
AGN DUSTY TORI. II. OBSERVATIONAL IMPLICATIONS OF CLUMPINESS

Maia Nenkova,
1
Matthew M. Sirocky,

2
Robert Nikutta,

2
Z
ˇ
eljko Ivezić,
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ABSTRACT

Clumpy torus models with N 0 � 5Y15 dusty clouds along radial equatorial rays successfully explain AGN in-
frared observations. The dust has standard Galactic composition, with individual cloud optical depth �V � 30Y100 at
visual. Themodels naturally explain the observed behavior of the 10 �m silicate feature, in particular the lack of deep
absorption features in AGNs of any type, and can reproduce the weak emission feature tentatively detected in type 2
QSOs. The clouds’ angular distribution must have a soft edge, e.g., Gaussian, and the radial distribution should
decrease as 1/r or 1/r 2. In line with recent interferometry, the ratio of the torus outer to inner radius can be as small as
�5Y10. The models can produce nearly isotropic IR emission together with highly anisotropic obscuration, as
required by observations. Clumpiness implies that the viewing angle determines an AGN classification only prob-
abilistically; a source can display type 1 properties even from directions close to the equatorial plane. The fraction of
obscured sources depends not only on the torus angular thickness but also on the cloud numberN 0, and this fraction’s
observed decrease with luminosity can be explained with a decrease of either parameter. X-ray obscuration, too, is
probabilistic; resulting from both dusty and dust-free clouds, it might be dominated by the latter, giving rise to the
observed QSOs that are X-ray obscured. Observations indicate that the torus and broad-line-emitting clouds form a
seamless distribution, with the transition between the two caused by dust sublimation. Torus clouds may have been
detected in the outflow component of H2Omaser emission from twoAGNs. Proper-motionmeasurements of outflow
masers, especially in Circinus, are a promising method for probing the morphology and kinematics of torus clouds.

Subject headinggs: dust, extinction — galaxies: active — galaxies: Seyfert — infrared: general —
quasars: general — radiative transfer

1. INTRODUCTION

RecentVLTI interferometric observations in the 8Y13�mwave-
length range by Tristram et al. (2007) confirm the presence of a
geometrically thick, torus-like dust distribution in the nucleus of
Circinus, as required by unification schemes of Seyfert galaxies.
Several aspects of their data require that this torus is irregular,
or clumpy, in agreement with the earlier prediction of Krolik &
Begelman (1988).

We have recently developed the first formalism for handling
clumpy AGN tori and presented initial results (Nenkova et al.
2002; Elitzur et al. 2004; Elitzur 2006, 2007). The reported
clumpy models have since been employed in a number of obser-
vational studies, including the first analysis of Spitzer observa-
tions by the GOODS Legacy project (Treister et al. 2004). Our
clumpy torus models were also employed in the analysis of
spatially resolved, near-diffraction-limited 10 �m spectra of the
NGC 1068 nucleus (Mason et al. 2006). The geometry and kine-
matics of both water maser (Greenhill &Gwinn 1997; Gallimore
et al. 2001) and narrow-line emission (Crenshaw & Kraemer
2000) indicate that the NGC 1068 torus and accretion disk are
oriented nearly edge-on. The Mason et al. (2006) clumpy model
for IR emission is the first to correctly reproduce the observed
near-IR flux with an edge-on orientation. In contrast, smooth-
density models require viewing angles 22

�Y30� above the equa-
torial plane in order to bring into view the warm face of the torus
backside (Granato et al. 1997; Gratadour et al. 2003; Fritz et al.

2006). Clumpiness is also essential for understanding the puz-
zling interferometry result that dust temperatures as different as
k800 K and �200Y300 K are found at such close proximity to
each other (Schartmann et al. 2005). Themounting observational
evidence in favor of clumpy, rather than smooth, dust distribu-
tion in AGN tori has sparked additional modeling efforts by
Dullemond & van Bemmel (2005) and Hönig et al. (2006).
This two-paper series expands the analysis of Nenkova et al.

(2002). In the first part (Nenkova et al. 2008, hereafter Paper I )
we develop the full formalism for continuum emission from
clumpymedia and construct the source functions of dusty clouds—
the building blocks of the AGN torus. Here we assemble these
clouds into complete models of the torus, and study the model
predictions and their implications to IR observations. In com-
paring the predictions of any torus model with observations
one faces a difficult problem—the overwhelming majority of
these observations do not properly isolate the torus IR emission.
Starburst emission is increasingly recognized as an important
component of the IR fluxmeasured in many, perhaps most AGNs
(e.g., Netzer et al. 2007). In addition to this well-known con-
tamination, even IR from the immediate vicinity of the AGNmay
not always originate exclusively from the torus, further compli-
cating modeling efforts. A case in point is the Mason et al. (2006)
modeling of NGC 1068. All flux measurements with apertures
<0.500 are in good agreement with the model results, but the flux
collected with larger apertures greatly exceeds the model predic-
tions at wavelengths longer than �4 �m. This discrepancy can
be attributed to IR emission from nearby dust outside the torus.
Mason et al. show that the torus contributes less than 30% of the
10 �m flux collected with apertures �100 and that the bulk of
the large-aperture flux comes at these wavelengths from dust
in the ionization cones; while less bright than the torus dust, it
occupies a much larger volume (see also Poncelet et al. 2007).
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On the other hand, the torus dominates the emission at short
wavelengths; at 2 �m, more than 80% of the flux measured
with apertures�100 comes from the torus even though its image
size is less than 0.04 00 (Weigelt et al. 2004).

These difficulties highlight a problem that afflicts all IR stud-
ies of AGNs. The torus emission can be expected to dominate the
AGN observed flux at near-IR because such emission requires
hot dust that exists only close to the center. But longer wave-
lengths originate from cooler dust, and the torus contribution can
be overwhelmed by the surrounding regions. Unfortunately, there
are not toomany sources like NGC 1068. No other AGN has been
observed as extensively and almost no other observations have
the angular resolution necessary to identify the torus component,
making it impossible to determine in any given source which are
the wavelengths dominated by torus emission. There are no easy
solutions to this problem. One possible workaround is to forgo
fitting of the spectral energy distribution (SED) in individual
sources and examine instead the observations of many sources
to identify characteristics that can be attributed to the torus sig-
nature. One example for the removal of the starburst component
is the Netzer et al. (2007) composite SED analysis of the Spitzer
observations of PG quasars. Netzer et al. identify two subgroups
of ‘‘weak FIR’’ and ‘‘strong FIR’’ QSOs and a third group of far-
IR (FIR) nondetections. Assuming a starburst origin for the FIR,
they subtract a starburst template from the mean SED of each
group. The residual SEDs are remarkably similar for all three
groups, and thus can be reasonably attributed to the intrinsic
AGN contribution, in spite of the many uncertainties. However,
while presumably intrinsic to the AGN, it is not clear what frac-
tion of this emission originates from the torus as opposed to the
ionization cones. An example of a sample analysis that may have
identified the torus component is the Hao et al. (2007) compi-
lation of Spitzer IR observations. In spite of the large aperture of
these measurements, Seyfert 1 and 2 galaxies show a markedly
different behavior for the 10 �m feature, both in their mean IR
SEDs and in their distributions of feature strength. Furthermore,
ultraluminous IR galaxies (ULIRGs) that are not associated with
AGNs show yet another, entirely different behavior, indicating
that the observed mean behavior of Seyfert galaxies is intrinsic
to the AGN. Accepting the framework of the unification scheme,
the differencesHao et al. find between the appearances of Seyfert 1
and 2 galaxies can be reasonably attributed to the torus contribu-

tion; the ionization cones’ dust is optically thin, and therefore its
IR emission is isotropic and cannot generate the observed differ-
ences between types 1 and 2.

Here we invoke both approaches in comparing our model pre-
dictions with observations. We start by assembling dusty clouds
into complete models of the torus, as described in x 2. Our model
predictions for torus emission and the implications for IR obser-
vations are presented in xx 3Y5, while in x 6 we discuss aspects
of clumpiness that are unrelated to the IR emission, such as the
torus mass and unification statistics. In x 7 we conclude with a
summary and discussion.

2. MODEL OF A CLUMPY TORUS

Consider an AGN with bolometric luminosity L surrounded
by a toroidal distribution of dusty clouds (Fig. 1). The ‘‘naked’’
AGN flux at distance D is FAGN ¼ L/4�D2 at any direction, but
because of absorption and reemission by the torus clouds the ac-
tual flux distribution is anisotropic, with the level of anisotropy
strongly dependent on wavelength. The grain mix has standard
interstellar properties (see x 3.1.1 of Paper I for details), and the
optical depth of each cloud is �V at visual.

2.1. Dust Sublimation

The distribution inner radius Rd is set by dust sublimation at
temperature Tsub. From x 3.1.2 in Paper I,

Rd ’ 0:4
L

1045 erg�1

� �1=2
1500 K

Tsub

� �2:6

pc: ð1Þ

Barvainis (1987) derived an almost identical relation for Rd. His
equation (5) has the same normalization and only a slight dif-
ference in the power of Tsub (2.8 instead of 2.6); this difference
reflects the more detailed radiative transfer calculations we per-
form. Here the distance Rd is determined from the temperature
on the illuminated face of an optically thick cloud of composite
dust representing the grain mixture. The sharp boundary we em-
ploy is an approximation. In reality, the transition between the
dusty and dust-free environments is gradual because individual
components of the mix sublimate at slightly different radii, with
the largest grains surviving closest to the AGN (Schartmann et al.
2005). From near-IR reverberation measurements, Minezaki et al.

Fig. 1.—Model geometry. Dusty clouds, each with an optical depth �V at visual, occupy a toroidal volume from inner radius Rd , determined by dust sublimation
(eq. [1]), to outer radius Ro ¼ YRd . The radial distribution is a power law r�q, and the total number of clouds along a radial equatorial ray is N 0. Various angular
distributions, characterized by a width parameter �, were considered. The angular distribution has a sharp edge on the left and a smooth boundary (e.g., a Gaussian) on
the right.
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(2004) and Suganuma et al. (2006) find that the inner radius of
the dusty region is indeed proportional to L1/2, but the time lags
they report are�2Y3 times shorter than predicted by equation (1).
While this equation gives the smallest radius at which the dust
absorption coefficient reflects the full grain mixture, the largest
grains survive to closer radii, where they are presumably detected
by the reverberation measurements.

2.2. The Cloud Distribution

The torus extends radially out to Ro ¼ YRd , with Y a free pa-
rameter. The total number of clouds, on average, along any ra-
dial equatorial ray is specified by the parameterN 0. We studied
various forms for the variation of N T (�), the total number of
clouds along rays at angle � from the equator. Figure 1 shows
on the left a sharp-edge uniform distribution with N T (�) ¼ N 0

within the angular width j�j � �. In a Gaussian distribution,
N T (�) ¼ N 0 exp (��2/�2).

The emission from the clumpy torus is found by integration
along paths through the cloud distribution (eq. [5] in Paper I ).
Some of the computation technicalities are described in the Ap-
pendix. The calculation requires the single cloud source func-
tion Sc;k, derived in Paper I, and the number of clouds per unit
length,NC(r; �), as a function of � and radial distance r. For this
distribution we assume a separable function with power-law
radial behavior r�q so that

NC(r; �) ¼ C
N T (�)

Rd

Rd

r

� �q

; ð2Þ

where C ¼ (
R Y

1
dy/yq)�1 is a dimensionless constant (for a given

Y and �), ensuring the normalization N T (�) ¼
R
NC(r; �) dr.

The observed torus radiation is affected not only by the emis-
sion from individual clouds but also by the probability that emit-
ted photons escape through the rest of the path. The escape
probability, Pesc, is given in equation (4) of Paper I. For an
overall number of clouds N along a path, Pesc ’ exp (�N �k)
at wavelengths in which the optical depth of a single cloud obeys
�k < 1, and Pesc ’ exp (�N ) when �k > 1. Many of the de-
tailed results presented below can be readily understood from the
dependence of Pesc on wavelength and on torus viewing angle,
shown in Figure 2.

2.3. Scaling

Because of general scaling properties of radiatively heated
dust ( Ivezić & Elitzur 1997), the only effect of the overall lu-
minosity is in setting up the bolometric flux FAGN and the dust
sublimation radius Rd (eq. [1]). For a given torus model, the
distributions of dust temperature and of brightness are unique
functions of the scaled radial distance r/Rd: two sources with
the same cloud properties but different luminosities will have
the same distributions in terms of r/Rd , only the more luminous
one will have its brightness spread over a larger area because
of its larger Rd (this point is explained further in the Appendix).
Denoting the torus flux by Fk, the spectral shape Fk/FAGN is in-
dependent of L. The dependence of the torus SED on the spectral
shape of the AGN input radiation is limited to scattering wave-
lengths, disappearing altogether at kk2Y3 �m. There is a sim-
ilarly weak dependence on Tsub. The output spectrum depends
primarily on �V and the cloud distribution. Although the lumi-
nosity does not affect the radiative transfer, it is entirely possible
for torus properties to be correlated with L for some other reasons
(e.g., �, as in the receding torus model).

2.4. The AGN Contribution

In most figures we show only the contribution of the torus
emission. However, since the medium is clumpy, there is al-
ways a finite probability for an unobscured view of the AGN,
irrespective of the viewing angle. Because of the probabilistic
nature of the problem it is only possible to display the emerging
spectral shape with or without the AGN contribution and the
probability for each case (see Fig. 2, bottom).

3. MODEL SPECTRA

We proceed now with the model results. In all calculations
the AGN input radiation follows the ‘‘standard’’ spectrum de-
scribed in x 3.1.1 of Paper I.

3.1. Geometrical Shape

Figure 3 shows model results for sharp-edged and Gaussian
angular distributions. The sharp-edge geometry produces a bi-
modal distribution of spectral shapes, with little dependence on
viewing angle other than the abrupt change that occurs between
the torus opening and the obscured region. In contrast, theGaussian
distribution produces a larger variety in model spectral shapes,
with a smooth, continuous dependence on i. We investigated a

Fig. 2.—Behavior of the probability for photon escape along a path con-
tainingN clouds (eq. [4] of Paper I ). Top: Wavelength variation of Pesc for the
indicated N when the single-cloud optical depth is �V at visual. Bottom: The
probability for an AGN photon to escape through the torus in direction i from
the pole when each cloud is optically thick; this is also the probability for un-
obscured view of the AGN at viewing angle i. The total number of clouds varies
according to N T (�) ¼ N 0 exp (��2/�2), where � ¼ 1

2
�� i is angle from the

equatorial plane, with � ¼ 45� and N 0 as marked.
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larger family of angular distributions of the form N T (�) ¼
N 0 exp (� �/�j jm), withm a free parameter. In this family,m ¼ 2
is the Gaussian, and as m increases the transition region around
� ¼ � becomes steeper. Generally, ‘‘softer’’ distributions with
mP 10 show behavior similar to the Gaussian, while those with
larger m produce results similar to the sharp-edge geometry.

The SED dichotomy produced by sharp boundaries conflicts
with observations. Alonso-Herrero et al. (2003) studied the 0.4Y
16 �m nuclear emission from a complete sample of 58 Seyfert
galaxies, selected from the CfA sample. In a comparison with
theoretical models, Alonso-Herrero et al. (2003) point out that a
common prediction of all smooth-density models is a dichotomy
of SED between type 1 and 2, similar to the one displayed in
Figure 3 (top), and that such a dichotomy is not observed in their
sample; the dichotomy is present even in model geometries with
soft edges because the exp (��) attenuation factor varies rapidly,
resulting in a sharp transition around � � 1 between dusty and
dust-free viewing. As is evident from Figure 3 (bottom), this
SED dichotomy problem is solved by soft-edge clumpy tori.
Therefore, in the following we consider only Gaussian angular
distributions.

3.2. Observations and Model Parameters

As discussed in the Introduction, torus IR observations are
hampered by uncertainties that are partially alleviated by consid-
ering composite spectra. Figure 4 shows compilations of type 1
and type 2 data and some representative models, updating a sim-
ilar figure presented in Nenkova et al. (2002). The type 1 data

additionally include the recent Spitzer composite spectra from
Hao et al. (2007) and Netzer et al. (2007). The close agreement
between these two SEDs in their common spectral region, k ¼
5Y38 �m, indicates that they may have captured the torus emis-
sion in outline, if not in details. The upturn around 60 �m in the
Netzer et al. spectrum likely reflects the transition to starburst
dominance. To ensure the smallest possible apertures in type 2
sources, the data for individual objects are mostly limited to
ground-based and Hubble Space Telescope observations. The
data in both panels of this figure display the general character-
istics that have to be reproduced by the same models in pole-on
and edge-on viewing. The updated models plotted with the data
differ from the original ones in Nenkova et al. (2002) in three
significant ways: (1) the optical properties of the silicate com-
ponent of the dust are taken from the tabulation for ‘‘cool’’ sili-
cates in Ossenkopf et al. (1992) instead of the Draine & Lee
(1984) dust; (2) the clouds angular distribution is Gaussian rather
than sharp edged; and (3) the torus radial thickness Y is 30 instead
of 100. As is evident from the figure, the model spectra are gen-
erally in reasonable agreement with the data.

We produced a large number of models for various param-
eter sets,4 and we now present model results and discuss their

Fig. 3.—Model spectra for a torus of clouds, each with optical depth �V ¼ 60.
Radial distribution with q ¼ 1 out to Y ¼ 30, withN 0 ¼ 5 clouds along radial
equatorial rays (see eq. [2]). The angular distribution is sharp edged in the top
panel, and Gaussian in the bottom one (cf. Fig. 1); both have a width parameter
� ¼ 45�. Different curves show viewing angles that vary in 10� steps from pole-on
(i ¼ 0�) to edge-on (i ¼ 90�). Fluxes scaled with FAGN ¼ L/4�D2.

Fig. 4.—Observations of type 1 and type 2 sources compared with clumpy
torus model spectra. The type 1 composite data are from Sanders et al. (1989),
Elvis et al. (1994), Hao et al. (2007), and Netzer et al. (2007). The type 2 data are
from the following sources: (a) Mason et al. (2006); (b) various observations with
aperture�0.500 listed inMason et al. (2006); (c) Alonso-Herrero et al. (2003); and
(d ) Prieto et al. (2004). In the model calculations, plotted with broken lines, each
cloud has optical depth �V ¼ 30. Other parameters are � ¼ 30

�
, q ¼ 0Y3, as

marked, Y ¼ 30, andN 0 ¼ 5. The angular distribution in this and all subsequent
figures is Gaussian. The models in the top panel are for pole-on viewing (i ¼ 0�),
and those in the bottom panel are for edge-on viewing (i ¼ 90�).

4 Tabulations of all the models discussed here, as well as many additional
cases, are available at http://www.pa.uky.edu /clumpy/.
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observational implications. The models are characterized by free
parameters that describe individual clouds (�V ), control the total
number of clouds (N 0), and specify the geometrical properties
of their angular and radial spatial distributions (�; q, and Y ). Note
that, except for N 0, smooth-density models also require all of
these parameters to describe the dust distribution. In the follow-
ing, the parameters are varied one at a time, and from comparison
with observations we attempt to identify the likely range of each
of them. The effect of the radial thickness parameterY is described
separately in x 4, devoted to a discussion of the torus size.

3.3. Single-Cloud Optical Depth

Figure 5 shows the effect of varying the optical depth of in-
dividual clouds from 10 to 200. The SED hardly varies when �V
increases beyond�100, reflecting the similar behavior for emis-
sion from a single cloud (see Fig. 11 in Paper I). The figure shows
the torus emission for both pole-on and edge-on viewing. Smooth-
density models (e.g., Pier & Krolik 1992; Granato & Danese
1994) consistently produce the 10�m silicate feature in emission
and absorption, respectively, for polar and equatorial viewing.
As the figure shows, in a clumpy distribution the feature displays
a more complex pattern, unlike anything produced in smooth-
density models. At i ¼ 0

�
, the feature appears in emission as

long as �V P 20. When the optical depth increases further, the
feature disappears and the SED is essentially featureless across
the 10 �m region. However, the feature reappears in weak emis-
sion when �V k 100. At i ¼ 90�, a weak, broad emission feature
is evident when �V ¼ 10. When �V � 20, the spectra display
a clear absorption feature; although similar to that of smooth-
density models, the feature is never deep, reflecting the shallow
absorption displayed by a single cloud (see x 4.5 in Paper I). A
most peculiar result is the reversal from absorption to an emis-
sion feature, which emerges when �V increases beyond �100.

The complex behavior of the 10 �m feature arises from a
rather intricate interplay between the emission spectrum of a sin-
gle cloud and the collective effect of the entire cloud ensemble.
The different patterns can be understood in terms of the compe-
tition between emission and absorption along a given path, tak-
ing account of the flattening of the escape factor Pesc across the
10 �m feature when �V is increasing (Fig. 2). The behavior of the
10 �m feature is studied separately at greater depth in x 5.1 below.

3.4. Number of Clouds

Figure 6 shows model spectra of torus emission when N 0,
the average of the total number of clouds along radial equatorial
rays, varies from 2 to 15. The models produce broad IR emission
in the k � 1Y100 �m range. Values of N 0 larger than 15 produce
a very narrow IR bump peaking beyond 60 �m. Such SED’s have
not been observed thus far, and thereforeN 0 is likely no larger
than �10Y15 at most.
As is evident from Figure 6, whenN 0 increases the emission

in the near- to mid-IR region steepens considerably for viewing
close to equatorial. Composite IR SEDs of Seyfert 2 galaxies
constructed by Silva et al. (2004) show only a mild dependence
on X-ray-absorbing column density as long asNH � 1024 cm�2,
with considerable steepening when NH is in the range 1024Y
1025 cm�2. This behavior is similar to theN 0-dependence dis-
played in Figure 6, and thus Compton-thick X-ray-absorbing
columnsmight be correlatedwith a largerN 0. For pole-on viewing,
the 10�m feature appears in weak emission whenN 0 < 5. AsN 0

increases, the emission switches to absorption that deepens with
N 0. Moving away from the axis, the feature displays weak emis-
sion whenN 0 ¼ 2 but appears in absorption in all other cases.
In contrast with the smooth-density case, clumpy models al-

ways display some emission at k < 1 �m that arises from scat-
tering of the AGN radiation toward the observer by clouds on
the torus far side. Some fraction of this radiation will always
get through the torus near side. The probability for that is con-
trolled purely by the number of clouds since individual clouds
are always optically thick at UVand optical wavelengths. Varying

Fig. 5.—Dependence of the torus SED on the single-cloud optical depth �V .
Other parameters are � ¼ 45�, N 0 ¼ 5, and Y ¼ 30. The left panels show a ra-
dial power law with q ¼ 1, and the right panels show one with q ¼ 2. Pole-on
viewing is shown in the top panels, and edge-on viewing is shown in the bottom
panels.

Fig. 6.—Dependence of the torus SED on the number of clouds along a radial
equatorial ray. Each cloudhas �V ¼ 60.The angularwidth is� ¼ 45�. The radial dis-
tribution is a power law with q ¼ 1 (left) and q ¼ 2 (right), extending to Y ¼ 30.
Different curves in each panel show viewing angles that vary from 0� (top curve)
to 90� (bottom curve) in 10� steps.
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the number of clouds produces two competing effects, most clearly
visible in Figure 6 from the behavior of the q ¼ 1 models at
i ¼ 0�. Increasing the number of clouds fromN 0 ¼ 2 to 5 raises
the level of the radiation that gets through because there are more
scattering clouds.With further increase inN 0, obscuration by in-
tervening clouds takes over and the emerging intensity decreases.
It is hard to assess the observational significance of this aspect of
the results. Our models include a single type of clouds and no
intercloud medium. Such a medium with an optical depth �V of
only a few would attenuate all wavelengths shorter than �1 �m
in the model spectra without significantly affecting the infrared.
We plan a detailed study of these effects in future work.

Like most models presented here, Figure 6 shows only the
torus emission, corresponding to type 2 SEDs. Our model pre-
dictions for type 1 SEDs can always be obtained by adding the
AGN direct radiation. However, unlike the smooth-density case,
the probability for a clear view of the AGN depends not only on
the viewing angle but also on the number of clouds (see x 2.4).
Figure 7 displays again the q ¼ 2 models shown in Figure 6, but
this time the AGN contribution is added in. The probability that
this would be the SED actually detected in a given source is given
by the corresponding Pesc, shown in Figure 2 (bottom). When
visible, the AGN dominates the emission at kP 3 �m. The tran-
sition from AGN to torus domination of the SED is an important
issue that requires detailed observations of type 1 sources in the
near- and mid-IR regions.

3.5. The Torus Angular Width

The effect of the angular distribution width is shown in Fig-
ure 8, which displays results for a few representative �. The spec-
tral shapes of models with � ¼ 15

�
are in general agreement with

observed SEDs but the dependence on viewing angle displays
a bimodal distribution that conflicts with observations of Seyfert
galaxies (x 3.1). Values in the range 30�Y50� produce similar spec-
tral shapes, all in general agreement with observations. The � ¼
30� models provide the best match to the behavior of the 10 �m
feature in the average spectra of Seyfert 1 and 2 galaxies (see
x 5.1). Estimates of the torus angular width based on statistics
of Seyfert galaxies that take proper account of clumpiness give
� � 30� (see x 6.3). At � ¼ 60�, the 10 �m feature appears in
pronounced absorption at all viewing angles. Increasing the width
parameter farther all the way to � ¼ 85� has little effect on the

SED, except that the dependence on viewing angle decreases, as
is expected from the approach to spherical symmetry.

3.6. Radial Profile and IR Emission Anisotropy

Figure 9 shows the SED when q, the index of the power-law
radial distribution, varies in the range 0Y3 for two values of the

Fig. 7.—Model spectra as in Fig. 6 for q ¼ 2, only with the AGN contribution
added. For each set of parameters, the probability that the AGN emission will
actually be observed can be read from the plots of Pesc in the bottom panel of
Fig. 2. The break in the SED at k ¼ 1 �m is an artifact of our parameterization
of the input spectrum (see x 3.1.1 of Paper I ).

Fig. 8.—Dependence of the torus model spectra on the width parameter � of
the Gaussian angular distribution. Each cloud has �V ¼ 60. The cloud radial dis-
tribution is a power law withN 0 ¼ 5 and q ¼ 2, extending to Y ¼ 30. Viewing
angles vary from 0� to 90� in 10� steps.

Fig. 9.—Dependence of the torus model spectra on the power q of the radial
density distribution, which extends to Y ¼ 10 in the top panels and Y ¼ 30 in the
bottom ones;N 0 ¼ 5 clouds with �V ¼ 60 each. Angular width � ¼ 45�. Viewing
angles vary from 0� to 90� in 10� steps. The emission anisotropy decreases when
q increases.
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radial thickness Y. Since N 0 is kept fixed, varying q changes
only the placement of clouds between the inner, hotter parts and
the outer, cooler regions, shifting the emission between near- and
far-IR. Steep radial distributions (q ¼ 2, 3) produce nearly iden-
tical spectral shapes for Y ¼ 10 and 30 because the clouds are
concentrated near the inner boundary in these cases.

The variation of SEDwith viewing angle displayed in Figure 9
is much smaller than in smooth-density models (Pier & Krolik
1992, 1993; Efstathiou & Rowan-Robinson 1995; Granato &
Danese 1994; Granato et al. 1997; Dullemond & van Bemmel
2005; Schartmann et al. 2005). For example, our models produce
at 1 �m an edge-to-pole flux ratio of about 5 or less for cloud
optical depth of �V ¼ 60. In Figure 1 from Granato et al. (1997)
the corresponding flux ratio is several hundred for AV ¼ 30, and
off-scale for AV ¼ 100. The degree of isotropy is especially high
when the torus is small, but even in the case of Y ¼ 30 the emis-
sion becomes nearly isotropic as q increases (the radial distribu-
tion gets steeper). This point is further illustrated in Figure 10,
which shows the viewing-angle variation of the observed flux
at different wavelengths. Since the torus flux is normalized to the
AGN overall flux, the quantity plotted in this figure provides
the bolometric correction for each of the displayed wavelengths.
The anisotropy decreases withwavelength, practically disappearing
beyond the mid-IR—at k ¼ 12 �m the variation with viewing
angle is within a factor of �2 for both q ¼ 1 and 2. Another in-
dicator of the emission anisotropy is the variation of the torus
bolometric flux Ftor ¼

R
Fk dk with viewing angle, shown in

Figure 11 for q ¼ 2. The variation increases with the number of

Fig. 10.—Variation of the torus flux with viewing angle at different wave-
lengths, as marked. N 0 ¼ 5 clouds with �V ¼ 60 each in a radial distribution
with q ¼ 1 (top) and q ¼ 2 (bottom) extending to Y ¼ 30. The angular width
� ¼ 45�. Since the emission is normalized to the AGN flux, the plotted quantity
provides the bolometric correction for each displayed wavelength.

Fig. 11.—Anisotropy indicators for the torus bolometric flux Ftor . All models
have q ¼ 2 and Y ¼ 30. Top: Variation of Ftor with viewing angle when �V ¼ 60
for various values of N 0 (cloud number) and � (torus angular width), as in-
dicated; note the changing vertical scale. Bottom: Ratio of the torus bolometric
fluxes along the axis and equator as a function of single-cloud optical depth.
The torus angular width is � ¼ 45�.
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clouds but remains less than a factor of 3 even when N 0 ¼ 15,
the likely upper limit.

It is important to note that at every viewing angle, the AGN
obscuration is identical in all the models displayed in Figure 9;
obscuration depends only on the total number of clouds along
radial rays, which is the same in all cases. Indeed, for each of
these models the probability for direct view of the AGN as a
function of i is shown by theN 0 ¼ 5 curve in Figure 2 (bottom).
Along this curve, Pesc varies by 2 orders of magnitudes between
polar and equatorial viewing. That is, a clumpy torus can pro-
duce extremely anisotropic obscuration of the AGN together
with nearly isotropic mid-IR emission.

Recent observations seem to indicate that this is indeed the
required behavior. Ground-based observations of AGN nuclear
emission at 10 �m show it to be well correlated with the hard
X-ray luminosity, and both type 1 and type 2 sources follow the
same correlation (Alonso-Herrero et al. 2001; Krabbe et al. 2001).
Whysong & Antonucci (2004) report that the mean values for
the 12 �m/60 �m flux ratios of Seyfert 1 and 2 galaxies differ by
only �30%. Since the 60 �m emission is optically thin and thus
essentially isotropic (cf. Fig. 10), this result indicates that the
variation of the 12 �m flux is small. Lutz et al. (2004) compared
the 6 �m ISO fluxes of Seyfert 1 and Seyfert 2 galaxies nor-
malized to their intrinsic hard X-ray fluxes. They conclude that
the distributions of the two populations are essentially identi-
cal within the observational errors, and note the conflict with the
anisotropy predicted by smooth-density torus models. The Lutz
et al. (2004) finding was confirmed by Horst et al. (2006) who
used the same approach with ground-based, and thus better res-
olution, observations at 12 �m. Buchanan et al. (2006) conducted
Spitzer observations of 87 Seyfert galaxies in the k ¼ 5Y35 �m
range and normalized the IR fluxes with the optically thin radio
emission. Although at 6 �m they find a larger variation than Lutz
et al. (2004) they also find that the emission from Seyfert 1 and
2 galaxies are within factor 2 of each other for all kk 15 �m, and
note the discrepancy with smooth-density models. Finally, the
average spectra of Seyfert 1 and 2 galaxies derived by Hao et al.
(2007) from Spitzer observations have nearly identical shapes,
except for the 10 �m silicate region.

The moderate level of anisotropy found in the observations
suggests that, if the torus radial thickness isk20 then the steeper
radial profile q ¼ 2 might be more appropriate than q ¼ 1. It may
be noted that the clumpy torus models in Mason et al. (2006),
which utilized Y ¼ 100, yielded the best fits to the observations
of NGC 1068 with q ¼ 2.

4. TORUS SIZE

The fraction of the sky obscured by the torus determines the
relative numbers of type 1 and 2 sources, and the statistics of
Seyfert galaxies show that the height and radius of obscuring
dusty torus obeyH /R � 1 (see x 6.3). Since obscuration does not
depend separately on either H or R, only on their ratio, neither
quantity is determined individually. An actual size can only be
determined from the torus emission.

4.1. SED Analysis

In the absence of high-resolution IR observations, early es-
timates of the torus size came from theoretical analysis of the
SED. For a given dust sublimation temperature, the torus inner
radius Rd is determined from the AGN luminosity (eq. [1]). The
dust temperature distribution, and with it all model results, de-
pends only on r/Rd . Therefore, the only size parameter that can
be determined from SED modeling is the radial thickness Y ¼
Ro/Rd . Pier & Krolik (1992) performed the first detailed calcu-

lations with a uniform density torus and found Y � 5Y10. How-
ever, in subsequent work Pier & Krolik (1993) speculated that
this compact structure might be embedded in a much larger and
more diffuse torus, extending typically to �30Y100 pc. Granato
& Danese (1994) extended the smooth-density calculations to
more elaborate toroidal geometries. They conclude that ‘‘The
broadness of the IR continuum of Seyfert 1 nuclei requires an
almost homogeneous dust distribution extending at least to a few
hundred pc (Ro/Rd k 300 or Rok300L1/246 pc)’’ and that ‘‘broad
(Ro ’ 1000L1/246 pc) tori’’ would be ‘‘fully consistent with avail-
able broadband data and high-resolution IR spectra of Seyfert 1
and 2 nuclei.’’ Although subsequent modeling produced some-
what smaller sizes (Granato et al. 1997; Fritz et al. 2006), the
original requirements of uniform density and large dimensions
directly reflect the large amounts of cool dust necessary for pro-
ducing the torus IR emission. This requirement arises because
in smooth density distributions, the dust temperature is uniquely
related to distance from the AGN.While this statement is strictly
correct only for single-size dust grains, even when dust size dis-
tribution in invoked in smooth dust models, the observations still
favor clumpy dust distribution (Schartmann et al. 2005).

The one-to-one correspondence between distance and tem-
perature does not hold in clumpy media, where different dust
temperatures coexist at the same distance and where the same
temperature can be found at different distances (see xx 3.1.2 and
4.2 of Paper I). For example, in the model discussed in Figure 7
from Paper I, the dust temperature at Y ¼ 10 ranges from 150 to
600 K, while Schartmann et al. (2005) find using smooth models
with realistic dust size distribution that the temperature range at
Y ¼ 10 is 250Y300 K (i.e., a ratio of 1.2 vs. 4 for clumpy dust).
In contrast with smooth density distributions, a clumpy torus
contains cool dust on the dark sides of clouds much closer to
the heating source and thus can emit IR efficiently from its inner
regions.

Figure 12 shows our model results for the SED of clumpy tori
with various radial thicknesses for q ¼ 1 and 2. In spite of the
factor 40 variation in torus thickness, the SED is quite similar
for all the q ¼ 2 models. The reason is simple—irrespective
of the torus size, at least 80% of all clouds are located within
r � 5Rd in this case. The models with q ¼ 1 display discernible

Fig. 12.—Dependence of the SED of a clumpy torus on the radial thickness
Y ¼ Ro/Rd , as marked. Radial distribution with q ¼ 1 (left) and q ¼ 2 (right). All
models haveN 0 ¼ 5 clouds with �V ¼ 60 each, and � ¼ 45�. Pole-on viewing is
shown in the top panels, and edge-on viewing is shown at the bottom. Note that
the curves in the bottom left panel have a similar shape at kP15 �m and would
nearly overlap if normalized to a common wavelength in that range instead of
FAGN.
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variations, but these variations are mostly confined to kk 15 �m.
The large differences apparent at shorter wavelengths in the edge-
on viewing do not reflect intrinsic variation of the SED, only the
scaling with the bolometric flux. If these curves were scaled in-
stead to the same value at, say, 2 �m, they would all overlap up to
k � 15 �m, similar to the pole-on viewing. These differences can
be further understood with the aid of Figure 13, which shows the
fraction of the overall flux contained within circular apertures of
increasing size. This fraction, as well as the brightness distribu-
tion, is a function of �/�d (=r/Rd), where � is angular displacement
from the center and �d ¼ Rd/D. The figure shows that at wave-
lengths shorter than 5 �m, almost all the flux is originating from
inside 3�d irrespective of the value of Y. Therefore, such wave-
lengths cannot determine the torus size. In the q ¼ 2 case, even
longer wavelengths cannot distinguish between the different sizes
because 80% of the flux always originates from the inner 10�d . In
the q ¼ 1 case the portions beyond 10�d contribute significantly
to the flux of a larger torus, but only at wavelengths longer than
�12Y15 �m.

These results show that the model SEDs do display appre-
ciable differences among tori of different sizes when q ¼ 1 and
that determining the torus size in this case would require mea-
surements of its flux at kk 15 �m. Because of the large beam
sizes at such long wavelengths, current observations generally
cannot distinguish between the contributions of the torus and its
surroundings to the overall flux. For example, as noted in the
Introduction, in NGC 1068 the torus contributes less than 30%
to the 10 �m flux measured with apertures �100 (Mason et al.
2006). The q ¼ 2 density profile, which might be the more com-
mon radial distribution (x 3.6), does not generate any discernible
distinctions among spectral shapes. Therefore, the radial size
of a clumpy torus cannot be constrained by SED measurements.
Only high-resolution observations can determine the torus size—
the SED does not have the necessary discriminative power.

4.2. Brightness Profiles

Because of the discrete nature of a clumpy medium, different
lines of sight will generally produce a different brightness even
when crossing similar regions. Our formalism provides the sta-
tistical average along such rays; fluctuations around this aver-
age can be large (see x 2.1 in Paper I ).
Figure 14 shows model intensity profiles for pole-on viewing

of a torus with Y ¼ 30. The curves show only the torus emission,
starting at its inner edge � ¼ �d . The AGN emission, which is
not shown, would produce a narrow spike in the range 0 � � �
�AGN, where �AGN/�d � (Tsub/Tb;AGN)

2 and Tb;AGN is the AGN
brightness temperature (e.g., Ivezić & Elitzur 1997). Therefore,
�AGN/�dT1 under all circumstances. The set of displayedwave-
lengths extends from the K band, where most of the current
imaging observations are performed, to 588�m, one of the wave-
lengths that will become available for high-resolution imaging
whenALMA is fully operational. The torus intensity is highest on
or close to its inner edge. The brightness is highest around 12 �m,
as is evident from the bottom panel of the figure. For both radial
density profiles used in this figure, the brightness declines to half
its peak value within � < 5�d at all displayed wavelengths. At
12 �m and shorter wavelengths, the brightness declines to 1% of
peak value within � � 10�d . Evidently, observations attempting
to probe the torus structure must combine high resolution with a
large dynamic range.
Near-IR wavelengths provide little information about the

torus structure and size. As is evident from Figure 14, at 2 �m it
would be difficult to distinguish between q ¼ 1 and 2 radial den-
sity distributions even with high-resolution observations. The
steep brightness decline at these wavelengths also makes it prac-
tically impossible to determine the torus full size. Since the
brightness falls under 1% of its peak value at � ¼ 4�d for either
density profile, determining whether the torus ends at that point

Fig. 13.—Fraction of the torus flux enclosed within a circle with angular radius � centered on the AGN.Wavelengths, in �m, are as labeled (some labels are omitted for
clarity). Here �d is the angle equivalent of the torus inner radius Rd (eq. [1]) at the observer’s location; for reference, �d ¼ 0:0200 for Rd ¼ 1 pc at 10Mpc. All models have
N 0 ¼ 5, �V ¼ 60, � ¼ 45

�
, and q ¼ 1 or 2, as marked. In each case, pole-on viewing is shown in the left panels, and edge-on viewing in the right panels. Torus sizes, from

top to bottom, are Y ¼ 10, 30, and 100.

NENKOVA ET AL.168 Vol. 685



or continues to larger radii would be a difficult task. A Y ¼ 10
torus is indistinguishable from the inner 10�d of a torus as large
as Y ¼ 100, as is evident also from Figure 13. As the wavelength
increases, the brightness falloff becomes less steep. VLTI inter-
ferometry has angular resolution of order 0.0100 at 12 �m, but it
would still be difficult to distinguish between the two displayed
radial density profiles even in systems where �d is of a similar
order of magnitude. The two density profiles produce distinctly
different brightness profiles at 70 �m, but there are no instru-

ments with the required angular resolution at that wavelength. In
the foreseeable future, ALMA seems to be the only facility with
a realistic chance to determine through 588 �m observations the
radial cloud distribution and whether a torus does extend beyond
Y ¼ 30.

4.3. Observations

With the advent of high-resolution IR observations, direct im-
aging is now available for some AGN tori, and upper limits have
been set on the dimensions of the nuclear IR source in others.
Interferometric observations at 8Y13 �m with the VLTI have re-
solved by now the nuclear region in three AGNs: NGC 1068,
Circinus, and Cen A. The thermal emission in all three cases
is rather compact. In NGC 1068 Jaffe et al. (2004) find that the
emission extends toR ¼ 1:7 pc. Poncelet et al. (2006) reanalyzed
the same data with slightly different assumptions and obtained
a similar result, R ¼ 2:7 pc. The AGN bolometric luminosity is
�2 ; 1045 erg s�1 in this case (Mason et al. 2006), so that Rd

is �0.6 pc and the torus mid-IR emission is confined within
�3RdY5Rd . In Circinus, Tristram et al. (2007) find that the torus
emission extends to R ¼ 1 pc. The AGN bolometric luminosity
is �8 ; 1043 erg s�1 (Oliva et al. 1999), so Rd ’ 0:1 pc and the
outer radius of the mid-IR emission is�10Rd . The nature of the
mid-IR emission from the CenA nucleus is somewhat involved—
Meisenheimer et al. (2007) conclude that it contains an unre-
solved synchrotron core and thermal emission within a radius
of �0.3 pc. Since the AGN bolometric luminosity is �1 ;
1043 erg s�1 (Whysong & Antonucci 2004), Rd is �0.04 pc
and the torus emission does not exceed�8Rd in this source. One
other case of resolved mid-IR emission involves NGC 7469,
where Soifer et al. (2003) find a 12.5 �m compact nuclear struc-
ture contained within R < 13 pc. Unfortunately, NGC 7469 is a
clear case where the IR signature is dominated by the starburst
component even though the AGN dominates the optical classi-
fication (Weedman et al. 2005); therefore, the resolved compact
structure cannot be identified with the torus (see alsoDavies et al.
2004).

Although there are no other reports of resolved torus emission
at this time, upper limits on the torus size have been reported in
some additional sources. Prieto & Meisenheimer (2004) studied
a number of AGNs in the 1Y5 �m range. In all cases the obser-
vations show unresolved nuclear emission at these wavelengths,
setting upper limits on the torus radius of P5Y10 pc, depending
on the target distance. Even more significant are the upper lim-
its reported at mid-IR. Radomski et al. (2003) place an upper
limit R < 17 pc at 10 and 18 �m on the nuclear component in
NGC 4151, while Soifer et al. (2003) place the tighter con-
straint R < 5 pc at 12.5 �m. Soifer et al. (2003) also find an
upper limit R < 14 pc for the 12.5 �m compact nuclear emission
in NGC 1275.

4.4. How Big is the Torus?

All current observations are consistent with a torus radial
thickness Y ¼ Ro/Rd that is no more than�20Y30, and perhaps
even as small as� 5Y10. Although larger values cannot be ruled
out, nothing in the currently available IR data requires their ex-
istence. Similarly, molecular line observations do not give any
evidence for large toroidal structures with the height-to-radius
ratio H /R � 1 required from unification statistics (see x 6.3). In
NGC 1068, Schinnerer et al. (2000) find from CO velocity dis-
persions that at R ’ 70 pc the height of the molecular cloud
distribution is onlyH � 9Y10 pc, forH /R � 0:15. Galliano et al.
(2003) model H2 and CO emission from the same source with a
clumpymolecular disk with radius 140 pc and scale height 20 pc,

Fig. 14.—Surface brightness for torusmodelswith �V ¼ 60,N 0 ¼ 5,� ¼ 45�,
Y ¼ 30, and q ¼ 1 and 2, as indicated. The top panel shows the radial variation of
intensity with angular displacement from the center for pole-on viewing and a set
of wavelengths as marked. The AGN emission, which is not shown, corresponds
to a narrow spike at �/�dT1 (see text). Each intensity profile is normalized to its
brightness level at � ¼ �d , shown in the bottom panel together with the corre-
sponding brightness temperature.
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for the same H /R � 0:15. Therefore, although resembling the
putative torus, the distribution of these clouds does not meet the
unification scheme requirementH /R � 1. Evidently, the detected
molecular clouds are located in a thinner disklike structure out-
side the torus. Recent 10 �m imaging polarimetry of NGC 1068
by Packham et al. (2007) shed some light on the continuity be-
tween the torus and the host galaxy’s nuclear environments.

As is evident from the above discussion, determining the torus
actual end point is rather difficult, if not impossible; in fact,
insisting on an end point for a steep 1/r 2 distribution is mean-
ingless in practice (with the currently available observations).
The torus is embedded in the central region of the host galaxy,
and the steep radial decline of its brightness implies that its emis-
sion is unlikely to be cleanly separated from the surroundings.
The only observations holding a realistic chance for doing that are
future high-resolution submillimeter measurements with ALMA.
Even those would require detailed analysis that takes into account
the emission from both the torus and its surrounding.

It seems safe to conclude that there is no compelling evidence
at this time that torus clouds beyond Y � 20Y30 need be con-
sidered, although such large sizes cannot be excluded. From
equation (1), a conservative upper bound on the torus outer ra-
dius is then Ro < 12L1/245 pc, where L45 ¼ L/1045 erg s�1. These
compact dimensions have important implications for the dynam-
ics because they place the torus inside the region where the black
hole gravity dominates over the galactic bulge. If the black hole
mass is M�7 ; 107 M� then it dominates the gravitational mo-
tions within a radius 35(M�7/�

2)1/3 pc, where �, typically of
order unity, is the rotation velocity (in km s�1 pc�1) induced by
the galactic bulge in its interior (Elitzur & Shlosman 2006).
Since the torus is well within the black hole sphere of gravita-
tional influence, its dynamic origin is determined in all likelihood
by the central engine and its accretion disk, not by the accretion
from the galaxy (see also x 6.6).

5. SPECTRAL INDICATORS

As noted in the Introduction, reliable analysis of the torus full
SED in individual sources requires data that are unavailable in
most cases. We can expect flux measurements at wavelengths
longer than �10 �m to be severely contaminated by the torus
surroundings. Even in NGC 1068, the best-observed AGN, the
validity of almost all observations at k � 10 �m is questionable
because the torus contributes only a fraction of themeasured flux.
The situation is unlikely to improve in the foreseeable future. The
alternative approach to individual SED fitting is analysis of large
data sets in an attempt to identify statistical trends that might
constrain the likely physical range of torus parameters. Here
we discuss the spectral indicators most commonly used in such
analyses.

5.1. The Silicate 10 �m Feature

Amorphous silicate grains have strong opacity peaks due to
the SiYO stretching and the OYSiYO bending modes, leading to
broad features around 10 and 18 �m in the observed dust radia-
tion. The 10 �m feature, the stronger of the two, is a common
analysis tool. In smooth-density torus models the 10 �m feature
appears in emission for face-on viewing and in absorption in
edge-on viewing. As shown in x 3, clumpy models produce
more elaborate patterns. For detailed analysis of the features
we fit a smooth curve, Fc;k, to the underlying continuum of the
entire spectral region by a spline connecting the intervals 5Y7,
14Y14.5, and 25Y31.5 �m. Detailed radiative transfer calcula-
tions verify that this interpolation procedure properly reproduces
the emission that would be generated by dust stripped of its sili-

cate features (Sirocky et al. 2008). Figure 15 shows the silicate
feature profiles produced in some representativemodels. As noted
above, a 10 �m emission feature emerges in edge-on viewing at
�V k100. This peculiarity arises because individual clouds be-
come optically thick across the entire feature. The radiation emerg-
ing at this spectral range is then dominated by emission from the
bright faces of clouds on the torus far side escaping through
clear lines of sight. The effect becomes more pronounced asN 0

decreases.
The 10 �m feature peaks at 10.0 �m in the absorption coeffi-

cients fromOssenkopf et al. (1992) and radiative transfer effects
introduce occasional small shifts (no larger than 0.5 �m, mostly
toward shorter wavelengths) around this value in the emerging
spectra. To quantify the feature’s strength andwidth we introduce
two indicators:

S10 ¼ ln
Fk

Fc;k
; EW10 ¼

Z 14 �m

7 �m

Fk � Fc;k

Fc;k
dk: ð3Þ

The feature strength S10 is evaluated at the extremumnear 10.0�m
of the continuum-subtracted spectrum. Positive values of S10 in-
dicate an emission feature, negative values an absorption feature.
Delineating the feature from noise in the data requires a certain
minimum for the equivalent width EW10, depending on the de-
tection system. Our sign definitions are matched for both indica-
tors so that absorption produces a negative EW10, the opposite of
the standard.
Figure 16 displays the variations of S10 and EW10 with the

single-cloud optical depth �V for pole-on and edge-on viewing
and various model parameters that bracket the likely range in
AGN tori. If the feature width were the same in all models, S10
and EW10 would be equivalent to each other,5 but because of
variations in the feature shape (see Fig. 15), EW10 contains in-
dependent information. Figure 16 shows that pole-on viewing
produces an emission feature only for a limited set of parameters.
Clouds heated indirectly do not produce the emission feature
when �V k 20 (x 3.2 in Paper I ). The radiation from a directly
illuminated cloud displays the feature in emission only toward
directions with a view of a sufficiently large fraction of the
cloud’s illuminated face (see Fig. 12 in Paper I ). An observer
along the pole of a toroidal distribution will detect an emis-
sion feature only from direct viewing of clouds located within
� < 45

�
from the equator. Such clouds will be obscured by fore-

ground clouds in most cases, except when the torus width is
small (� ¼ 15�) or the overall optical depth of the clumpy me-
dium is small (small N 0 and �V ). Therefore, at i ¼ 0�, only a
small region of parameter space produces models with a weak
emission feature while most other parameters produce either a
featureless SED or a weak absorption feature. It is also evident
from Figure 16 that edge-on viewing is insensitive to the angular
thickness �. Irrespective of optical depth, the absorption feature
produced by a clumpy torus is never deep. Figure 17 shows the
variation of the two indicators with viewing angle for one value
of �V , a likely representative of actual torus clouds.
Comparison with observations is hampered by the angular

resolution problem. In the Mason et al. (2006) observations of
NGC 1068, the feature strength in the central 0.400, presumably
dominated by the AGN torus, is S10 ¼ �0:4. Scanning along the
ionization cones in 0.400 steps shows large variations in S10 and
a strong asymmetry in its spatial distribution. Measurements
with larger apertures contain significant contribution from the

5 If the feature is parameterized as aFc;ke
�(�k/�)2 , where �k is wavelength shift

from the peak, then S10 ¼ ln (1þ a) while EW10 ¼
ffiffiffi
�

p
a�.
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ionization cones, and Spitzer observations may be further con-
taminated by still larger dusty structures. Nevertheless, when
these observations produce clear differences between type 1 and
type 2 sources, it seems reasonable to attribute such global trends
to differences in viewing angles and to compare our model re-
sults with the observed trendswhile considering the actual numer-
ical values only as guidance. The most detailed data come from
the recent compilation of Spitzer mid-IR spectra by Hao et al.
(2007). Although a loosely defined sample, it is the largest gath-
ered thus far, including 24 type 1 quasars, 45 Seyfert 1, and
47 Seyfert 2 galaxies. The QSOs display almost exclusively an
emission feature with 0:45 � S10 � 0:05, but the Seyfert 1 gal-
axies are clustered around zero feature strength, occupying the
range 0:35 � S10 � �0:25. Almost all Seyfert 2 galaxies display
the 10 �m feature in absorption, with the distribution showing a
strong peak at �0:1 � S10 � �0:4. In addition to the Hao et al.
(2007) results, an intriguing recent development comes from the
Spitzer observations of seven high-luminosity type 2 QSOs by
Sturm et al. (2006). Although the individual spectra appear fea-
tureless, the sample average spectrum shows the 10 �m feature
in emission. More recently, Polletta et al. (2008) did find the fea-
ture in absorption in a larger sample of mid-IR-selected obscured
QSOs, while Weedman et al. (2006) found the 10 �m feature

either in absorption or absent in a sample of X-ray and mid-IR
selected obscured AGNs.

A striking characteristic of all AGN spectra is the absence
of any deep 10 �m absorption features. Given the large optical
depths implied by the X-ray data, smooth dust models predict
very deep absorption features. Shallow absorption features are a
hallmark of clumpy dust distributions irrespective of geometry
(Paper I ), and the mild absorption strengths evident in our
model results reflect this general property. In contrast, ULIRGs
display features that reach extreme depths (Hao et al. 2007).
This different behavior can be attributed to deep embedding in a
dust distribution that is smooth, rather than clumpy (Levenson
et al. 2007; see also Spoon et al. 2007; Sirocky et al. 2008). In
principle, cold foreground screens intercepting the intrinsic IR
emission of ULIRGs could also account for the deep silicate ab-
sorption in these sources. However, such an explanation would
require two distinct dust components: a very optically thick dust
blanketing the primary radiation source and reprocessing its in-
trinsic radiation to emerge at the enormous IR luminosities that
identify ULIRGs, and an additional foreground screen that ab-
sorbs the reprocessed IR radiation to produce the deep silicate
absorption. To remain cold, the foreground screen cannot pro-
vide the main reprocessing of the huge intrinsic luminosity, yet

Fig. 15.—Spectral shape of the silicate 10 and 18�m features:Fk is the torus emission in the 5Y30�m region andFc;k is the smooth underlying continuumobtained by a
spline connecting the feature-free segments in this spectral region (see text). All models have q ¼ 2, Y ¼ 30, � ¼ 45�, andN 0 as marked in each panel. Curves correspond
to different �V , as labeled. Panels on the left correspond to pole-on viewing, and those on the right to edge-on viewing; note the different scales of the vertical axes in the two
cases.
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Fig. 16.—Indicators of the 10�m silicate feature (see eq. [3]): variations of the feature strength (left) and equivalent width (right) with the optical depth �V of individual
clouds.Model parameters are q ¼ 2 and Y ¼ 30. Other parameters asmarked. The overall optical depth along radial equatorial rays extends all the way toN 0�V ¼ 4500 in
these models, yet the 10 �m absorption feature is never deep.

Fig. 17.—Variation of the 10 �m feature strength (left) and equivalent width (right) with viewing angle. Model parameters are �V ¼ 60, q ¼ 2, and Y ¼ 30. Other pa-
rameters as marked.



it must always be aligned along the line of sight with the pri-
mary dust blanket. Furthermore, the aligned screens have to be
selectively associated with ULIRGs identified with LINER- and
H iiYlike features because, unlike AGNs, these sources never
show shallow absorption (see Fig. 11 in Sirocky et al. 2008).
Such screens present a contrived solution for the 10 �m absorp-
tion in ULIRGs. In contrast, a single entity of smooth-density
embedding dust that is both geometrically and optically thick
accounts naturally for the total IR characteristics of deeply ab-
sorbed ULIRGs.

Our calculations show that clumpy tori with N 0 ¼ 2 never
produce an absorption feature and thus are ruled out for Seyfert
galaxies, although perhaps not for quasars (see x 6.4). The prop-
erties of the 10�mfeature found in Seyfert galaxies are reproduced
by our models for N 0 � 5Y15; � � 15

�Y45�, and �V � 30Y100.
When �V increases above �100, these models produce at equa-
torial viewing a weak 10�memission feature with a small equiv-
alent width, offering a potential explanation for the Sturm et al.
(2006) finding in type 2 QSOs: the small equivalent width would
make it hard to discern the feature in individual sources, bringing
it out of the noise only in composite spectra. Therefore, if this
finding is verified it could indicate that the optical depths of torus
clouds perhaps are larger in QSOs than in Seyfert galaxies. How-
ever, this is not a unique interpretation. Another possible expla-
nation is that the cloud number N 0 decreases as the luminosity
increases. This point is discussed further in x 6.4.

5.1.1. Apparent Optical Depth

The overall optical depth at visual along a radial ray in the
torus equatorial plane isN 0�V . With the standard dust properties
employed here, the magnitude of the optical depth at 10 �m is
�10 ¼ 0:07N 0�V . Another quantity frequently employed in data
analysis of absorption features is the apparent optical depth at
maximum absorption, obtained from I ¼ e��app , where I is the
residual intensity. Therefore, from equation (3), �app;10 ¼ �S10.
When the absorption is by a cold foreground screen that does not
emit itself at these wavelengths, �app;10 is the actual 10�moptical
depth of the screen. But when the absorption arises from a tem-
perature gradient in the emitting dust, �app;10 can differ substan-
tially from the actual optical depth, and the dependence of the
two quantities on the dust column may bear little resemblance to
each other. This is especially true of the torus emission. As is evi-
dent from Figures 16 and 17, the relation between �10, the actual
optical depth, and �app;10 is multivalued. Furthermore, although
�10 exceeds 300 in these figures, �app;10 is never larger than unity.
The apparent optical depth �app;10 is a poor indicator of the actual
optical depth.

5.2. Color Analysis

Color-color plots, showing correlations between two colors,
are a useful way to separate objects with similar types of spectra
and reveal underlying physical similarities. Alonso-Herrero et al.
(2003) present data for nuclear fluxes from visual to 16 �m for an
expanded set of the CfA sample of Seyfert galaxies. Removing
all known sources of bias in the original CfA selection, they have
constructed what is arguably themost complete sample of AGNs
currently available. Torus observations at wavelengths up to 10�m
are likely to be less contaminated by emission from the sur-
roundings. From the Alonso-Herrero et al. (2003) data we find
that fluxes at 1.6, 3.5, and 10 �m provide a useful set of colors
for comparison with our model results. Compared with other
combinations, the models separate better with this choice of
colors because the spectral slopes change the most around the
selected wavelengths. Figure 18 shows colors for sets of torus

models with � ¼ 45
�; Y ¼ 30; q ¼ 2, and various combinations

of �V andN 0. TheAGNflux is added to the torus emissionwhen-
ever the probability for direct view of the nucleus exceeds 50%.
In each case the colors depend on the viewing angle, resulting in
a track of model results. Colors corresponding to type 1 viewing
populate the upper right end of the track, with type 2 viewing in
the lower left. Model parameters that explain the observations of
the 10 �m feature also give good qualitative agreement with the
data from Alonso-Herrero et al. (2003) which fall inside the two
regions delineated with dashed lines in the figure. While type 2
models are spread out along the track, type 1 models are grouped
together more closely at the upper end since their spectra are
dominated by the AGN continuum and thus are similar despite
the broad range of parameters.

6. ADDITIONAL IMPLICATIONS OF CLUMPINESS

Comparison with IR observations shows that the likely range
for optical depths of individual torus clouds is �V � 30Y100 and
there areN 0 � 5Y15 clouds, on average, along radial equatorial
rays. Assuming a standard dust-to-gas ratio, the column density
of a single cloud is N

(1)
H � 1022Y1023 cm�2 and the torus equa-

torial column density isN
(eq)
torus ¼ N 0N

(1)
H � 1023Y1024 cm�2. Tak-

ing account of the torus clumpiness has immediate implications
for a number of other issues not directly related to its IR emission.

6.1. The Torus Mass

As shown in x 2.3 of Paper I, the total mass in torus clouds can
bewritten asMtorus ¼ mHN

(1)
H

R
NC(r; �) dV ; note thatMtorus does

not involve the volume filling factor. With the cloud distribution
from equation (2) and taking for simplicity a sharp-edge angu-
lar distribution, so that the integration is analytic, the torus mass
is Mtorus ¼ 4�mH sin �N (eq)

torusR
2
dYIq(Y ), where Iq ¼ 1; Y /(2 ln Y )

and 1
3
Y for q ¼ 2, 1, and 0, respectively. Taking Rd from equa-

tion (1), the mass ratio of the torus and the central black hole
is

Mtorus

M�
¼ 2 ; 10�4 L

LEdd
sin �N (eq)

torus;23YIq; ð4Þ

Fig. 18.—Data and model results for a color-color diagram. Dashed lines out-
line the areas occupied by type 1 and type 2 sources in the Alonso-Herrero et al.
(2003) expanded CfA sample of Seyfert galaxies. Models have Y ¼ 30, q ¼ 2,
� ¼ 45

�
, and �V and N 0 as coded with symbols and shades, respectively. The

AGN flux is added to the torus emission (type 1 model spectrum) whenever the
probability for direct view of the center exceeds 50%. Each model produces a
track. Positions along the track correspond to viewing angles, varying in steps of
10� from i ¼ 0� on the right to i ¼ 90� on the left.
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where LEdd is the Eddington luminosity and N
(eq)
torus;23 is the equa-

torial column density in 1023 cm�2. Since the radial thickness Y
is likely P20Y30 (x 4), the torus mass is always negligible in
comparison withM� when q ¼ 2. If the radial cloud distribution
is flatter, equation (4) may constrain the torus properties to keep
its mass below that of the black hole.

6.2. Total Number of Clouds

As shown in Paper I, the total number of clouds, ntot, is the
only torus property whose estimate involves the cloud size Rc.
Equivalently, Rc can be replaced by the volume filling factor �,
since inserting equation (2) into equation (3) of Paper I yields
Rc ¼ �Rd/N 0 at the torus inner edge. If� is constant throughout
the torus then ntot ’ N 3

0/�
2 for the 1/r 2 distribution, independent

of the torus radial thickness Y. For example, if the volume filling
factor is 10%, in order to encounterN 0 ¼ 5Y10 clouds along each
radial equatorial ray the torusmust contain ntot ’ 104Y105 clouds.

6.3. AGN Unification

The classification of AGNs into types 1 and 2 is based on the
extent to which the nuclear region is visible. In its standard for-
mulation, the unification approach posits the viewing angle as
the sole factor in determining the AGN type, and this is indeed
the case for any smooth-density torus whose column density de-
clines with angle � away from the equatorial plane. The AGN is
obscured from directions that have e��V (�) 31 and visible from
those with e��V (�)T1. Because of the steep variation of e��

with � , the transition between these two regions is sharp, occur-
ring around the direction where �V (�) ¼ 1. Denote this angle �,
then, so long as �V (0)31 and �V (

1
2
�)T1, all AGNs viewed

at 0 � i < 1
2
�� � appear as type 1 sources, and those at 1

2
��

� � i � 1
2
� as type 2. If f2 denotes the fraction of type 2 sources

in the total population then f2 ¼ sin � for all smooth-density tori,
irrespective of their specific angular profiles. This relation has
been employed in all studies of source statistics performed to
date. From statistics of Seyfert galaxies Schmitt et al. (2001) find
that f2 ’ 70%, hence their estimate � ’ 45�. The issue is cur-
rently unsettled because Hao et al. (2005) have recently found that
f2 is only about 50% in Seyfert galaxies, or � ’ 30�.

Within the clumpy torus paradigm, the difference between
types 1 and 2 is not truly an issue of orientation but of probabil-
ity for direct view of the AGN. Since that probability is always
finite, type 1 sources can be detected from what are typically
considered type 2 orientations, even through the torus equato-
rial plane: if N 0 ¼ 5, for example, the probability for that is
e�5 ¼ 1/148 on average. This might offer an explanation for the
few Seyfert galaxies reported by Alonso-Herrero et al. (2003) to
show type 1 optical line spectra together with 0.4Y16 �m SEDs
that resemble type 2. Conversely, if a cloud happens to obscure
the AGN from an observer, that object would be classified as
type 2 irrespective of the viewing angle. In cases of such single-
cloud obscuration, on occasion the cloud may move out of the
line of sight, creating a clear path to the nucleus and a transition
to type 1 spectrum. The timescale for such an event is determined
by the cloud size and velocity. Neither quantity can be found
from the SED since optical depth is the only property of a single
cloud that can be determined from SED analysis. However, at a
distance rpc (in pc) from a black hole with mass 107M�7 (inM�),
the local Keplerian speed is 208(M�7/rpc)

1/2 km s�1, and resis-
tance to tidal sheer implies that the size of a cloud with column
density 1023NH;23 cm�2 is restricted to P1016NH;23r

3
pc/M�7 (e.g.,

Elitzur & Shlosman 2006). The ratio of this cloud size and local
Keplerian speed produces a timescale of 17NH;23r

3:5
pc /M

1:5
�7 yr, an

order-of-magnitude estimate for a cloud crossing time across the

line of sight. Although the likelihood of catching such a crossing
by chance is small, transitions between type 1 and 2 line spectra
have been observed in a few sources (see Aretxaga et al. 1999
and references therein), and Goodrich (1989, 1995) has argued
that a couple of these cases are consistent with the change in red-
dening expected from cloud motion across the line of sight. It
is worthwhile conducting monitoring observations in an attempt
to detect additional such transitions. The most promising candi-
dates would be obscured systems with relatively small X-ray-
obscuring columns, which may minimize the number of clouds
along the line of sight; small torus sizes, i.e., lower luminosities;
and large black hole masses.
Accounting for the torus clumpiness, the fraction of type 2

sources is f2 ¼ 1�
R �/2
0

e�N T (� ) cos � d� (eq. [9] in Paper I ).
The sharp-edge clumpy torus has f2 ¼ (1� e�N 0 ) sin �, prac-
tically indistinguishable from a smooth-density torus whenN 0

exceeds �3Y4. However, the situation changes fundamentally
for soft-edge distributions because at every viewing angle the
probability of obscuration increases with the number of clouds.
As is evident from Figure 19, the Gaussian distribution produces
a strong dependence on N 0 and significant differences from
the sharp-edge case. Since the sharp-edge angular distribution
is ruled out by observations (x 3.1), the fraction of obscured
sources depends not only on the torus angular width but also
on the average number of clouds along radial rays. While the
fraction f2 ¼ 70% requires � ¼ 45� in the sharp-edge case, in
a Gaussian clumpy torus it implies � ¼ 33� when N 0 ¼ 5 and
� ¼ 27

�
when N 0 ¼ 10; in terms of the torus height and ra-

dius,H /R (=tan �) is reduced from�1 to�0.7. It is noteworthy
that the behavior of the 10 �m feature in the � ¼ 30� models
comes closest to matching the observed averages of both type 1
and type 2 AGNs, as is evident from Figure 16.

6.4. A Receding Torus?

The fraction f2 of obscured AGNs decreases when the bolo-
metric luminosity increases. This has been verified in a large
number of observations that estimate the luminosity dependence
of either f2 or f1 (the fraction of unobscured sources), or differ-
ences between the luminosity functions of type 1 and 2 AGNs
(see Hao et al. 2005; Simpson 2005; Maiolino et al. 2007). As
is evident from Figure 19, the observed decrease of f2 when L
increases can be produced by either a decrease of � at constant
N 0 or a decrease of N 0 at constant �. Both options are equally
plausible because the torus inner radius increases as L1/2 (eq. [1]).
The decreasing-� option would arise if the torus height is inde-
pendent of luminosity or increases more slowly than L1/2; the
decreasing-N 0 option would arise if the torus outer radius is in-
dependent of luminosity or increases more slowly than L1/2.
The observed trend of f2 to decrease with L may arise from

either � or N 0 or both. Source statistics cannot distinguish be-
tween the various possibilities; the only way to decide between
them is to find L-dependence in other observable quantities. The
10 �m silicate feature offers such an indicator (x 5.1). Among
type 1 AGNs, quasars consistently produce an emission feature
but Seyfert galaxies are featureless on average, displaying either
weak emission or absorption scattered around zero feature strength.
In type 2 AGNs the feature switches from clear absorption in
Seyfert galaxies to apparent emission in type 2 QSOs. That is, in
both type 1 and type 2 AGNs the feature moves toward emission
with the increase from Seyfert to quasar luminosities. As is evi-
dent from Figure 16, the decreasing-N 0 option naturally pro-
duces such a universal trend: the feature appears in emission for
both pole-on and edge-on viewing whenN 0 decreases to�2 at
a fixed �. In contrast, the decreasing-� option produces the
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observed trend toward stronger emission feature only in type 1
AGNs, not in type 2; varying � has virtually no effect on the
10 �m feature in type 2 viewing. Explaining the switch toward
apparent emission feature in type 2 QSOs would require that in
this case higher luminosities not only reduce � but are also
accompanied by an increase in the optical depth of individual
clouds.

As is evident from this discussion, current observations, if
accepted at face value and assuming that the torus contribution
dominates the 10 �m spectral range on average, can be explained
if an increasing luminosity causes a decrease in the number of
clouds N 0. Whether or not this is also accompanied by a de-
crease in the torus angular width cannot be ruled in or out. Ob-
scuration statistics and the 10 �m feature do not yet provide
decisive information to uniquely constrain the behavior of the
torus parameters with increasing luminosity.

The decreasing-� scenario is known as the receding torus
model, first suggested by Lawrence (1991). It is intriguing that
Arshakian (2005) and Simpson (2005) derived independently
an almost identical relation tan � / L�0:27. However, both stud-
ies, as well as every other analysis of obscuration statistics thus
far, were based on sharp-edge angular obscuration. Removing
this assumption affects profoundly the foundation of the reced-
ing torusmodel because the dependence on the number of clouds
necessitates analysis with two free parameters; therefore, � can-
not be determined without N 0.

6.5. X-Rays and the AGN Torus

Dusty material absorbs continuum radiation both in the UV/
optical and X-rays, and therefore the dusty torus also provides
X-ray obscuration. But dust-free gas attenuates just the X-ray
continuum, so clouds inside the dust sublimation radius will pro-
vide additional obscuration only in this band.

Observations give overwhelming evidence for the orientation-
dependent X-ray absorption expected from AGN unification.
In general, the 2Y10 keV X-ray continuum is heavily obscured
in type 2 sources and relatively unobscured in type 1 AGNs (see
Maiolino & Risaliti 2007 and references therein). The strong
orientation dependence of the absorption cannot be attributed to

the host galaxy because the AGN axis, as traced by the jet posi-
tion angle, is randomly oriented with respect to the galactic disk
in Seyfert galaxies (Kinney et al. 2000) and the nuclear dust disk
in radio galaxies (Schmitt et al. 2002). Yet in spite of the overall
correspondence between the optical andX-ray obscuration, there
is a significant number of AGNs for which the expected char-
acteristics are different in the two bands. Although substantial
X-ray absorption is common among type 2 AGNs, there are also
unabsorbed X-ray sources that present only narrow emission
lines in their optical spectra. Such cases can be explained with
the observational selection effect suggested by Severgnini et al.
(2003) and Silverman et al. (2005): in these sources, the optical
light of the host galaxy outshines the AGN continuum and broad
lines. This suggestion is supported by the subsequent studies of
Page et al. (2006) and Garcet et al. (2007). The opposite case,
obscuration only in X-rays, exists too—there are type 1, broad-
line AGNs with significant X-ray absorption (Perola et al. 2004;
Eckart et al. 2006; Garcet et al. 2007). Extreme cases include
quasars whose optical spectrum shows little or no dust extinction
while their X-ray continuum is heavily affected by Compton-
thick absorption (Braito et al. 2004; Gallagher et al. 2006). This
cannot be attributed to observational selection effects.

Obscuration that affects the X-rays but not the optical arises
naturally from absorption by dust-free clouds. Conclusive evi-
dence for such absorption comes from the short timescales for
transit of X-ray-absorbing clouds across the line of sight, which
establish the existence of obscuring clouds inside the dust sub-
limation radius (Risaliti et al. 2002). Extreme cases involve 4 hr
variability (Elvis et al. 2004) and variations in absorbing column
of more than 1024 cm�2 within 2 days, indicating Compton-
thick X-ray absorption from a single cloud in the broad-line
region (Risaliti et al. 2007). These observations show that the
torus extends inward beyond the dust sublimation point to some
inner radius RX < Rd . Clouds at RX � r � Rd partake in X-ray
absorption but do not contribute appreciably to optical obscura-
tion or IR emission because they are dust-free. Since every cloud
that attenuates the optical continuum contributes also to X-ray
obscuration but not the other way round, the X-ray-absorbing
column always exceeds the UV/optical absorbing column, as

Fig. 19.—AGN statistics: The fraction f2 of obscured sources for a clumpy torus with Gaussian angular distribution as a function of (a) the torus width parameter � and
(b) the cloud numberN 0. The fraction decreases when either� decreases at a fixedN 0 orN 0 decreases at a fixed�. The dashed line in (a) is for a clumpy toruswith a sharp-
edged angular profile and N 0k3Y4. This curve also describes the fraction f2 for every smooth-density torus, whatever its angular distribution.

AGN DUSTY TORI. II. OBSERVATIONAL IMPLICATIONS 175No. 1, 2008



observed (Maccacaro et al. 1982; Gaskell et al. 2007). Fur-
thermore, Maiolino et al. (2001) find that the X-ray-absorbing
column exceeds the reddening column in each member of an
AGN sample by a factor ranging from�3 up to�100, implying
that the bulk of the X-ray absorption comes from the clouds in
the dust-free inner portion of the torus. This could explain the
Guainazzi et al. (2005) finding that at least 50% of Seyfert 2 gal-
axies are Compton-thick.

In steep radial distributions such as 1/r 2, which seems to ad-
equately describe the torus dusty portion, most clouds are located
close to the inner radius. If this radial profile continued inward
into the dust-free zone, that region would dominate the X-ray
obscuration—as observed. Similar to the optical regime, the ob-
served fraction of X-ray-absorbed AGNs varies inversely with
intrinsic luminosity (Ueda et al. 2003; Hasinger 2004; Akylas
et al. 2006). This fraction is usually derived from the statistics
of sources that have at least one X-ray-obscuring cloud along the
line of sight to the AGN, and therefore it follows the behavior
plotted in Figure 19 but withN 0 corresponding to the total num-
ber of (dusty and dust-free) clouds. As the previous section shows,
either the radial thickness � or the cloud number N 0 could be
responsible for a decreasing f2. Maiolino et al. (2007) find that the
f2 fractions follow similar trends with L in the X-ray and optical
regimes, indicating that whichever intrinsic parameter is respon-
sible for these trends it might behave similarly in the dusty and
dust-free portions of the torus.

6.6. What is the Torus?

In the ubiquitous sketch byUrry & Padovani (1995) the AGN
central region, comprising the black hole, its accretion disk, and
the broad-line-emitting clouds, is surrounded by a large donut-
like structure—the torus. This hydrostatic object is a separate
entity, presumably populated by molecular clouds accreted from
the galaxy. Gravity controls the orbital motions of the clouds, but
the origin of vertical motions capable of sustaining the ‘‘donut’’
as a hydrostatic structure whose height is comparable to its radius
was recognized as a problem since the first theoretical study by
Krolik & Begelman (1988).

Two different types of observations now show that the torus
may be a smooth continuation of the broad-line region (BLR),
not a separate entity. IR reverberation observations by Suganuma
et al. (2006) show that the dust innermost radius scales with
luminosity as L1/2 and is uncorrelated with the black hole mass,
demonstrating that the torus inner boundary is controlled by dust
sublimation (eq. [1]), not by dynamical processes. Moreover, in
each AGN for which both data exist, the IR time lag is the upper
bound on all time lags measured in the broad lines, a relation
verified over a range of 106 in luminosity. This finding shows
that the BLR extends all the way to the inner boundary of the
dusty torus, validating the Netzer & Laor (1993) proposal that
the BLR size is bounded by dust sublimation. The other evidence
is the finding by Risaliti et al. (2002) that the X-ray-absorbing
columns in Seyfert 2 galaxies display time variations caused by
cloud transit across the line of sight. Most variations come from
clouds that are dust-free because of their proximity (<0.1 pc) to
the AGN, but some involve dusty clouds at a few parsecs. Other
than the different timescales for variability, there is no discern-
ible difference between the dust-free and dusty X-ray-absorbing
clouds, nor are there any gaps in the distribution.

These observations suggest that the X-ray absorption, broad-
line emission, and dust obscuration and reprocessing are pro-
duced by a single, continuous distribution of clouds. The different
radiative signatures merely reflect the change in cloud composi-
tion across the dust sublimation radius Rd . The inner clouds are

dust free. Their gas is directly exposed to the AGN ionizing con-
tinuum, and therefore it is atomic and ionized, producing the
broad emission lines. The outer clouds are dusty, and therefore
their gas is shielded from the ionizing radiation, and the atomic
line emission is quenched. Instead, these clouds are molecular
and dusty, obscuring the optical /UVemission from the inner re-
gions and emitting IR. Thus, the BLR occupies r < Rd while the
torus is simply the r > Rd region. Both regions absorb X-rays,
but because most of the clouds along each radial ray reside in its
BLR segment, that is where the bulk of the X-ray obscuration is
produced. Since the X-ray obscuration region (XOR) coincides
mostly with the BLR, it seems appropriate to name this region in-
stead BLR/XOR. By the same token, since the unification torus
is just the outer portion of the cloud distribution and not an in-
dependent structure, it is appropriate to rename it the TOR for
toroidal obscuration region. The close proximity of BLR and
TOR clouds should result in cases of partial obscuration, pos-
sibly leading to observational constraints on cloud sizes.
The merger of the ionized and the dusty clouds into a single

population offers a solution to the torus vertical structure prob-
lem. Mounting evidence for cloud outflow (see, e.g., Elvis 2004)
indicates that instead of a hydrostatic ‘‘donut,’’ the TOR is just
one region in the clumpy wind coming off the black hole accre-
tion disk (see Elitzur & Shlosman 2006 and references therein).
The accretion disk appears to be fed by amidplane influx of cold,
clumpy material from the main body of the galaxy. Approaching
the center, conditions for developing hydromagnetically or ra-
diatively driven winds above this equatorial inflow becomemore
favorable. The disk-wind rotating geometry provides a natural
channel for angularmomentumoutflow from the disk and is found
on many spatial scales, from protostars to AGNs (Blandford &
Payne 1982; Emmering et al. 1992; Ferreira 2007). The com-
position along each streamline reflects the origin of the outflow
material at the disk surface. The disk outer regions are dusty and
molecular, as observed in water masers in some edge-on cases
(Greenhill 2005). At smaller radii the dust is destroyed and the
disk composition switches to atomic and ionized, producing a
double-peak signature in some emission-line profiles (Eracleous
2004).
The outflow from the atomic and ionized inner region feeds

the BLR and produces many atomic line signatures, including
evidence for the disk wind geometry (Hall et al. 2003). Clouds
uplifted from the disk dusty and molecular outer region feed the
TOR and may have been detected in water maser observations
of Circinus (Greenhill et al. 2003) and NGC 3079 (Kondratko
et al. 2005). Indeed, Elitzur & Shlosman (2006) derive the cloud
properties from constraints deduced from clumpy models for the
IR emission and find that they provide the right conditions for
H2O maser action. In both the inner and outer outflow regions,
as the clouds rise and move away from the disk they expand and
lose their column density, limiting the vertical scope of X-ray ab-
sorption, broad-line emission, and dust obscuration and emis-
sion. The result is a toroidal geometry for both the BLR/XOR
and the TOR. Because of the strong photoionization heating of
BLR clouds they may rise to relatively lower heights than the
TOR dusty clouds. Detailed comparisons of X-ray and optical
obscuration in individual sources and in large samples should
help to constrain the parameters N 0; �, and �V separately for
the TOR and the BLR/XOR. Such comparisons must consider
the large scatter of obscuration in individual sources around the
sample mean (see x 4.2 of Paper I). In the outflow scenario, the
TOR disappears when the bolometric luminosity decreases be-
low �1042 erg s�1 because the accretion onto the central black
hole can no longer sustain the required cloud outflow rate (Elitzur
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& Shlosman 2006; Elitzur 2007). With further luminosity de-
crease, suppression of cloud outflow spreads radially inward
and the BLR, too, disappears. The recent review by Ho (2008)
presents extensive observational evidence for the disappearance
of the torus and the BLR in low-luminosity AGNs.

The Circinus Seyfert 2 core provides the best glimpse of the
AGN dusty/molecular component. Water masers trace both a
Keplerian disk and a disk outflow (Greenhill et al. 2003). Dust
emission at 8Y13 �m shows a disk embedded in a slightly cooler
and larger, geometrically thick torus (Tristram et al. 2007). The
dusty disk coincides with the maser disk in both orientation and
size. Theoutflowmasers trace only parts of the torus. The lackof full
coverage can be attributed to the selectivity of maser operation—
strong emission requires both pump action to invert the maser
molecules in individual clouds and coincidence along the line of
sight in both position and velocity of two maser clouds (Kartje
et al. 1999). Proper-motion measurements and comparisons of
the disk and outflow masers offer a most promising means to
probe the structure and motion of TOR clouds.

7. SUMMARY AND DISCUSSION

We have developed a formalism for handling radiative transfer
in clumpy media and applied it to the IR emission from the AGN
dusty torus. In the calculations we execute only the first two steps
of the full iteration procedure outlined in x 3.2 of Paper I, and
the moderate total number of clouds considered here validates
this procedure. When that number increases, the probability for
unhindered view of the AGN decreases, the role of indirectly
heated clouds becomes more prominent and eventually requires
higher order iterations. Our current calculations employ some ad-
ditional simplifying approximations: the grain mixture is handled
in the composite-grain approximation, all dust is in cloudswithout
an intercloud medium, and all clouds are identical. We have al-
ready begun work on removing these assumptions and will report
the results in future publications.

In contrast with the smooth-density case, the clumpy problem
is not well defined because clouds can have arbitrary shapes, and
any given set of parameters can have many individual realiza-
tions. Our formalism invokes a statistical approach for calculating
an average behavior, and it is encouraging that other approaches
produce similar results. Dullemond & van Bemmel (2005) con-
duct ‘‘quasi-clumpy’’ calculations in which the torus is modeled
as a set of axisymmetric rings, and compare the results with the
smooth-density case. In agreement with our conclusions they find
that only smooth-density models can produce very deep absorp-
tion feature while clumpy dust produces stronger near-IR, broader
SEDs, and much more isotropic IR emission. Hönig et al. (2006)
employ 3D Monte Carlo calculations that bypass some of our
approximations. They also treat different cloud realizations for
the same global parameters, allowing them to show the intrinsic
scatter in SED due to the stochastic nature of the problem. Their
results are in agreement with ours, validating our approach and
the approximations we employ. Since the dust properties in
their calculations are from Draine & Lee (1984) the 10 �m fea-
ture reaches somewhat larger strengths than in our calculations,
which employ the Ossenkopf et al. (1992) ‘‘cool’’ dust (but are
similar to our original results in Nenkova et al. 2002, which also
employed Draine & Lee dust). In spite of these differences,
Hönig et al. (2006) too find that the silicate absorption feature is
never as deep as expected for a uniform dust distribution, and
obtain qualitatively similar behavior of the silicate emission fea-
ture and overall SED shape.

The models presented here show that clumpy torus models
are consistent with current AGN observations if they contain

N 0 � 5Y15 dusty clouds along radial equatorial rays, each with
an optical depth �V � 30Y100. The cloud angular distribution
should decline smoothly toward the axis; for example, a Gaussian
profile centered on the equatorial plane. Power-law radial distri-
butions r�1Yr�2 produce adequate results. Dust grainswith optical
properties of the standard Galactic mixture provide satisfactory
explanation to the IR observations. The behavior of the 10 �m
silicate feature, in particular the lack of any deep absorption fea-
tures, is reproduced naturally without the need to invoke any spe-
cial dust properties. Several suggestions that the abundance or
composition of AGN dust might differ from its Galactic counter-
part can be discarded because of subsequent developments.Risaliti
et al. (1999) note that, assuming standard dust abundance, the
large column densities discovered inX-ray absorption imply torus
masses in excess of the dynamical mass, posing a problem for
the system stability. However, their mass estimates were based
on the uniform mass distribution and large torus sizes derived
from smooth-density models. The compact sizes and steep den-
sity distributions of clumpy models eliminate the problem (see
x 6.1). Maiolino et al. (2001) suggested that the widely different
UVand X-ray extinctions they found in individual sources could
imply low dust abundance, but the subsequent discovery of rapid
variations shows that X-ray obscuration by dust-free clouds is
the more likely explanation (see x 6.5). They also invoked the
lack of prominent 10�mabsorption features as an indication that
AGN dust is different from Galactic, but this is a natural con-
sequence of clumpy dust distributions (see x 5.1). Intrinsic ex-
tinction curves deduced from spectral analysis of type 1 sources
(see Czerny 2007 for a recent review and a comprehensive dis-
cussion of uncertainties) generally indicate a depletion of small
grains, as could be expected: the obscuration in type 1 sources is
dominated by the dusty clouds closest to the center and these
clouds contain predominantly large grains, which survive at the
smallest distances from the AGN (see x 2.1). There is no com-
pelling evidence for significant differences between the proper-
ties of AGNs and Galactic dust. Other dust compositions are not
ruled out, but nothing in the current data requires major depar-
tures from the dust grains we use.

The close proximity of dust temperatures as different ask800
and �200Y300 K found in interferometry around 12 �m cannot
be explained by smooth-density models even when they ac-
count for the individual temperatures of grains with different sizes
(Schartmann et al. 2005). Clumpiness resolves this puzzling ob-
servation because the dust on the dark side of an optically thick
cloud is much cooler than on the bright side. Thanks to the mix-
ture of different dust temperatures at the same radial distance,
clumpy models naturally explain the torus compact size. In spite
of the high anisotropy of its obscuration, the torus emission is ob-
served to be nearly isotropic at kk 12 �m. Clumpy models re-
solve this puzzle too, since the emission from a torus with radial
thickness Y ¼ 10 varies little with viewing angle. The variation
is especially small if the radial distribution is 1/r 2 or steeper, and
such steep radial profiles maintain a nearly isotropic emission
even at larger torus sizes.

In addition to IR observations, clumpiness significantly im-
pacts the analysis of other data, in particular obscuration sta-
tistics. The fraction f2 of obscured sources is controlled not only
by the torus angular thickness �, as in all analyses to date, but
also by the cloud number N 0. With N 0 ¼ 5, a 70% fraction of
type 2 AGNs implies � � 30� instead of the standard 45�. Ob-
servations indicate that increasing the bolometric luminosity
from the Seyfert to the quasar regime induces (1) a decrease of
f2 and (2) a switch to emission feature at 10 �m for both type 1
and some type 2 AGNs. Both trends can be explained with a
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change in a single torus parameter—N 0 decreases from �5 in
Seyfert galaxies to �2 in QSO (see Figs. 16 and 19). Decreas-
ing �, the scenario known as the receding torus model, explains
the first trend but has no effect on the second. The emergence of
the 10�m in emission would require in this case the additional in-
crease of individual clouds optical depth to �V k100 in QSOs.

The decreasing-N 0 scenario provides the simplest explana-
tion for the trends observed when L is increasing, but that does
not guarantee its validity. This demonstrates the difficulties in
deducing the model parameters from observations that cannot
yet resolve the torus basic ingredient—the individual dusty clouds.
The problem is compounded by the lack of angular resolution
that hinders clean separation of the torus component from the
flux measured at most IR wavelengths and by the degeneracies
of the radiative transfer solutions that prevent decisive, one-to-
one associations between model parameters and observable
quantities. The only practical way around these difficulties is to
match trends identified in the data with similar general properties
of the models.

Our main conclusions can be summarized as follows:

1. The torus angular distribution has to be soft edged.
2. Clumpymodels can produce nearly isotropic IR emission,

together with extremely anisotropic obscuration.
3. Clumpy models can explain all current observations with

compact torus sizes; SED fitting is a poor constraint on the size.
4. Standard interstellar dust describes adequately AGN obser-

vations; there does not seem to be a need for any major modifi-
cations of grain properties.

5. Clumpy sources never produce a very deep silicate feature;
apparent optical depth, obtained from I ¼ e��app where I is the

residual intensity at maximum absorption, is a poor indicator of
the actual optical depth.
6. The probability for direct line-of-sight to the AGN at large

viewing angles is small, but not zero.
7. The statistics of obscured sources depend on both the torus

angular thickness and the number of clouds along radial rays.
8. The torus and the BLR are the dusty (outer) and dust-free

(inner) regions in a continuous cloud distribution; a more ap-
propriate designation for the torus is toroidal obscuration region
(TOR).
9. X-ray obscuration comes from both TOR and, predomi-

nantly, BLR clouds.

As long as IR observations are incapable of resolving indi-
vidual torus clouds, one must rely on the combined evidence for
clumpy structure instead of on a ‘‘smoking gun.’’ Individual
TOR clouds seem to have been resolved in observations of out-
flow water masers in Circinus and NGC 3079. Proper-motion
measurements and comparison of these masers with their disk
counterparts provide the most promising method for probing
the TOR structure and kinematics. The Circinus AGN, whose
dust emission has been resolved in VLTI observations, is an es-
pecially attractive target for studying the dusty and molecular
content of TOR clouds.

Part of this work was performed while M. E. spent a most
enjoyable sabbatical at LAOG, Grenoble. We thank Almudena
Alonso-Herrero, Nancy Levenson, andMaria Polletta for useful
comments on the manuscript. Partial support by NSF and NASA
is gratefully acknowledged.

APPENDIX A

TECHNICALITIES

The relevant coordinates in describing both the cloud distribution and the source function are the cloud’s radial distance r, angle �
from the equatorial plane, and the angle 	 between its radius vector and the AGN-observer axis (see eq. [2], and Paper I’s Fig. 2 and
eq. [8]). The torus emission requires an integration along a path inclined by the viewing angle i from the torus axis at some displace-
ment from the center (eq. [5] in Paper I ). To handle the geometry we introduce a cartesian coordinate system centered on the AGN
with z toward the observer and x-y in the plane of the sky, with the torus axis in the y-z plane at angle i from the z-axis. The integration
path is specified by its fixed values of x and y, so that the angular displacement is (�x; �y) ¼ (x/D; y/D) and the angular impact
parameter in brightness profiles is � ¼ (x2 þ y2)1/2/D. The integration variable is z. At any point r ¼ (x; y; z) along the path, the cloud
coordinates are found from

r 2 ¼ x2 þ y2 þ z2; tan � ¼ y sin iþ z cos iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ( y cos i� z sin i)2

p ; cos 	 ¼ z

r
: ðA1Þ

The path integration in equation (5) of Paper I produces the intensity generated by the cloud distribution. Since our source function
calculations involve only the first two steps of the full iteration procedure described in x 3.2 of Paper I, we must introduce a correction
to take proper account of flux conservation.With pAGN the fraction of theAGN luminosity that gets through the torus (eq. [8] of Paper I),
we calculate ICk (x; y; i), the brightness map of clumpy torus emission in the direction i, from

ICk ¼ L(1� pAGN)

4�
R
d cos i

R
dk

R
Hk dx dy

Hk;

where

Hk(x; y; i) ¼
Z

Pesc;k(r)Sc;k(r)NC(r) dz: ðA2Þ

Here Sc;k(r) and NC(r) are, respectively, the source function and column density of clouds at position r along the integration path, and
Pesc;k(r) is the probability for a photon of frequency k to escape from that point through the rest of the path. The torus flux at distanceD
and viewing angle i is calculated from FC

k (i) ¼ (1/D2)
R
ICk (x; y; i) dx dy. With these expressions, the spectral shape is determined from

the first two iteration steps while ensuring that the torus emission properly obeys flux conservation (eq. [17] of Paper I ).
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The quantityHk is intrinsically a function of scaled variables,Hk ¼ Hk(x/Rd; y/Rd ; i), because the brightness at position (x; y) depends
only on the distribution of dust in temperature and optical depth along the path (Ivezić & Elitzur 1997). Therefore, from equation (A2)
the brightness has the form ICk (�x; �y; i) ¼ (L/4�R2

d) f (�x/�d ; �y�d), where f is a dimensionless function of the scaled angular displace-
ments. Since the brightness scale L/4�Rd

2 is determined by the dust sublimation temperature Tsub (eq. [1]), the only effect of the lu-
minosity is to set the overall angular scale �d , effecting a self-similar stretch of the brightness map. Similarly, the flux, FC

k , is a product of
the bolometric flux FAGN and a luminosity-independent spectral shape.
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We discovered a bug in the code that performed the calculation of torus emission in the published version of this article. The
spectral shape of the torus flux is not affected; the error involves only its absolute scale. As a result, all plots of λFλ/FAGN carry the
wrong normalization and must be scaled upward by the corrective factors listed in Table 1 for the affected figures. Because each of the
plots shown in the top panel of Figure 11 in the published article requires a different scaling factor, it is reproduced here as Figure 1.
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Figure 1. This figure replaces the top panel of Figure 11 in the original paper.

Table 1
Correction Factors for the Figures Identified in the First Two Columns

Figure Panel Factor

3 Top, bottom 2.2, 1.5
5 1.5
6, 7a N0 = 2, 5, 10, 15, both q = 1 and 2 1.8, 1.5, 1.3, 1.2
8 σ = 15◦, 30◦, 45◦, 60◦ 4.8, 2.3, 1.5, 1.2
9 1.5
10 1.5
12 1.5
14 Iν , mid-panel 1.9

Notes. All plots in each of the corresponding figures should be scaled upward by the factors
listed in the third column. Figures not listed here were not affected by the bug in the code.
a The correction scaling factor in Figure 7 in the published article applies only to the torus
contribution to the SED.
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