the LINEAR dataset using the GMM algorithm. Clusters are derived using seven attributes (colors
u − g, g − i, i − K, and J − K, log(P ), light-curve amplitude, and light-curve skewness) and a mixture of 15 Gaussians. The colored symbols mark the six most
compact clusters. The log(P ) vs. g − i diagram and log(P ) vs. light-curve amplitude diagram for the same clusters are shown in the lower panels of Figure 20. This
figure is adapted from Ivezić et al. (2013) and can be reproduced using code available at http://www.astroML.org (VanderPlas et al. 2012).

(A color version of this figure is available in the online journal.)

Table 4
The Performance of Supervised Classification Using the Support Vector

Machines Method in the Seven-Attribute Case

Class N RRAB RRC EA EB/EW SX Phe

RRAB 1772 95.9 0.3 1.4 2.4 0.0
RRC 583 1.5 91.3 0.2 7.0 0.0
EA 228 5.3 1.3 67.5 25.9 0.0
EB/EW 1507 2.1 4.0 3.1 90.7 0.1
SX Phe 56 0.0 1.8 0.0 1.8 96.4

Purity . . . 97 88.4 68.4 90.5 98.2

Notes. Each row corresponds to an input class listed in the first column (RRAB:
ab type RR Lyrae; RRC: c type RR Lyrae; EA: Algol-type eclipsing binaries;
EB/EW: contact eclipsing binaries; SX Phe: SX Phe and δ Sct candidates). The
second column lists the number of objects in each input class and the remaining
columns list the percentage of sources classified into the classes listed in the top
row. The bottom row lists the classification contamination in percent for each
class listed in the top row.

easier to deploy than developing the manual method from
Section 2.3.6.

5. DISCUSSION AND CONCLUSIONS

We described the creation of a catalog of visually confirmed
periodic variable stars selected from data acquired by the
LINEAR asteroid survey, the “PLV” catalog. This publicly
available catalog consists of 7194 variable objects, where over
96% are likely periodic variable stars.19 Combined with a large
sky coverage (≈10,000 deg2) and a flux limit several magnitudes
fainter than most other wide-angle surveys (14 < r < 17), this
catalog is useful for a wide variety of research topics such as
studies of Galactic halo structure and the physics of pulsating
stars and eclipsing binaries.

The completeness of the PLV catalog, relative to the initial
sample of 200,000 candidate variables, is very high (>98%);
nevertheless, it is subject to the selection criteria listed in
Section 2.1 that were used to select the initial sample based

19 We provide examples of the online data in Tables 5–7.
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Figure 22. Supervised classification analysis of periodic variable stars from the LINEAR dataset using the astroML code for the SVM algorithm. The top row shows
classes derived using visual classification results for five classes and two attributes (g − i and log(P )). One third of the sample was used as a training sample. The
colored symbols mark objects from the five classes adopted by SVM. The bottom row shows the analogous diagrams for classification based on seven attributes (colors
u − g, g − i, i − K, and J − K, log(P ), light-curve amplitude, and light-curve skewness). See Figure 23 for data projections in the space of other attributes for the
latter case. This figure can be reproduced using code available at http://www.astroML.org (VanderPlas et al. 2012).

(A color version of this figure is available in the online journal.)

Table 5
PLV Catalog: Light Curve Data

ID LCtype P A mmed stdev rms Lχ2
pdf nObs Skew Kurt LRχ2 CUF t2 t3

2522 5 0.238812 0.68 17.00 0.22 0.25 0.543 225 0.75 0.11 0.317 1 0 0

Notes. A detailed description of the entries is provided in the table header. Only the first entry is shown for illustration.

(This table is available in its entirety in machine-readable and Virtual Observatory (VO) forms in the online journal. A portion is shown here for guidance regarding
its form and content.)

on visual classification. Based on a comparison with the
SDSS Stripe 82 variable stars, we estimated that the com-
pleteness of the PLV catalog is 55%–70%; most of the LIN-
EAR incompleteness is due to the larger adopted minimum
rms variability, 0.1 mag versus 0.05 mag for the SDSS
catalog.

The purity of the PLV catalog and the classification precision
are both high (>96% of entries have an assigned light-curve
type). The folded light curves of all the objects in the cata-
log were visually inspected several times. Additional attributes
(SDSS, 2MASS, and WISE colors) were used to better char-
acterize each of the objects and thus improve the classification
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Figure 23. Supervised classification analysis of periodic variable stars from the LINEAR dataset using the SVM algorithm. Classes are derived using seven attributes
(colors u − g, g − i, i − K, and J − K, log(P ), light-curve amplitude, and light-curve skewness). The colored symbols mark objects from the five classes adopted by
SVM. The log(P ) vs. g − i diagram and log(P ) vs. light-curve amplitude diagram for the same classes are shown in the lower panels of Figure 22. This figure can be
reproduced using code available at http://www.astroML.org (VanderPlas et al. 2012).

(A color version of this figure is available in the online journal.)

Table 6
PLV Catalog: SDSS Data

ID R.A. Decl. oType nS rExt u g r i z uErr gErr rErr iErr zErr

2522 117.99· 48.67· 6 1 0.139 20.24 18.24 17.28 16.89 16.67 0.06 0.01 0.01 0.01 0.01

Note. A detailed description of the entries is provided in the table header.

(This table is available in its entirety in machine-readable and Virtual Observatory (VO) forms in the online journal. A portion is shown here for guidance regarding
its form and content.)

Table 7
PLV Catalog: 2MASS and WISE Data

ID J H K Jerr Herr Kerr W1 W2 W3 W4 W1err W2err W3err W4err

2522 15.45 14.94 14.76 0.06 0.09 0.10 14.52 14.63 12.60 8.84 0.03 0.07 −9.90 −9.90

Note. A detailed description of the entries is provided in the table header.

(This table is available in its entirety in machine-readable and Virtual Observatory (VO) forms in the online journal. A portion is shown here for guidance regarding
its form and content.)
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Figure 24. VSX vs. PLV confusion matrix. The column labeled “Other”
corresponds to variable PLV objects that do not have a reliable variability type.
The “NotPLV” column corresponds to VSX objects that are not included in the
PLV catalog and the row “NotVSX” corresponds to PLV objects not listed in
the VSX catalog. The row “Other” corresponds to VSX variables with classes
others than those listed in this confusion matrix. The intersection regions are
color-coded by the fraction of objects in each row falling into a given region.
Acronyms are according to Watson (2006).

purity. Furthermore, we compared our results with the Gen-
eral Catalog of Variable Stars (GCVS), the Variable Star Index
(VSX) catalog, and the RR Lyrae catalogs from the Catalina
and Mount Lemmon Surveys (see the Appendix for details) in
order to ascertain the effectiveness of our method. This analysis
provides further support for our claim of a low contamination
level by non-variable objects in the PLV catalog.

Our analysis was focused on the periodic variables, therefore
many irregular and quasi-periodic variables did not make it into
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Figure 25. GCVS vs. PLV confusion matrix. The column labeled “Other”
corresponds to variable PLV objects that do not have a reliable variability type.
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the visual inspection stage. In the case that these objects passed
the initial low level statistical cuts, they were most often ignored
during the visual classification process. We did, however, stum-
ble upon some of these non-periodic objects while examining the
light curves. Some of those variables and transients (e.g., AGNs,
AM Herculis, BL Lacertae, BY Draconis, cataclysmic variables,
RS Canum Venaticorum) are grouped in the “Other” PLV class.

This result suggests that many other interesting object types
could be extracted from the PLV catalog. Many of these objects
are not periodic and therefore we made no true attempt to classify
them.

The PLV catalog is dominated by RR Lyrae stars (3913 or
54%) and eclipsing binaries (2762 or 38%). We also found
112 (1%) candidate SX Phe/δ Sct variables and 77 (1%) red
variables with long regular or semi-regular (SR) periods (Mirae,
long-period variable, and SR). As suspected in the Introduction,
we confirm that variable sources fainter than V = 14 consist
of quite a different population mix than the brighter and better
studied sources. Table 3 describes in detail the content of the
PLV catalog.
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Figure 26. Examples of light curves of objects for which the GCVS or VSX period and classification does not agree with the PLV classification. The vertical red bars
in each panel in the left column show the median errors for the LINEAR data. Plots on the left are folded with the PLV periods and plots on the right are folded with
the GCVS periods. It is evident that the PLV periods produce smoother folded light curves and thus are more likely to be correct. The objects are (top to bottom): BC
CVn, GZ Com, V0533 Hya, BE Boo, UW CVn, and V0593 Vir.

(A color version of this figure is available in the online journal.)

An exciting result of our effort is the discovery of 112 SX
Phe/δ Sct candidates. It is not possible to differentiate these
two classes of objects on the basis of light-curve attributes and
color. However, our preliminary analysis based on SDSS spectra
and radial velocities (see Section 3.4 and Figure 14) shows that
these candidates are consistent with Population II objects and
therefore we assume that the sample is dominated by SX Phe
stars. Until now, these stars have been found mostly in Galactic
globular clusters (≈250 objects in total) and only 17 field SX
Phe stars are currently known. Therefore, if our assumption is
correct, the PLV SX Phe sample would increase the number of
currently known such stars by 30% and the number of known
field SX Phe stars by as much as a factor of six. This increase in
the sample size could play an important role in characterizing

not only this type of variable but blue stragglers as well. We
are currently undertaking a follow-up program using several
modest-size photometric telescopes (1.2 m and 0.25 m).

We note that SX Phe/δ Sct candidates are found in the region
of the u − g versus g − r color–color diagram populated by RR
Lyrae stars, with a number ratio of 1:40. Therefore, they do not
represent a major contaminant in RR Lyrae samples; our results
confirm early estimates of the upper limit on their contamination
fraction of 10% (Ivezić et al. 2000).

Compared to, e.g., 10,000 eclipsing binaries in the Galactic
bulge fields discovered by OGLE II and analyzed by Devor
(2004) or to ∼2000 eclipsing binaries discovered in the Kepler
survey data (Prša & Zwitter 2005), our sample of ∼2700 stars
is in the same realm of sample size. Its comparative advantage
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Figure 27. Comparison of RR Lyrae catalogs between the PLV catalog, Sesar
et al. (2013), and DR13. The median LINEAR magnitude is designated as
μLINEAR and the mean DR13 V magnitude is designated as 〈VDR13〉. All four
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these three catalogs. The histograms in the bottom left panel show ab type RR
Lyrae present in Sesar et al. (2013) and DR13, but not in the PLV catalog. The
inset shows the difference in brightness for matched objects in the photometric
systems used by LINEAR (unfiltered, μL) and DR13 (Johnson V band, 〈VC〉).
The histograms in the top right panel show the total number of matched objects
between the PLV catalog and DR13, as well as the total number of other variable
stars identified in the PLV catalog. The histograms in the bottom right panel
show ab type RR Lyrae found by the PLV catalog and not listed in DR13 (dotted)
and Sesar et al. (2013, dashed).

(A color version of this figure is available in the online journal.)

is its large sky area, which potentially enables studies of the
variation of eclipsing binary star properties with location in the
Galaxy (and by extension, with metallicity and possibly other
parameters). We note that the period distribution of eclipsing
binaries in the PLV catalog is generally in agreement with
previous studies, e.g., (Giuricin et al. 1983; Devor 2004; Prša &
Zwitter 2005).

We demonstrated that the availability of SDSS, 2MASS, and
WISE data can enable analysis that is not possible with single-
band light curves alone. For example, we derived a precise
quantitative description of an interesting correlation between
the colors of EB/EW type contact binaries and their period
(Section 3.3): as the spectral type (determined from the g − i

SDSS color) of these binaries changes from approximately K4
to F5, their median period increases form 5.9 to 8.8 hr. Since
no consensus about the origin of the short-period boundary
for contact binaries has yet been reached, the improvement in
observational constraints enabled by the LINEAR data will
be valuable for future studies of stellar evolution. We also
showed how WISE colors can be used to better identify several
populations, including AGB stars, R Coronae Borealis stars, and
quasars.

We emphasize that the preliminary work described in
Section 3 is by no means a complete analysis of the PLV cata-
log. To point out but a single example, detailed analyses of light
curves for eclipsing binaries using more sophisticated methods
such as Fourier analysis or full physical model fitting (Rucinski
1992; Devor 2004; Prša & Zwitter 2005) is capable of providing
valuable further insights into the physics of such stellar systems.
In addition, this variable star sample will be valuable to compare
with the Gaia results, for example, to search for period evolution
(e.g., Davenport et al. 2013).

We conclude by pointing out that processing the volume of
light-curve data provided by the LINEAR survey is still (barely)
manageable by human resources. However, with upcoming
large surveys such as Gaia and LSST, automated schemes will
have to be employed to classify the expected vast volumes of
data. Examples of such methods, based on machine learning
algorithms, are discussed in Section 4. In addition to the
requirement for ever fainter training samples, we point out
the need for the efficient automated recognition of outliers, a
problem that we left for future work with the PLV catalog.
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Ž.I. acknowledges support by NSF grants AST-0707901 and
AST-1008784 to the University of Washington, by NSF grant
AST-0551161 to LSST for design and development activity,
and by the Croatian National Science Foundation grant O-1548-
2009. The LINEAR program is funded by the National Aero-
nautics and Space Administration at MIT Lincoln Laboratory
under Air Force Contract FA8721-05-C-0002. Opinions, inter-
pretations, conclusions and recommendations are those of the
authors and are not necessarily endorsed by the United States
Government.

APPENDIX

COMPARISON WITH EXTANT CATALOGS
OF VARIABLE STARS

A.1. Comparison with the General Catalog of Variable Stars
and the AAVSO International Variable Star Index

In order to estimate the number of previously unknown
variable stars in the PLV catalog, we compared this catalog with
two online catalogs—the GCVS (Samus et al. 2009) and the
American Association of Variable Star Observers International
Variable Star Index (Watson 2006). The Topcat tool (Taylor
2005) was used to find positional matches within a 3 arcsec
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Figure 28. Examples of light curves of objects for which the PLV catalog and DR13 classification do not agree. Light curves on the left show LINEAR data folded
with the PLV periods and those on the right show DR13 data folded with the DR13 periods. The vertical error bars in each panel show the median errors (note that the
CSDR2 errors are larger than the LINEAR errors). All of the objects were classified as ab type RR Lyrae by DR13.

(A color version of this figure is available in the online journal.)

radius (in early 2013 February). Our results are summarized in
Figures 24 and 25.

Approximately 60% of PLV objects could not be matched
to an VSX catalog entry and approximately 90% could not be
matched to a GCVS entry. We note that the matching rate for
the VSX catalog is higher than for matching to the SIMBAD
database; only 1374 PLV entries, or 19%, have a SIMBAD
object within 3 arcsec (with 41 different SIMBAD types,
dominated by RR Lyrae stars and non-descriptive “Star” types,
which account for ∼70% of matches). Therefore, the majority
of PLV entries are previously uncataloged variable stars.

For both catalogs, the majority of unmatched objects are
eclipsing binaries, followed by c type RR Lyrae, SX Phe/δ Sct

candidates, and long period variables. Classification of the
matched objects shows a good overall agreement between
the catalogs and very good agreement for particular types of
objects (e.g., ab type RR Lyrae). A full visual re-inspection
of light curves for the objects matched in the VSX and the
GCVS was performed and we stand by our classifications in
all cases. In Figure 26, we show several examples where the
classification from the GCVS and/or the VSX did not match
the PLV classification.

This comparison with the VSX and the GCVS motivated us to
introduce two more variable star classes: anomalous Cepheids
and BL Herculis. Both can have light curves and colors that
are very similar to those of ab type RR Lyrae. However, some
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Figure 29. Examples of light curves of ab type RR Lyrae missing from DR13 but present in the PLV catalog (within the overlapping region). LINEAR data are shown
in the left column and CSDR2 data are shown in the right column. The PLV periods have been used to fold the light curves. The vertical error bars in each panel show
the median errors.

(A color version of this figure is available in the online journal.)

of them depart slightly from the locus populated by ab type
RR Lyrae (in the color–period and other diagrams) and we have
adopted the VSX and/or the GCVS classifications in these cases.

A.2. Comparison with the RR Lyrae Catalog from the Catalina
and Mount Lemmon Surveys

We also compared our results with the combined RR Lyrae
catalogs assembled by Drake et al. (2013a, 2013b). Their
Catalina Surveys Data Release 220 catalog includes 15,000
ab type RR Lyrae selected from more than 200 million light
curves obtained by the Catalina Schmidt Survey and the Mount
Lemmon Survey over 20,000 deg2 of sky, to a faint magnitude
limit of V = 20. In the following text, we refer to this work as

20 Available at http://nesssi.cacr.caltech.edu/DataRelease/

DR13. Approximately 6460 DR13 objects are located inside an
area covered by the PLV catalog (approximately 125◦ < R.A. <
268◦ and −13◦ < decl. < 65◦). A cut in the magnitude range
that corresponds to the brightness of objects potentially included
in the PLV catalog (14 < V < 17) selects approximately 3170
ab type RR Lyrae from DR13. In further analysis, we use these
area and magnitude cuts, where applicable.

A 3 arcsec radius match between the initial 200,000 object
sample and DR13 selects a total of 2612 objects (see Figure 27
for a statistical summary of the matched sources, which also
includes a comparison with the deeper sample of RR Lyrae stars
from Paper II). All but three matched sources are classified as
variable and are included in the PLV catalog. Only 86 (≈3%) of
the matched objects are not classified as ab type RR Lyrae in the
PLV catalog. This agreement level is remarkable between two
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catalogs that were derived from different datasets using different
techniques. The latter group is dominated by objects that have
poor LINEAR data (66 objects in total) and thus could not be
reliably classified. Their median magnitude and coordinates are
distributed roughly equally within the PLV brightness range
and observed area. These objects were identified as variable and
periodic in the PLV catalog, but the light-curve type could not be
determined (they are classified as “Other” in the PLV catalog).
Thirteen of the remaining objects with better data were classified
as c type RR Lyrae, one was classified as an EB/EW eclipsing
binary, one as a BL Herculis candidate, and two as anomalous
Cepheids (in the VSX, these two objects were classified as
ACEP and ACEP). Therefore, the only true disagreement in
classification between LINEAR and DR13 is for those 13 c type
RR Lyrae (0.5%). Several examples of light curves for objects
where the PLV catalog and DR13 classifications did not match
are shown in Figure 28.

Finally, we note that a total of 362 PLV ab type RR Lyrae
(from the overlapping area and brightness range) do not show
up in DR13. Some examples of these objects are shown in
Figure 29.
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Pojmański, G. 2002, AcA, 52, 397
Poleski, R. 2013, arXiv:1309.1168
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