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EVER SINCE HUXLEY [1] FIRST DREW attention to the 
biological significance of relative size and shape, 
evolutionary and functional biologists have studied the 
allometric scaling of diverse morphological, physiological, 
and ecological traits [2].  Allometric equations not only 
quantify the size dependence of a trait, but can also permit 
comparisons among individuals, populations, or species 
[3, 4] that differ in body size.  Consequently, allometric 
analyses are often a key step in tests of hypotheses of trait 
evolution [2-5].  Nevertheless, such analyses involve 
statistical, not experimental, adjustments of body size [6].  
Moreover, inferences about the proximate or mechanistic 
causes of dramatic differences in the intercept and slope 
of the allometry among taxa are risky, because many 
factors influence morphological and physiological traits [7].

Here we apply a novel method for experimentally 
manipulating body size, and we use this method to explore 
the mechanistic bases for interpopulational differences in 
the allometry of locomotor performance and morphology of 
hatchling lizards (Sceloporus occidentalis).  Compared 
with hatchlings from northern populations (Oregon and 
Washington), hatchlings from a southern population 
(California) are large, have long hindlimbs, and have high 
burst speed and cruising stamina (Figs. 1 and 2).  The 
high locomotor performances of southern hatchlings might 
be a mechanistic consequence of large body size (Fig. 1), 
of relatively long limbs [8] (Fig. 2A), or of other 
physiological or morphological differences.  The 
involvement of these factors can potentially be tested at 
least three ways.  First, the small northern hatchlings could 
be raced once they had grown to the size of (large) 
southern hatchlings, but this comparison would confound 
size and age.  Second, analysis of covariance can often be 
used to determine if differences in a trait persist when 
body size is adjusted statistically, but such analyses may 
be misleading because causal factors responsible for trait 
divergence among populations may be different from the 
factors determining allometric scaling among individuals 
within a population.  Third, between-population overlap in 
hatchling body size can be experimentally increased by 
removing yolk from the large southern eggs [9], thereby 
producing southern hatchlings that are similar in size to the 
small northern hatchlings (Fig. 1).  If performances of 
size-matched hatchlings from the north and south are now 

comparable, then the observed interpopulational 
differences in performance would appear to be a simple 
allometric consequence of interpopulational differences in 
egg size.  Alternatively, if locomotor performances of 
southern hatchlings are still high despite size 
standardization, then the observed interpopulational 
differences should be attributable to other evolved 
differences, not just to size.

We obtained eggs laid in captivity by females (southern 
California, central Oregon, and southern Washington) 
during May and June 1988 [10].  To produce miniaturized 
hatchlings (cover and Fig. 1) from the southern population, 
we partially removed yolk from some of the freshly laid 
eggs of California females [11].  A few eggs from each 
clutch were unmanipulated (control), and a few eggs were 
poked with the syringe but had no yolk removed 
(sham-manipulated) [11].  Yolk removal produces 
miniaturized hatchlings because egg size and hatchling 
size scale with near isometry in both unmanipulated and 
manipulated eggs of S. occidentalis [9].  The yolk-reduced, 
sham-manipulated and unmanipulated eggs resulted in a 
graded size series of hatchlings (see cover for a 
comparison of the resultant range of sizes of hatchlings 
from a single clutch).  Additionally, many clutches were 
unmanipulated [12] and thus provide among-population 
comparative data.  All eggs (hatchlings) were incubated 
(raised) under standardized conditions [9].  When 
hatchlings reached 3 weeks of age, we measured their 
size, hindlimb span, and maximum burst speed on a 
laboratory racetrack [13].  One to 2 weeks later, we 
measured their stamina on a slowly moving treadmill [14].

Some of the interpopulation differences in stamina 
persisted despite experimental reduction in body size [15] 
(Fig. 2B).  Miniaturized hatchlings from California still had 
much higher stamina than did those from Washington but 
not hatchlings from Oregon [15] (Fig. 2B).  Thus, 
significant interpopulation differences in stamina of 
hatchlings, though in part an allometric consequence of 
differences in egg and hatchling size, are in large part due 
to other mechanistic causes, presumably those affecting 
aerobic capacity [4, 16].

In contrast, interpopulational differences in burst speed 
disappeared when body size was standardized and thus 
were causally related to interpopulational differences in 
egg size and thus hatchling size (Fig. 2C).  Miniaturized 
southern hatchlings were no faster than were similarly 
sized northern hatchlings [17].  Moreover, because 
miniaturized southern hatchlings from California still had 
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longer legs [18] (Fig. 2A) but not faster speeds (Fig. 2C) 
relative to northern hatchlings, interpopulational 
differences in burst speed are unlikely to be purely a 
mechanistic consequence of differences in relative 
hindlimb length, despite presumed biomechanical links 
between these traits [4, 8].

Developmental manipulation of body size ("allometric 
engineering") adds to comparative biology a powerful new 
experimental dimension that can be used with diverse taxa 
[9, 19].  Adult size can also be manipulated by the use of 
genetic engineering of the hormonal control of growth rate 
[20].  However, this technique can currently be applied in 
only a few taxa.  Size manipulation by either technique 
may allow comparisons between populations with limited 
overlap in body size [21], thereby permitting inferences on 
the proximate causes of trait evolution.  Moreover, both 
techniques provide a direct experimental, not merely 
statistical, evaluation of the proximate influence of body 
size.  For example, manipulation of hatchling size shows 
that interpopulational differences in sprint speed are 
probably an allometric consequence of interpopulational 
differences in egg size, but that interpopulational 
differences in stamina and morphology, though in part due 
to size, necessarily involve additional evolved factors [4, 
16, 22].  A comparison of experimental with traditional 
analysis of covariance (ANCOVA) analyses [15, 17, 18] 
demonstrates that purely statistical analyses of patterns 
can sometimes present a misleading portrait of the role of 
body size in populational differentiation in locomotor 
performance and morphology.

Of course, size manipulation [9, 19, 20] provides insights 
only into proximate--not ultimate--causes of 
interpopulational variation in traits.  For example, our 
results do not suggest whether contemporary 
interpopulational patterns reflect natural selection in 
southern populations for large size or fast speed or both.  
Nevertheless, size manipulation does show that selection 
on size alone is unlikely to account for all the major 
interpopulational differences in locomotor performance (or 
the converse).  Moreover, if the relative fitness of 
size-manipulated animals is measured in natural 
populations, some insights into the ultimate causes of 
interpopulational variation can be gained [9, 23].
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