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Abstract

We report the results of a search for long-period (100< P< 600 days) periodic variability in the SDSS Stripe 82
standards catalog. The SDSS coverage of Stripe 82 enables such a search because there are on average 20
observations per band in ugriz bands for about one million sources, collected over about 6 yr, with a faint limit of
r∼ 22 mag and precisely calibrated 1%–2% photometry. We calculated the periods of variable source candidates
in this sample using the Lomb–Scargle periodogram and considered the three highest periodogram peaks in each of
the gri filters as relevant. Only those sources with gri periods consistent within 0.1% were later studied. We use the
Kuiper statistic to ensure uniform distribution of data points in phased light curves. We present five sources with
the spectra consistent with quasar spectra and plausible periodic variability. This SDSS-based search bodes well for
future sensitive large-area surveys, such as the Rubin Observatory Legacy Survey of Space and Time, which, due
to its larger sky coverage (about a factor of 60) and improved sensitivity (∼2 mag), will be more powerful for
finding such sources.

Unified Astronomy Thesaurus concepts: Astronomy data analysis (1858); Period determination (1211); Time series
analysis (1916); Quasars (1319); Gravitational wave sources (677)

1. Introduction

Recent large-area time-domain sky surveys, such as the
Optical Gravitational Lensing Experiment (OGLE; Udalski et al.
1997; Udalski 2003), the Catalina Real-Time Transient Survey
(Drake et al. 2009), the Palomar Transient Factory (PTF; Law
et al. 2009), Gaia (Gaia Collaboration et al. 2018, 2022), and the
Zwicky Transient Facility (ZTF; Bellm et al. 2019), to name but a
few, have shown the power of measuring variability of celestial
sources for studying a variety of astrophysical phenomena. In this
work we focus on one of the currently least well-constrained
populations of astrophysical variability, the long-period, small-
amplitude variability. The main reason why this domain of
variability has not been studied in the past is the lack of adequate
observational material: long observational baseline and photo-
metric precision and depth over a large area of the sky are
required to permit this kind of study.

There are several surveys that partially meet some the necessary
requirements; however, none of them bring them all together like
Sloan Digital Sky Survey’s (SDSS) time-domain survey in the
Stripe 82 (S82) region (described in detail in Section 2). This
survey has photometric precision and depth (faint limit r∼ 22
mag) better than, for example, the Lincoln Near-Earth Asteroid
Research (Stokes et al. 2000; Palaversa et al. 2013), PTF (Law
et al. 2009), Gaia (Gaia Collaboration et al. 2018), and ZTF (Bellm
et al. 2019; Graham et al. 2019). Also, with on average ∼20
epochs in the gri bands, it has more epochs than Pan-STARRS

(PS1; Hernitschek et al. 2016; Chambers et al. 2016) and Dark
Energy Survey (DES; Dark Energy Survey Collaboration et al.
2016). The only surveys, other than SDSS S82, with which it is
possible to study sources with a few percent change in brightness
are OGLE (Udalski et al. 1997; Udalski 2003) and Kepler (Ciardi
et al. 2011). The disadvantage of OGLE over SDSS is the fact that
OGLE only observes the inner galactic bulge and the Magellanic
Clouds. Similarly, SDSS covers a longer time span and a larger
area of the sky than Kepler.
Our search for periodically variable objects in S82 was

unbiased: we did not look for a specific type of variability but
aimed to utilize S82ʼs long observational baseline to discover any
type of long-period variability. This could include both galactic
and extragalactic sources. Possible galactic long-period candidates
were multiperiodic, semiregular, variable red stars such as the
OGLE small-amplitude red giants (OSARGs; Wray et al. 2004).
Periods of Mira stars also span the range of periods interesting to
us; however, their large amplitudes would preclude them from
becoming a part of the sample we analyzed as large amplitude
sources were already tagged in the S82 data by previous studies
(see Section 2) and we specifically avoided those sources. It is
possible, however, that some of the Miras in S82 were not
detected in earlier analyses and were not detected by our analysis.
Earlier investigations of periodic variability as well as ours depend
on stable periodicity over the observational baseline for
classification, which may not be the case for all Miras, which
are known to exhibit period changes. We did not find any
OSARGs, and we could not confirm whether any OSARGs were
indeed present in our sample as there is no overlap between
OGLE surveys and the SDSS. We estimate that it would be
difficult to identify OSARGs from the S82 data alone, given their
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multiperiodicity, small amplitudes, and relatively sparse sampling
of the S82 light curves. Extragalactic long-period variable
candidates in this sample include quasars that may have a
periodically varying optical light curve. The explanations of this
behavior include radio jet precession (e.g., Rieger 2006;
Kudryavtseva et al. 2011), tilted (warped) accretion disks (e.g.,
Tremaine & Davis 2014), tidal disruption events (e.g., Liu et al.
2014), and supermassive binary black hole systems (e.g.,
Valtonen et al. 2008; Graham et al. 2015; Liu & Gezari 2018).
Our final sample of five candidates with convincing periodic
behavior consists of sources that have spectra consistent with
quasar spectra.

Our paper is organized as follows: we describe the data set
used in our analysis in Section 2, report our analysis in
Section 3, and discuss and summarize our results in Section 4.

2. SDSS Stripe 82 Imaging Data

One of the largest regions on the sky with multiband
photometry precise to about 0.01 mag, faint limit reaching
r∼ 22, and >10 observations per object is a 300 deg2 region
known as the SDSS S82. S82 is a contiguous equatorial region
that stretches between −60°� R. A.� 60° [20–4 hr] and
−1°.266� decl.� 1°.266. Following the initial concerted effort
by the SDSS collaboration between 2001 and 2008 to map this
region repeatedly to a forecast imaging depth, r� 22, several
other surveys in various wave bands also have targeted this
patch of sky to provide a rich multiwavelength data set suitable
for a variety of investigations. SDSS observations too have
continued in this region (e.g., the SDSS-II search for super-
novae; Frieman et al. 2008), resulting in more epochs than
initially planned.

Data from the SDSS imaging camera (Gunn et al. 1998) are
collected in drift-scan mode, sequentially in each of the five
Sloan filters in the order riuzg. The images that correspond to
the same sky location in each of these five photometric
bandpasses (these five images are collected over ∼5 minutes,
with an exposure time of 54 s for each band) are grouped
together for simultaneous processing as a field. A field is
defined as a 36 s (1361 pixels) stretch of drift-scanning data
from a single CCD column, referred as a camcol. Therefore,
given this mode of data collection, the photometry in the ugriz
filters may be considered to be essentially simultaneous when
we are interested in timescales of a day or longer.

2.1. The 2007 SDSS Standard Star Catalog

The SDSS standard star catalog published by Ivezić et al.
(2007), hereafter I007, was constructed by averaging multiple
SDSS photometric observations (at least four per band, with a
median of 10) in the ugriz system. The catalog includes 1.01
million presumably nonvariable unresolved objects. The
averaged measurements for individual sources have random
photometric errors below 0.01 mag for stars brighter than 19.5,
20.5, 20.5, 20, and 18.5 in ugriz, respectively (about twice
better than for individual SDSS runs).

The 1.01 million standard stars in the I007 catalog were
selected as nonvariable sources by requiring that for each
source, their c < 3dof

2 (χ2 per degree of freedom) in each of the
gri bands, under the assumption of constant brightness. In
addition, about 67,000 rejected light curves showed clear
variability, with cdof

2 per degree of freedom exceeding 3, and
the rms variability exceeding 0.05 mag, in both the g and r

bands. The behavior of such obviously variable sources,
dominated by RR Lyrae stars and quasars, was analyzed in
detail by Sesar et al. (2007) and was not a part of this work.
Given that here we are interested in finding long periodic

variability considering light curves for sources listed in the
standard star catalog (i.e., those with χ2< 3), the assumption is
that the amplitudes of the sources found will be small. In other
words, we aim to use periodogram analysis to uncover long-
period variable sources with possible small amplitudes that
were not recognized as variable by I007. Furthermore, our final
data set includes more data than originally used by I007, as
described in Section 2.2.

2.2. Post-2007 SDSS data

Recently, Thanjavur et al. (2021) extended light curves
assembled by I007 with SDSS data obtained after 2007. Using
the SDSS Data Release 15 (DR15), available in 2019 April
(Blanton et al. 2017), they constructed light curves for stars
from the standard star catalog with about twice as many data
points as available for I007 (about 20 on average and extending
to 50 depending on the position within S82; see their Figure 1).
We note that DR15 does not include runs from the SDSS-II
supernovae surveys (Frieman et al. 2008), which are typically
of lower photometric quality. For more details, such as
photometric recalibration of this new data set, we refer the
reader to Thanjavur et al. (2021).
The final data set, consisting of all the light curves in the five

ugriz filters for the presumably 1,001,592 nonvariable standard
stars from the I007 catalog resulted in ∼20 GB of tabular data.
This catalog is the starting point of our search for periodic
variability. To make file search and access fast, the data have
been organized into subdirectories, each spanning 1° in R.A.
and 0°.1 in decl. (a “poor man’s” two-dimensional tree
structure). The light curves from this catalog are publicly
available.8

3. Light-curve Analysis

Since surveys mentioned earlier already explored the fast
and large-amplitude variability in the S82 region, we focus on
the long-period, small-amplitude optical variations. We also
show that the theoretical limit to which variability can be

Figure 1. Histogram of periods for 342 sources with 601 corresponding
periods.

8 http://faculty.washington.edu/ivezic/sdss/catalogs/stripe82.html
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plausibly discovered with our data is at the level of A∼ 0.03
mag in SDSS r band.

We start with a sample of 1,001,592 light curves and select a
subset of 143,505 light curves that have at least N= 25
observational epochs after filtering out epochs with likely
spurious photometry. We identify the latter by having an epoch
gri magnitude value outside the interval between 11 and 23
mag or unrealistically small photometric errors (smaller than
0.0001 mag) or photometric errors larger than 0.2 mag. This
minimum number of data points, together with photometric
errors, implies the minimum variability amplitude that we can
detect. In case of a source with constant brightness and a light
curve with at least 10 data points and reliably estimated
photometric errors, the cdof

2 distribution can be approximated as
a Gaussian (normal) distribution with an expectation value of 1
and a standard deviation of N2 . For illustration, for N= 25
only about one nonvariable source per thousand would have
c > 1.85dof

2 . Let us assume a hypothetical population of
variable sources that represents, say, 0.01% of the sample, and
have a variability amplitude A that results in cdof

2 distribution
(under the assumption of no variability) with a median of 1.85.
If now a subsample of all sources is selected with c > 1.85dof

2 ,
it will include 95% of false positives (randomly scattered
nonvariable sources) and 5% of truly variable sources (i.e.,
50% of all truly variable sources). Although the contamination
rate is 19:1, let us assume here that a follow-up analysis can
further “clean the sample.”

What is the variability amplitude A that results in cdof
2

distribution with a median of 1.85? It is easy to show that for a
well-sampled light curve following w=y t A tsin( ) ( ) with
homoscedastic Gaussian errors with standard deviation σ, the
variance is V= σ2+ A2/2 (Ivezić et al. 2019). The requirement
that c = 1.85dof

2 yields a minimum detectable amplitude,
A= 2.9σ/N1/4 = 1.3σ for our requirement of N �25. There-
fore, we expect that the completeness for truly variable sources
when using selection c > 1.85dof

2 is at least 50% for A∼ 0.03
(using σ∼ 0.02 mag) and higher for larger values of A. In
conclusion, we expect that our data set is sensitive to
amplitudes A> 0.03 mag. According to Kepler results
discussed by Ridgway et al. (2014), about 3% of stars are
expected to show variability with A> 0.02 mag (including
nonperiodic variables and for all values of a period for periodic
variables).

Search for periodicity should produce c ~ 1dof
2 in case of

truly periodic variables and thus yield a reduction of cdof
2 by

about a factor of 2 (or more in case of amplitudes larger than
∼0.03 mag). This reduction of cdof

2 is the main method we
employ here, but we supplement it with additional tests because
the theoretical analysis above is sensitive to period aliasing and
non-Gaussian behavior of photometric errors.

In the following subsections we outline our selection
procedure.

3.1. Lomb–Scargle Periodogram Analysis

For each of the 143,505 light curves, we computed fast
Lomb–Scargle periodograms (Press & Rybicki 1989) using
astropy implementation of the algorithm (Astropy Colla-
boration et al. 2013, 2018). The spacing of the search grid was
selected automatically by the autopower method, which
takes the user-supplied minimum and maximum frequencies as
the input parameters ( =f 1 600min days−1, =f 1 2max days−1)
and adjusts the grid spacing according to the number of

observations of the given source and the length of the
observational baseline. This method will assign five grid points
across each significant periodogram peak. The upper period-
search boundary was set to 600 days in order to limit the
computational effort required to search for periods of
approximately more than a hundred thousand sources. The
lower period boundary was set to 2 days since periods of P< 1
day would fall within the (short-period) variable stars that have
already been studied in detail in the SDSS S82 region by
previous studies. Also, P∼ 1 day is strongly aliased so we
moved the lower limit up by a factor of 2. Since gri bands
typically have the highest photometric signal-to-noise ratio
(i.e., smallest photometric errors), we considered periodograms
calculated using only the gri data. We added a systematic
photometric error of 0.01 mag in quadrature to photometric
errors (uncertainties) reported by the SDSS photometric
pipeline to avoid (rare) cases of unrealistically small reported
errors.
In each band, we retained periods corresponding to the three

highest periodogram peaks in order to have more options when
validating possible contamination by aliasing. Taking more
than three periodogram peaks would have typically sampled
noise instead of the real signal. Given these nine periods per
source, we select light curves with plausible periodic variability
by requiring at least one period to be in common to each of the
gri bands (to within 0.1%). Applying these constraints resulted
in 1078 unique sources with 2135 corresponding periods.

3.2. χ2 Analysis

For the selected 1078 periodic variable source candidates,
we constructed phased light curves folded with the corresp-
onding 2135 periods. Then we checked how well the data agree
with the sinusoidal light-curve model by calculating χ2 and the
Lomb–Scargle periodogram in the following way:

c

c
= -P 1 . 1LS

per
2

const
2

( )

Values cper
2 and cconst

2 were calculated as

c s= =
-

x x, where:
mag model

magErr
, 2Gper

2
per

2
per( ) ( )

c s= =
- á ñ

x x, where:
mag mag

magErr
. 3Gconst

2
const

2
const( ) ( )

The used function σG(x)= 0.7413 · (x75− x25) is the normal-
ized interquartile range of the observed source magnitudes. We
demanded PLS> 0.5; in other words, we are requiring the
improvement of χ2 by a factor of 2. This requirement reduces
the candidate sample to 342 unique sources with 601 periods.
Given the simple sinusoidal model that was used, it is

possible that some sources with light curves significantly more
complex than this model were rejected. However, during the
analysis we also performed a visual verification of the light
curve candidates and found no evidence of sources with more
complex light curves.

3.3. Period Analysis

From the period histogram in Figure 1 it is clear that there
are a few period values that are recurring in the Lomb–Scargle
fits for different sources. It is natural to suspect that these
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periods are in fact aliases. Alternatively, this could mean we
might have missed some true periods due to the coarseness of
the grid selected by the autopower method applied by the
Lomb–Scargle routine.

To investigate the impact of using a sparse grid on the
calculation of the periods, we reran the Lomb–Scargle period
search on a denser grid. Since our sample was now much
smaller than the one we started with, we were able to do it
without demanding higher computational power. We used the
same frequency range as before ( =f 1 600min days−1,

=f 1 2max days−1), and the grid was defined in the following
way: for periods between 2 and 8 days, the time spacing (Δt)
was 1 minute; for periods between 8 and 32 days, Δt was
3 minutes; for periods between 32 and 128 days, Δt was 10
minutes; and for periods between 128 and 600 days, Δt was
1 hr. By comparing the results of both period estimation runs,
we were able to ascertain that no significant periodogram peaks
were missed in the run with a sparser period-search grid. The
Figure 2 shows an example of the comparison of periodograms
obtained with a denser grid and with the autopower method. It
is clear that there is no significant difference between them.

We discarded all of the (clustered) periods that can fit within
a 0.1 day bin. Considering that these periods agree within 0.1
days, it is likely that they are aliases. That left us with 69
sources with 82 periods. For further analysis, we retained only
objects with periods longer than 100 days. This boundary was
applied in order to consider only long-period variability. Also,
Figure 1 shows that most periods up to 100 days are grouped
around small values (around zero). This is probably due to the
1 day aliasing caused by the Earth’s rotation. Furthermore, we
have already mentioned that the catalog was previously cleaned
of all short-period variable sources, so such cases were not
considered in this work.

This constraint left us with 45 unique objects and 58
corresponding periods.

3.4. Phase-distribution Analysis

Further analysis was based on a requirement that every
candidate should have a fairly uniform distribution of
observations with respect to the phase. We base this
requirement on the assumption that it is unlikely that for a
significant fraction of the observed sources, the cadence of the

survey will be matched to the period of a particular source in a
way that would produce observations that are always near the
same point (or a few points) in the phased light curve. Indeed,
given the uniformity of the cadence across all observed S82
fields, having a significant fraction of objects with clumped
observations in the phased light curve would imply that those
objects would have a common frequency fcä f/n, where f is the
period of the object and n is a small integer. We note that with
this requirement, we may lose a fraction of good candidates,
but since we are more concerned about purity of the sample
than its completeness, every source whose phase-folded light
curve exhibits clumping of observations was characterized as a
false positive and eliminated from further analyses.
We quantify the uniformity of the distribution of the

observed phases for each source using Kuiperʼs statistic. This
statistic compares an empirical cumulative distribution function
defined on a circle with the expected cumulative distribution
function for a uniform distribution (CDF(x)= x). The max-
imum deviations are given as

= - + -D max CDF CDF max CDF CDF .
4

data unif unif data( ) ( )
( )

We calculated the probability of obtaining the calculated D by a
random fluctuation for a uniform distribution. When the
probability is very small, we conclude that we have nonuniform
phase coverage and therefore reject the corresponding period.
D% for a uniform distribution is a function of sample size, N:

=D% C

Np , where for the case of 99.9% we used C= 2.04 and
p= 0.486, obtained by fitting this functional form to numerical
simulations of draws from uniform distributions of varying size
8<N< 104 and valid for 0.95<D%< 0.999. We only
retained those that have D<D99.9% in each of the gri bands.
After this filter, our sample decreased to 28 sources with 33
periods.

3.5. Source Type Determination and the Determination of
Period Uncertainties

In order to better characterize our final list of periodically
variable sources, at this stage we used color–color and color–
magnitude diagrams shown in Figure 3. The clustering
observed in the upper left panel was a motivation for

Figure 2. A typical example of a Lomb–Scargle periodogram for a candidate variable. Figure shows a periodogram obtained using autopower method and one
calculated with a denser grid.
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introducing four subgroups described in Table 1. For each
source we introduce an ID based on the location in the g versus
u− g plot in Figure 3.

3.5.1. Monte Carlo Simulations

We also preformed Monte Carlo simulations to calculate the
uncertainty of the estimated periods. The procedure and results
are given in Appendix B. Using the results obtained with this
method, we further filtered our sample. Requiring the
agreement of previously calculated periods and those calcu-
lated by this method within the obtained uncertainty
(|P− Pgatspy|< σP), our sample is reduced to nine sources
with 10 corresponding periods.

3.5.2. One-year Period Alias Filtering

As a final filter, we check if the calculated periods are real
signals or just aliases of one year. We used

=  = =P
k

n
k n365 365; 1, 2; 1, 2, 3, 4, 5 5a · ( )

to identify possible one-year aliases. If the calculated period P
is within the range P± σP, where σP is the period uncertainty
obtained with simulations (the procedure is explained in
Appendix B), we consider it an alias. Application of this filter
left us with the final sample of five periodically variable source
candidates with six corresponding periods.

3.5.3. SDSS Cutouts

Since apparent variability in magnitude can be caused by a
potential nearby source, we checked SDSS cutouts for each of the
final five sources. By inspecting the images, we confirmed that no

candidates are affected by blending. An acceptable variable
candidate should be isolated from all of the objects in its
neighborhood.

3.5.4. Light Curves

In order to investigate the behavior of the light curves of
each source at times different from those of the SDSS
observations, we also searched the databases of other surveys.
We found information about the light curves for the final five
sources in ZTF DR11 (Masci et al. 2019) and PS1 (Chambers
et al. 2016; Flewelling et al. 2020). We simultaneously plotted
SDSS, ZTF, and PS1 light curves in corresponding filters,
along with the model. Our minimum requirement was that the
apparent variability is confirmed in later times at least in one of
the filters for at least one of the additional surveys. Apparent
variability in additional surveys was confirmed for all five
sources, which reduces the likelihood that the data from the
original survey (SDSS) is bad data and that the detected
(periodic) variability in SDSS is due to random fluctuation.

Figure 3. Color–magnitude and color–color diagrams for 28 candidates. Sources with period P < 365 days are plotted as red and those with P > 365 days are plotted
as blue stars. The gray background represents the distribution of all objects from the catalog.

Table 1
The Division of the Sample in Four Subgroups

Regions Types ID

(i) u–g > 2.0 “late-type” K and M stars 0–1
(ii) 0.8 > u–g < 2.0 “intermediate-type” F and G stars 2–5
(iii) u–g < 0.8 and g > 20 quasars; possible presence of stars 6
(iv) u–g < 0.8 and g > 20 quasars 7–27

Note. Using the logic of this partition, we introduced new names in the ID
column for each source.

5
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4. Results

4.1. A Summary of the Applied Filters and Their Effects on the
Selection

Here we summarize the effect of each of the filters above on
our selection procedure. We started with 143,505 light curves
that have at least N= 25.

1. Each of the gri periods agree to within 0.1%.→ 1,078
sources with 2135 corresponding periods

2. χ2 and PLS> 0.5 analysis→ 342 sources with 601
corresponding periods

3. “Repeated” periods (ΔP= 0.1 days) and periods 100
days< P< 600→ 45 sources with 58 corresponding
periods

4. Kuiper statistic: D<D99.9%→ 28 sources with 33
corresponding periods

5. Comparison with Monte Carlo results→nine sources
with 10 corresponding periods

Figure 4. SDSS spectra for five periodically variable sources. All of them are consistent with quasar spectra.

6
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6. One-year period alias→five sources with six corresp-
onding periods

Additional checks:

1. Blending→No sources were discarded.
2. Comparison to more recent light curves→No sources

were discarded.

In the Section 4.2 we proceed to analyzing the remaining
candidates.

4.2. Plausible Periodically Variable Candidates

In order to better characterize our final sample, we searched
the SDSS DR16 online database for spectra of the candidate
sources. We find that all five of the final candidates have an

Figure 5. Variable candidates.
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SDSS (Dawson et al. 2013, 2016) spectra consistent with quasar
spectra. Their SDSS spectra are shown in Figure 4.

All five sources have phased light curves with a uniform
distribution of data points along the light curve and are well
isolated from other sources, and their (periodic) variability at later
times is supported by either ZTF or PS1 survey data. Summarized
details of the five final candidates can be found in Table 2. The
figures summarizing light curves of each of the sources, along
with SDSS photometry cutouts, are given in Appendix A.2.

Large uncertainties of the ZTF photometry prevent us from
making any definitive arguments for the cases ID = 10, 25.
However, PS1 photometry gives us sufficient variability
confirmation in at least one of the bands. Source ID= 10
(Figure 5(a)) has the smallest amplitude (A∼ 0.2 mag) of all of
the final candidates. Source ID= 25 (Figures 6(d) and (e)) has
two reported periods that passed our selection criteria
(P1= 300 days, P2= 299 days). Since they are within the
uncertainty given in Table 3 (|P1− P2|< σP), we conclude that
the same period is recovered by both methods (essentially
300 days).

Sources ID= 20, 27 boast a robust periodic variability
confirmation by ZTF and PS1. Also, in Figure 5(b) and
Figure 6(f), it can be seen how ZTF amplitudes do not exclude
the SDSS-based model as being incorrect.

We single out a quasar with ID= 21 (Figure 5(c)) and
P= 278 days as the most interesting one in this sample.

Besides the optical variability detected in this work, this source
also has the Chandra X-ray catalog variability flag set to 1
(source displays flux variability within one or more observa-
tions or between observations in one or more energy bands;
Evans et al. 2010). For this source, we performed an additional
analysis of the periodicity with the 2D hybrid model
(Kovačević et al. 2018; Kovačević et al. 2020) and found that
this period and the period calculated with the method explained
in Section 3.1 are in excellent agreement. A detailed
description of the procedure is given in Appendix C.

5. Summary and Conclusions

We report the results of a search for long-period variability
in the SDSS S82 region. Starting with a sample of about a
million presumably constant sources, we selected five as
plausible candidates with periodic variability after a thorough
analysis of their light-curve characteristics and ancillary data.
Our final sample consists of five sources with SDSS spectra
consistent with quasar spectra. We consider our final candidates
to be very likely to have periodic nature although we cannot
completely rule out the possibility of stochastic behavior
causing the (apparently) periodic signal.
Determining the cause(s) of the variability of our candidates is

not possible without additional data. Therefore, we singled out
one quasar (ID= 21) with a period of P= 278 days whose

Figure 6. Variable candidates.
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periodic variability could not be excluded by ZTF and PS1,
while its X-ray variability is detected by Chandra. Additional
tests described in Appendix B and C included period estimations
by different models and used simulations to confirm reliability of
the obtained results. Our simulations could not reject the
assumption of periodicity of this quasar since its P value is
∼60%. In order to further investigate the nature of its variability
and possibly improve our approach to photometric detection of
such sources in the context of the detection of exotic objects, in
particular, gravitational-wave emitters, we will be shortly
obtaining additonal spectra of the source.

We hope that this study proves to be useful in uncovering some
of the long-period phenomena that may have been missed by the
extant optical surveys. Although we initially expected long-
period, low-amplitude stars in our final sample, we did not find
them. Instead, we found five excellent candidates for periodic
variability displayed by spectroscopically confirmed quasars.
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Appendix A
Final Candidates

In Table 2, we provide the spectral type as determined by the
SDSS DR16 pipelines and a summary of photometric
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Table 2
Table of Five Long-period, Small-amplitude Variability Candidates

objID ID Spectral Type R.A. Decl. Period u g r i z u–g g–r Amp(g) Amp(r) Amp(i)

1237666338651242745 10 QSO 14.629833 −0.622042 297.1988 21.30 21.18 20.93 20.84 20.4 0.12 0.25 0.28 0.27 0.22
1237666338653864147 20 QSO 20.57287 −0.422368 466.3183 21.69 21.39 21.26 21.36 20.68 0.30 0.13 1.22 1.08 0.97
1237666408438038843 21 QSO 350.059098 0.416449 277.8278 21.45 21.51 21.13 21.08 20.76 −0.06 0.38 0.63 0.52 0.44
1237663783133970736 25 QSO 23.53744 −0.839078 299.7779 21.90 21.79 21.38 21.21 20.58 0.11 0.41 0.34 0.33 0.29
1237666300553068800 27 QSO 44.539858 −0.206044 479.5917 21.81 21.73 21.43 21.32 20.71 0.08 0.30 1.13 0.96 0.82

Notes Columns: (objID) SDSS DR9 object ID. (ID) ID given on the basis of the position of an object in color–magnitude diagram described in Table 1. (Spectral Type) Classification from SDSS DR16. (R.A./decl)
Coordinates. (Period) Period of an object (in days) calculated as described in Section 3.(u/g/r/i/z) Weighted mean of magnitude in each filter. (u–g/g–r) Mean colors. (Amp(g/r/i)) The difference between the
maximum and minimum of the sinusoidal model.
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characteristics derived from the S82 photometry for the the
final five candidates.

A.1. Table of Final Candidates

A.2. Representative Figures of Final Candidates

Here we summarize all the plausible periodically variable
candidates represented by two panels that were used during our
analyses.

Each figure contains

1. Left column: SDSS cutouts described in Section 3.5.3.
2. Middle column: light curves in ugriz bands with light-

curve model derived using SDSS data. In addition to
SDSS data, ZTF and PS1 data are also plotted in the
figure to check whether the variability can be confirmed
at later times with additional surveys. To account for the
difference between the instruments, a simple magnitude
correction was applied to each of the gri filters:

= + á ñ - á ñSURVEY SURVEY SURVEY SDSS , A1corr ( )

where SURVEYcorr is the corrected magnitude, i.e.,
magnitude shifted by the median difference
between the survey in question and the SDSS
(〈SURVEY〉− 〈SDSS〉).

In some cases, few ZTF and PS1 data points are not
visible in the figures because their difference with respect
to the model light curve is too large. In order to preserve
convenient scaling of the plots, we left these outlying
values outside the range of the plots and instead
designated them with an arrow on the left-hand side in
some of the panels in the middle column. The arrows are
color coded according to the survey, and the arrows’
length (l) is proportional to the number of data points (N)
outside the ordinate range, with l= N · 0.05+ 0.03.
Furthermore, given the shallower ZTF limiting magni-
tudes with respect to Pan-STARRS and SDSS ( 20.5
mag) and consequently larger scatter at the ZTF’s faint
end, we binned the ZTF data in 7 day intervals and
calculated a weighted mean magnitude for each bin in
order to improve photometric precision and enhance the
legibility of the plots.

3. Right column: phased light curves in ugriz bands.

Appendix B
Results of Monte Carlo Simulations

The reliability of the chosen period-finding procedure has
been verified by comparing the derived periods to the
multiband model and by employing Monte Carlo simulations.
To this end, we have chosen to use the multiband extension of
the Lomb–Scargle algorithm.
We have chosen the algorithm implemented in the gatspy

package (VanderPlas & Ivezić 2015). The multiband period-
ogram extends the Lomb–Scargle period-finding algorithm by
treating multiband observations as a data set with a categorical
variable for the observed band. The model uses a single-fitting
procedure for all observed bands, constructed by including a set
of Lomb–Scargle model parameters for each band.
We have employed Monte Carlo simulations to estimate the

reliability of the derived periods. We base our simulations on
the best-fitting gatspy light-curve model of magnitudes m,
observed at time t and in the band b, m(t, b). A particular mock
observation, i, consists of a simulated point: (ti, bi, mi, σm,i).
Instead of taking a simple bootstrap that would only reshuffle
the data set, we employed the Gaussian kernel density
estimator (KDE) to first determine the distributions of t, m, and
σm and then to draw a random point from these distributions.
This procedure produced mock light curves that consisted of
the same number of points as the original data set. The data
points were assumed to be independently distributed among the
different bands, with each band appearing as many times in the
mock light curve as in the original light curve. When choosing
the optimal KDE distributions, we found that the magnitude
error distribution is best reproduced when estimating slog m

using KDE instead of estimating the KDE of σm (see K. Tisanić
et al. 2023, in preparation). The magnitudes at a particular
mock time were computed by fitting the multiband Lomb–
Scargle function to the original data set, computing its
prediction at the mock time (and for the chosen randomly
selected band) and then by adding to this value the value of the
simulated error σm.
We drew 1000 random light curves per object and set the

number of mock times to the number of observing times in the
original light curves. The gatspy multiband periodogram has
been run on each mock data set to estimate the reliability of the
derived periods. We employed the robust method of deriving
the standard deviations of the period distributions using the

Table 3
Results of Monte Carlo Simulations of the Sample’s Periods

ID σP

Expected Period
With Errors

Gatspy Period
With Errors

Simulated Period
With Errors

Expected P
value (s s max , 0.1 day( ))

Gatspy P
value (s s max , 0.1 day( ))

10 2 297 ± 2 296 ± 2 296 ± 2 0.66 0.99
20 2 466 ± 2 467 ± 2 466 ± 2 0.73 0.56
21 1 278 ± 1 278 ± 1 278 ± 1 0.60 0.99
25 2 300 ± 2 302 ± 2 302 ± 2 0.21 0.92
27 3 480 ± 3 479 ± 3 478 ± 3 0.45 0.56

Note. The results of Monte Carlo simulations based on the gatspy multiband algorithm used to infer the reliability of the astropy-based period-finding procedure. After
the gatspy-derived period for each source has been determined, we produced a set of 1000 mock light curves, as described in detail in B. In short, the mock
observations were simulated by estimating the underlying time, magnitude, band, and magnitude error distributions from the KDE fit to the real observations. Each
mock light curve was then fitted using the same gatspy algorithm, yielding a set of mock sample periods. The derived distribution of mock sample periods was used to
infer the error bars on the expected period—the expected astropy-based period calculated, as described in Section 3.1. The columns show the following: the internal ID
of each source (labeled as “ID”) and error bars estimated using Monte Carlo simulations (labeled as “σP”). The periods are listed as follows: the expected period, the
gatspy best-fitting period, and the mean period derived using Monte Carlo simulations, all with the aforementioned error bars. Additionally, P values using a capped
sigma (s s= max , 0.1 d0.1 d ( )) are listed for the expected and gatspy-derived periods.
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16th and the 84th percentiles of the simulated period
distributions. We then computed the P values based on the
estimated sigma value and our periods fitted using the astropy
implementation of the Lomb–Scargle periodogram derived in
Section 3.1.,labeled as expected P values in Table 3. Since a
portion of the standard deviations were smaller than one day,
we capped the standard deviations used for computing the P
values to 0.1 days.

Appendix C
Results of the 2D Hybrid Method

In general, random fluctuations account for a significant
portion of the variance in time series, so that the amplitudes of
these stochastic effects are seen to be greater on longer periods.
Due to the fact that the spectral density of red noise is inversely
related to frequency, the red noise has a particularly significant
impact on the lower frequencies. Thus, to cope with this
challenge, we also applied a time-domain periodicity search
called the 2D hybrid method, which relies on different types of
wavelets (Kovačević et al. 2018; Kovačević et al. 2019). Given
two time series yt and ¢y t, we can compare their wavelet
matrices (scalograms)  and ¢ in order to know if they follow
similar patterns. Our 2D hybrid method uses correlation as a
comparison of scalograms (Kovačević et al. 2020). The 2D
hybrid approach employs various wavelets, e.g., continuous,
discrete weighted wavelet Z-transform (WWZ; Foster 1996),
high-resolution superlets (Moca et al. 2021), and both observed
light curves and their models. The method generates a contour
map of the intensity of (auto) correlation on a period–period
plane defined by two independent period axes matching the two
time series (or one). The map is symmetric and can be
integrated along any of the axes, yielding a periodogram-like
curve of the strength of correlation among oscillations (for
more details, see Kovačević et al. 2018; Kovačević et al. 2019).

We calculated the significance of a detected period σP by
shuffling the time series (Johnson et al. 2019) so that the period
was recomputed over this new modified data set and the height
of the maximum peak in the 2D hybrid integrated map was
compared to that found for the original simulated data. This
process was repeated N (e.g., 100, as the wavelet computation)
times, and the significance level was then determined as
(Johnson et al. 2019)

s =
x

N
, C1P ( )

where x represents the number of times that the peak power of
the period in the original data was greater than that of the
uncorrelated ensemble.

We also used another approach for estimating significance,
which is based on the moving block bootstrap (MBB)
methodology (Suveges 2012; Ivezic et al. 2014; Vander-
Plas 2018). In the MBB approach, blocks of data of a given
length are glued together to create a new time series. Similarly
to the shuffling method, we first calculated periods of
bootstrapped mock light curves. Then the generalized extreme
value (GEV) distribution is fitted to the histogram of detected
peaks in the mock curves. For a given range of significance
levels (p values), we obtain the associated confidence level
from the fitted GEV. If the candidate period has a peak value
greater than the confidence level, then we can reject the null
hypothesis that the observed light curve is not periodic with the
given significance level.

Applying our 2D hybrid method whose core is the WWZ, we
obtained a period of -278.36 25.21

57.34 days and the significance
above 99% measured by the shuffling method, whereas the
GEV approach produces significance of 90%. In order to apply
the 2D hybrid method with the high-resolution superlets core,
we need homogenous data. Thus we modeled observed light
curves with the deep Gaussian process (see e.g., Damianou &
Lawrence 2013) consisting of a latent variable layer and two
Gaussian process layers. The Gaussian processes have
Matern12 and Matern32 kernels. The detected period is

-
+288.62 07.35

28.84 days, with significance of 95% based on the
shuffling method and 88% based on MBB.
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