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Abstract

Cooperativity in classical biophysics originates from molecular interactions;
nonlinear feedbacks in biochemical networks regulate dynamics inside cells.
Using stochastic reaction kinetic theory, we discuss cooperative transitions
in cellular biochemical processes at both the macromolecular and the cellu-
lar levels. We show that fluctuation-enhanced sensitivity (stochastic focus-
ing) shares an essential feature with the transition in a bistable system. The
same theory explains zeroth-order ultrasensitivity with temporal coopera-
tivity. Dynamic cooperativity in fluctuating enzyme (i.e., dynamic disorder),
stochastic focusing, and the recently proposed stochastic binary decision
all have a shared mechanism: They are generalizations of the hyperbolic
response of Michaelis-Menten kinetics x/(K + x), with fluctuating K or
stochastic x. Sigmoidal dependence on substrate concentration necessarily
yields affinity amplification for competing ligands; both sigmoidal response
and affinity amplification exhibit a square law. We suggest two important
characteristics in a noise: its multimodal distribution structure and its tem-
poral irreversibility. The former gives rise to self-organized complexity, and
the latter contains useful, albeit hidden, free energy that can be utilized for
biological functions. There could be structures and energy in biochemical
fluctuations.
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Michaelis-Menten
(MM) kinetics: the
simplest mathematical
model for enzyme
kinetics that predicts
the rate of steady-state
enzyme turnover rate
vs s as a hyperbolic
function of substrate
concentration
[S] : vs s = vmax[S]/
(KM + [S])
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INTRODUCTION

Ever since the work of Adair, Monod et al. (59), and Koshland et al. (48) on oxygen binding by
hemoglobin and of Schellman (85) and Zimm & Bragg (110) on α-helix formation of polypeptides,
the concept of cooperativity has become one of the most important cornerstones of molecular
biophysics (33). This concept is now widely used in biology, beyond macromolecular interactions;
a special issue of Nature Chemical Biology was dedicated to the subject in 2008 (16).

Phenomenologically, cooperativity is intimately related to various mathematical expressions
known as sigmoidal. It deviates from hyperbolic ax/(b+x), also known as Michaelis-Menten (MM)
kinetics and Hill’s function. The reason for the central role of ax/(b + x) as noncooperativity lies
in the notion of identical, independent subsystems, each having two states, within a system. This
is known as Bernoulli trials. For a sequence of N independent, identical, but unfair coins, each
with probabilities p and q = 1 − p for heads and tails, respectively, the expected number of heads
is Np/(p + q ) = Nz/(1 + z), where z = p/q ∈ [0, ∞). Note ax/(b + x) can also be written as
az/(1 + z) with z = x/b .

In chemistry, z/(1 + z) is known as the Langmuir-Hill equation. It relates the binding of
molecules on a solid surface (macromolecule) to concentration of a medium (ligand) above the
surface (macromolecule) at a fixed temperature. A statistical mechanical treatment of this problem
based on a binomial distribution follows exactly the probabilistic theory of Jacob Bernoulli, the
Swiss who discovered the mathematical constant e in 1683.
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Open system:
classical statistical
thermodynamics deals
with matters in
equilibrium. A cell in
homeostasis is
sustained by chemical
energy input, just as a
radio with a battery.

Subsystems are no longer independent when there are interactions among them. In physics,
strong molecular interactions give rise to phase transitions in macroscopic states of matter (33).
Cooperative phenomena are a form of nonlinear behavior; they have long been one of the central
issues in structural biology, macromolecular interactions, and cellular regulations. The concept
of cooperativity is now considered a paradigm (16).

The relation between sigmoidal response curve and allosteric cooperativity is now well under-
stood (32). Sigmoidal response curves also have been observed in many other cellular regulations
(47). They are always discussed in contrast to a hyperbolic curve, or MM kinetics:

y(x) = x
K + x

, (K > 0). 1.

Note this curve has a relative change in the response, y, which is smaller than that in the signal
x: d ln y/d ln x ≤ 1; the curvature d 2 y/d x2 = −2K/(K + x)3 < 0 for all x ≥ 0. A sigmoidal
curve, however, has a region with a positive curvature. For example: d 2/d x2(x2/(K 2 + x2)) =
(2K 2 − 4x2)/(K 2 + x2)3 > 0 when x < K/

√
2. In fact, it has a square dependence on x for x � K .

In a small volume such as a cell, signals in terms of biochemical activities fluctuate due to macro-
molecular copy number fluctuations (87) and/or to macromolecular conformational fluctuations
(57). Hence, cellular biochemical signaling is stochastic. With respect to the simple hyperbolic
response in Equation 1, a fluctuating enzyme with dynamic disorder has a fluctuating K, and fluc-
tuating copy numbers in a substrate molecule lead to a fluctuating x. In some cases, the fluctuations
can lead to the mean response being a sigmoidal function of the mean signal (64, 70, 80). In fact,
the distribution of a response can be bimodal while the distribution of the signal has a single
maximum (3, 81). Responses in such systems exhibit all-or-none cooperative behavior.

These discoveries have revitalized an interest in noise-induced phenomena (39), which in-
clude noise-induced movement in molecular motors (42) and fluctuation-induced oscillation in
stochastic resonance (22). Both are emergent phenomena in nonlinear stochastic dynamics of open
systems (108). Theories for molecular motors and stochastic resonance have taught us that a fluc-
tuating signal, albeit hidden in a noise, often has both underlying deterministic structures (79) and
hidden free energy. These two aspects of a nonequilibrium fluctuation are responsible for many
interesting phenomena (81). Feynman had an illuminating discussion on the subject via his famous
thermal ratchet (20). Hill (34) has written several books on mesoscopic free energy transductions
quantifying the hidden free energy in driven unimolecular fluctuations. We are accustomed to
macroscopic organizations and machines performing tasks due to mechanical forces; therefore,
realizing the hidden structures and energy in a noise, it is not surprising that noise can lead to
mesoscopic organizations and can perform nontrivial biochemical tasks.

With this newfound unifying perspective, this review explores various cooperative phenomena
in biophysics. First, we give a coherent account of bistability in chemical kinetics. We assume
the readers are familiar with basic chemical kinetics, the law of mass action, and the stochastic
approach to chemical kinetics (27, 75). The last is widely known as the Gillespie algorithm; it first
appeared as a chemical kinetic theory in Delbrück’s work in 1940 (13, 17).

Second, we review equilibrium allosterism, nonequilibrium zeroth-order ultrasensitivity, and
non-MM behavior from fluctuating enzyme (dynamic disorder) (58, 70). Fluctuation-induced
sensitivity enhancement, also called stochastic focusing, is introduced. Third, we present an in-
depth discussion on stochastic focusing, enzyme dynamics disorder, stochastic binary decision and
bimodality, and specificity amplification by Hopfield-Ninio kinetic proofreading. Careful readers
will notice a transition is accomplished logically from classical biophysical theory of cooperativity to
modern systems theory of cellular dynamics based on nonlinear, stochastic biochemical networks
with feedbacks. Cooperativity is a form of feedback.
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Fourth, the study of stochastic kinetics in mesoscopic biochemical reaction systems naturally
leads to a discussion of what noise is in cellular biochemistry. Molecular fluctuations are inherent
in each and every biochemical reaction. However, when stochasticity is coupled with nonlinear
biochemical reaction networks with feedbacks and chemical driving force(s), nontrivial behaviors
emerge. Such behavior can be exploited by a biological organism as a part of its life, thus acquiring
a biological function. Finally, the review offers a summary and outlook.

UNISTABILITY AND BISTABLITY IN DETERMINISTIC AND
STOCHASTIC DYNAMICS

Some highly cooperative biochemical processes exhibit sharp all-or-none transitions. We now
know they are intimately related to the phenomenon of chemical bistability. Because the concept
of bistability is not widely taught in elementary biophysics texts, we shall give a brief introduction
through a simple example.

Unistability and Bistability in Deterministic Kinetics

One of the most important notions in deterministic nonlinear dynamics is a distinction between
unistability and bistability. Let us consider kinetic equations for the following two chemical reac-
tion systems I and II (75):

I : X
k1−−−−−⇀↽−−−−−
k2

Y ; II : X
k1−−−−−⇀↽−−−−−
k2

Y , X + 2Y
k3−→ 3Y . 2.

According to the law of mass action, the chemical kinetics follow ordinary differential equations
(93):

I :
d y
dt

= μ(1 − y) − y ; II :
d y
dt

= y(μ(1 − y)y − 1) + λ(1 − y), 3.

where y = [Y ]/([X ] + [Y ]), μ = k1/k2 for system I and μ = k3[Y ]2
tot/k2, λ = k1/k2 for system II.

Figure 1 shows the steady state(s) of the two systems as functions of their respective parameter

0.4

0.6

0.8

1

0

0.2

μ
0 4 8 12

I
II

y*

Figure 1
Steady state(s) y∗ as functions of μ, according to Equation 3, for systems I and II in Equation 2. System I:
y∗ = μ/(1 + μ). System II with λ = 0.03: y∗ ≈ λ + (μ − 1)λ2 for μ < 3.88. For μ ∈ (3.88, 9.39), two
additional steady states, y∗

2 (unstable) and y∗
3 (stable), appear. For very small λ, y∗

2 , y∗
3 ≈ 1

2 ∓
√

μ2 − 4μ/(2μ).
When μ > 9.39, y∗

1 and y∗
2 disappear, and y∗

3 ≈ 1 − 1
μ

− 1−λ

μ2 .
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Modal value of a
random distribution:
the most frequently
occurring value of a
variable

Expected value of a
random distribution:
the mean of a random
variable

μ. System I has a unique steady state y∗ = μ/(1 + μ). For system II, when μ > 4, three steady
states are the roots of the cubic equation μy3 − μy2 + (1 + λ)y − λ = 0.

With increasing μ, e.g., from 0.5 to 5, both systems exhibit a transition from a small to a large
steady-state value y∗. In system I, y∗ changes from 0.33 to 0.83; in system II, y∗ changes from 0.03
to 0.72. However, if we follow the changing y∗ continuously as μ changes, the two systems cannot
be more different. System I has a single steady state that changes continuously with μ (Equation 5).
System II shows hysteresis: When μ increases from 0.5 to 10, y∗ follows the lower branch and
remains at y∗

1 = 0.03 until μ = 9.39, where y∗ jumps upward to 0.87 discontinuously. If μ decreases
from 10 to 0.5 with y∗ starting on the upper branch, then it will follow the upper branch until
μ = 3.88, where y∗ jumps downward to 0.03 discontinuously.

We note that transitions of any two individual X molecules to Y are statistically independent in
system I. They are not so in system II, in which X molecules are competing for the Y molecules,
which act as a catalyst. This is the mechanistic origin of nonlinearity, or cooperativity: When there
are more Y molecules, the transition of an individual X to Y is faster, catalyzed by Y molecules.
Bistability in a chemical or biochemical reaction system is a consequence of strong cooperativity,
or positive feedback in the language of network regulations (106). A dynamical system such as
system II with μ ∈ (3.88, 9.39) is called bistable: The chemical reaction system inherently has two
possible stable steady states, y∗

1 and y∗
3 . The existence and locations of multiple steady states are

emergent phenomena of a nonlinear dynamical system. Which steady state a (macroscopic) system
actually adopts depends on its initial condition. In nonlinear dynamical system theory (93), [0, y∗

2 )
and (y∗

2 , 1] are called two basins of attraction associated with y∗
1 and y∗

3 , respectively.

Unistability and Bistability in Stochastic Kinetics

The biochemical network kinetics in a mesoscopic volume on the order of a cell are stochastic (87,
107). With stochastic fluctuations in the copy numbers of biochemical species in a single cell (104),
it is no longer meaningful to consider a steady state, or multiple steady states, as a deterministic
chemical composition(s). Rather, a deterministically stable steady state corresponds to a locally
most-probable state, i.e., a maximum in a probability distribution. For systems with bistability,
the modal values, not the expected value (mean), correspond to the deterministic kinetics.

System I in Equation 2 is best described as follows. It contains N identical and independent
copies of a molecule with two states, X and Y, with transition rate constants k1 and k2 for X → Y
and Y → X , respectively. Each transition of a single molecule is exponentially distributed just
as radioactive decay. The steady-state distribution for the number of molecules in state Y, nY , is
therefore binomial:

Pr{nY = �} = N !
�!(N − �)!

k�
1kN −�

2

(k1 + k2)N
= N !

�!(N − �)!
μ�

(1 + μ)N
. 4.

The modal value (i.e., peak) of the distribution, n∗
Y , is between (Nμ − 1)/(1 + μ) and (Nμ +

μ)/(1 + μ). Its expected value is at 〈nY 〉 = Nμ/(1 + μ). So for large N, n∗
Y and 〈nY 〉 are essentially

the same. Let μ = k1/k2, then one has the fraction of the molecules in state Y:

y(μ) = 〈nY 〉
N

= μ

1 + μ
. 5.

Equations 4 and 5 are the mesoscopic version of the hyperbolic response curve, with the presence
of fluctuations. This is the reference against which all cooperativity phenomena are discussed (4,
69). With this in mind (25, 69, 76), we have discussed zeroth-order ultrasensitivity in terms of
temporal cooperativity and have shown a critical phenomenon akin to phase transitions in matter
(40). One can see a close resemblance between figure 1 of Reference 40 and Figure 2 below.
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Number of Y molecules, nY
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<
n Y

>
/N

μ = 4.5
μ = 6

Figure 2
Stochastic kinetics of system II (Equation 2) in a small volume: N = 400, λ = k1/k2 = 0.03. (a) Stationary
probability, Pr{nY = �}, for the copy number of Y exhibits bimodality for μ = k3 N 2/(k2V 2) = 4.5 and
μ = 6. n∗

1 dominates when μ = 4.5 and n∗
3 dominates when μ = 6. Noting the logarithmic ordinate, the

dominant steady state almost has a probability of 1. (b) The mean 〈nY 〉/N and the standard deviation
[(〈n2

Y 〉 − 〈nY 〉2)/N ]1/2 are shown as functions of μ. Transition in a bistable system is much sharper than
hyperbolic transition; it exhibits an almost abrupt jump at some critical value μ∗ where the variance reaches a
maximum (μ∗ ≈ 4.74).

One also observes from Equation 4 that its modal value, i.e., the peak of the distribution,
increases with the parameter μ, whereas the relative variance var[nY ]/〈nY 〉2 = 1/(Nμ) decreases
with increasing μ. The expected value, i.e., mean of the distribution, follows the modal value. The
transition is hyperbolic.

The binomial coefficients in Equation 4, N !/(�!(N − �)!), represent the proper combinatorial
weights for N identical, independent subsystems with two states. Any combinatorial sequence
deviating from them implies nonindependence, i.e., interactions and cooperativity, between sub-
units. For examples, binomial coefficients with N = 4 are 1, 4, 6, 4, 1. However, 1, 4 1+c L

1+L , 6 1+c 2 L
1+L ,

4 1+c 3 L
1+L , 1+c 4 L

1+L , and 1, 4, 4η+2, 4η2, η4, (η > 1) represent Monod-Wyman-Changeux statistics (48)
and Koshland-Némethy-Filmer statistics (59), respectively, for tetrameric hemoglobin oxygen
binding (32). Both sequences indicate positive cooperativity.

For N identical subunits, the sequences 1, 1, 1, . . . , 1, 1 and 1, 0, 0, . . . , 0, 1 also represent
cooperativity with corresponding response curves

x − (N + 1)xN +1 + N xN +2

N (1 − x)(1 − xN +1)
and

xN

1 + xN
, 6.

and respective Hill’s coefficients (N + 2)/3 and N. Distribution in Equation 4 is associated
with binomial coefficient; distribution associated with 1, 1, 1, . . . , 1, 1 is truncated geometric
Pn(N , x) = (1−x)xn

1−xN +1 , (n ≤ N ). When x increases, 〈n〉 increases as well, but the distribution Pn(N , x)
remains peaked at n = 0. This implies that the relative variance increases with x. When x passes a
critical value of x∗ = 1, the peak abruptly jumps to n = N . The variance is now decreasing while
the 〈n〉 continues to increase. This describes the celebrated zeroth-order ultrasensitivity (6, 76).

The sequence 1, 0, 0, . . . , 0, 1 is widely called all-or-none. It presents a coexistence of two
peaks (modal values) in a probability distribution. Transitions in such a system have a different
process. Taking system II in Equation 2 as an example (Figure 2), the three steady states, for each
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A BISTABLE STOCHASTIC BIOCHEMICAL SYSTEM

The kinetics of a nonlinear biochemical reaction system with autocatalysis in a mesoscopic volume V,

X
k1−−−−−⇀↽−−−−−
k2

Y , X + 2Y
k3−→ 3Y ,

can be represented by the stochastic theory of the Delbrück-Gillespie process (54, 71, 73, 75). The number of Y
molecules in the reaction system, nY (t), is stochastically fluctuating, with forward and backward transition rates
between nY = � and nY = � + 1 being (k3�(� − 1)/V 2 + k1)(N − �) and k2(� + 1), � = 0, 1, . . . , N − 1. The
stationary distribution for the nY then is predicted to be

Pr{nY = �} = CN N !
�!(N − �)!

�−1∏
n=0

(μ̂n(n − 1) + λ),

in which N is the total number of Y molecules possible, i.e., N = V [Y ]tot, CN is a normalization factor, μ̂ =
k3/(k2V 2) = μ/N 2, and λ = k1/k2. Figure 2a shows two bimodal distributions with μ = 4.5 and μ = 6. One
can verify that n∗

i = Vy∗
i , i = 1, 3, 2. When μ /∈ (3.88, 9.39), the distribution is unimodal. The distribution tells

us which of the two stable steady states is more probable and by how much. There are two steady states with copy
number fluctuations: nY ∈ [0, n∗

2) with mean value ≈ n∗
1 and nY ∈ (n∗

2, N ] with mean value ≈ n∗
3. Dynamics within

each peak region and between two regions are called intra-attractoral and inter-attractoral, respectively.

given μ > 4, in fact correspond to two peaks with a trough in a probability distribution. With an
increasing μ, the weight in the peak at x∗

1 decreases from 100% to 0, whereas the weight in the
peak at x∗

3 increases from 0 to 100%. The modal value of the distribution thus changes from x∗
1

to x∗
3 . In the entire process, the two peak positions move relatively little; it is their relative weight

that is changing.
How does one compute the expected value of the distribution given in Figure 2a? This simple

question in fact has two different answers, depending on the timescale on which the expected
value is computed: There is a great separation of timescales between intra-attractoral and inter-
attractoral dynamics. For time shorter than the inter-attractoral dynamics, the expected value
depends on the initial conditions as shown in Figure 1. For time much longer than the latter, the
expected value is a weighted average between the two steady states: nY ∈ [0, n∗

2) and nY ∈ (n∗
2, N ];

it is unique.
Figure 2b shows the expected value of stationary nY as a function of μ, with time much longer

than the inter-attractoral dynamics, 〈nY 〉 = ∑N
�=0 � Pr{nY = �}. One observes an almost abrupt

transition at a critical value of μ∗ ≈ 4.74. The variance of the stationary nY is dominated not by
the fluctuations near each peaks but rather by the large separation between the two peaks. If we
neglect the fluctuations within each peak region, and let θ be the relative weight of the two peaks,
then we have

〈nY 〉 = n∗
1 + θn∗

3

1 + θ
, var[nY ] = θ

(1 + θ )2
(n∗

1 − n∗
3)2. 7.

As a function of θ , Equation 7 seems to be similar to Equation 5. However, Figure 2a suggests
that θ , as a function of μ, changes from 0 to 1 drastically at μ = μ∗. In fact, the greater N is, the
closer θ (μ) is to a step function. This leads to the notion of a Maxwell construction in the classical
theory of phase transition (23).
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Maxwell Construction

Why are the orange curves in Figure 1 and Figure 2b so different? Isn’t 〈nY 〉 in Equation 7 a
hyperbolic function? For most cellular biochemical kinetics, the θ in Equation 7 is not a reasonable
parameter of the model. As the probability ratio of two emergent steady states of the system,
it cannot be experimentally controlled in a simple manner. The following thought experiment
illustrates the issues involved.

Consider a biochemical reaction system in a cellular volume V with a bimodal distribution for
its key signaling protein Y. Consider a regulatory protein S that can change the relative weights
between the two peaks, but not their positions at y∗

1 and y∗
3 . What does the curve of 〈nY 〉 as a

function of the number of S, denoted by s, look like?
The answer to this question depends on the volume V and the number of molecules nY , even

when concentration nY /V is given. The relative weight (θ ) of the two peaks practically goes to
zero for almost all the value of s < s ∗, and to θ → ∞ for all the values of s > s ∗. So, 〈nY 〉 in
Equation 7 is always at y∗

1 when s < s ∗ and always at y∗
3 when s > s ∗. There is an abrupt transition

when s = s ∗, i.e., θ = 1. This scenario is called the Maxwell construction; Maxwell first introduced
a line at the value of s∗ (Figure 1) when working on gas-to-liquid phase transition in physics
(23, 24).

One simple example of this type of transition is a phosphorylation-dephosphorylation cycle with
a positive feedback through autocatalytic kinase (23, 24). The sharpness of the transition increases
with the number of molecules in the system. At the same time, the timescale for transitions between
the two steady states grows to an astronomical magnitude. Therefore, for macroscopic kinetics,
the transition between the two steady states ceases to be possible, and the two stable steady states
shown in Figure 1, with initial value dependence, become meaningful.

One of the most important insights from the stochastic kinetic study is that fluctuations inherent
to molecular processes do not disappear in mesoscopic cell-sized nonlinear systems; rather they
manifest themselves as biochemical variations on a different timescale. Transitions between these
biochemical variants may well be the mechanism for cell differentiation and phenotypic switching
(2, 71).

MECHANISMS GENERATING SIGMOIDAL RESPONSES

Classical Theories

The literature on this subject is large; therefore, I give only a brief overview of most of the well-
known theories. Interested readers are referred to recent review articles (58, 70, 81) and several
excellent monographs (5, 14, 33).

Allosteric cooperativity. The classical allosteric cooperativity that requires interactions between
multiple binding sites for ligands is well understood (48, 59). This type of cooperativity is equi-
librium physics in nature; its origin is in the molecular interactions between the binding sites via
specific protein structural elements that are shaped by evolutionary processes. The interaction
energy need not be localized in particular structural groups or through a structural pathway; it can
be distributed throughout an entire macromolecule (35). The sharpness of the response is related
to the number of interacting sites (5, 32, 33).

Activation with multisteps. Still within the equilibrium binding scenario, this mechanism is less
known. If a signal is associated only with the fully bound state of a protein with two (or more)
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Nonequilibrium
steady state (NESS):
a system with a
stationary dynamics
with time-independent
statistics, while
continuously
converting useful
energy into heat

independent binding sites, then signal f = K1 K2x2

1+K1x+K2x+K1 K2x2 , where x represents the concentration
of the signaling ligand. The curve has a positive curvature at x = 0. Furthermore, at the half-
saturation point x 1

2
= (K1 + K2 +

√
(K1 + K2)2 + 4K1 K2)/(2K1 K2), it has a Hill’s coefficient

(4)

2
(

d ln f
d ln x

)
f = 1

2

= 1 + 1
1 + (K1 + K2)x 1

2

. 8.

It is greater than 1 but always less than 4 − 2
√

2 = 1.17 (when K1 = K2). The sharpness of the
response is related to the number of steps leading to the function. The Hill’s coefficient being less
than 1 is often related to f (x) being convex on x ∈ [0, x 1

2
].

Gunawardena (31) and Wang et al. (102) have discussed in detail this type of biochemical
mechanism in cellular regulations. Although the multiple bindings are assumed to be indepen-
dent, the fact that a cell responds to a signaling protein with different numbers of bound ligand
nonlinearly is a form of cooperativity at a higher level. An early example of this is the four-gate
model for a potassium channel in Hodgkin-Huxley’s dynamic theory of membrane action potential
(4).

Zeroth-order ultrasensitivity with temporal cooperativity. This mechanism is based on the
driven phosphorylation-dephosphorylation cycle in which the kinase and the phosphatase are
highly saturated (6, 28). It was shown to be a nonequilibrium steady (or stationary) state (NESS)
mechanism (41, 67, 69) related to a dissipative structure of an open chemical system (60). Although
it shares many mathematical similarities with allosterism (33), the physics of the NESS mechanism
is fundamentally different from that of the equilibrium mechanisms discussed above.

Qian & Cooper (76) and Ge & Qian (25) have further pinpointed the molecular origin of
cooperativity in this system, which they called temporal cooperativity. Copies of the substrates are
competing for an enzyme. With the progression of the reaction, the substrate number decreases
and the competition lessens. Thus, earlier turnovers help the later turnovers, i.e., the substrates
are temporally cooperative. Note that the above argument neglects the competition from the
product for the same enzyme. This is precisely the role of the driven system: If the products were
equally likely to compete for the enzymes, i.e., the enzymatic reactions were fully reversible, then
the temporal cooperativity would disappear (76). Competitive inhibition based on a similar idea
was proposed as a mechanism for ultrasensitivity in cellular signaling (46).

Slowly fluctuating enzyme and dynamic cooperativity. The term dynamic cooperativity has
a long history in enzymology. It is intimately related to several other terms such as hysteretic
behavior (1, 21), mnemonic enzymes (82), and energy relay (37). The phenomena were well docu-
mented as non-MM behavior (57, 58): The steady-state turnover rate has a sigmoidal dependence
on the substrate concentration. Again, this is a driven NESS phenomenon of an open chemical
system (70, 72). Cooperativity stems from competition between two pathways, one fast and one
slow, for catalysis. The partition between the two pathways is modulated by the concentration
of the substrate, which biases toward the faster pathway (70). Hence, with increasing substrate
concentration, the partition increases the probability as well as speeds up the rate of the faster
pathway. The enzyme has a certain kind of memory (mnemonic) (37, 82). An attempt to synthesize
all the classical ideas has been carried out in Reference 72. The author proposed a new concept,
cyclic conformational modification, and pointed out its implications to cellular signal regulations.

Dynamic cooperativity is intimately related to the phenomenon of kinetic proofreading (36,
61, 68). Both exhibit a square law (70): A square dependence on the substrate concentration
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occurs in the former and a square dependence on the binding constant occurs in the latter. Note
that in a mathematical representation, increasing ligand concentration is equivalent to increasing
binding constant. Therefore, a sigmoidal dependence on ligand concentration necessarily leads
to a specificity beyond the ratio of binding affinities.

Fluctuation-Induced Sensitivity and Stochastic Focusing

Stochastic focusing (SF) is a recently discovered mechanism for sigmoidal response (7, 64). The
intriguing feature of this mechanism is rooted in stochastic fluctuation, while the correspond-
ing deterministic biochemical system only exhibits hyperbolic behavior. The functioning of SF
requires the breakdown of detailed balance (7), implying it also has a NESS origin. Although
different in their appearance, SF shares certain underlying principles with dynamic cooperativity.
Specifically, SF considers the response curve 1/(1 + s /K1) with a fluctuating s, the concentration
of an inhibitor or repressor. K1 is a binding parameter. In a fluctuating enzyme with dynamic
cooperativity, one considers the turnover kinetics vmax/(1 + K2/[S]) with a fluctuating K2. [S] is
the substrate concentration. Therefore, the plot of 1/(1 + s /K1) against log(s) and the plot of
vmax/(1+ K2/[S]) against log[S] have a simple symmetry! Again, in a mathematical representation,
fluctuations in ligand concentration differ little from fluctuations in binding affinity.

SF also shares certain features with the recently discussed phenomenon stochastic binary
decision (SBD), in which one is concerned with 1/(1 + eb ) with a fluctuating b. For example,
b = −�G/kB T could represent fluctuations in free energy (3, 81). Indeed, both SF and SBD can
exhibit noise-induced bistability when the signal fluctuation is sufficiently slower than response
time (38, 81).

FLUCTUATION-INDUCED COOPERATIVITY, SENSITIVITY,
AND BISTABILITY

Fluctuation-enhanced (or induced) sensitivity, i.e., stochastic focusing (SF) (7, 64, 65), is a rich
molecular regulatory phenomenon that provides insights into a wide range of related cellular
biochemical phenomena. In this section, we present a thorough analysis of SF.

We consider a biomolecular signal in terms of the concentration s of a molecular inhibitor.
Assuming slow fluctuations in s and rapid response to the signal, one can express the steady-state
level of the response q to the slowing varying s:

q = 1
1 + s /K

. 9.

Equation 9 is the canonical form for studying SF; note that 1 − q = s /(K + s ) is Equation 1. The
inhibitor could be a repressor in transcriptional regulation (63, 64).

Copy Number Fluctuations and Deviations from Poisson
Distribution in a Chemical System

To investigate q(s) with fluctuating signal, the first question is the distribution for s in
Equation 9. Poisson distribution for molecular number fluctuations can be derived from equi-
librium with Gibbs’ grand canonical ensemble theory. It can also be derived from a simple mech-
anistic Delbrück-Gillespie model with a constant synthesis rate and a first-order degradation rate
(4, 63). Another widely considered distribution for fluctuating numbers is negative binomial, or
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Pólya distribution. It can be obtained if the degradation of X follows the standard MM kinetics
(64).

Whereas Poisson distribution can be verified for equilibrium number fluctuations of a grand
canonical system, the negative binomial distribution is a consequence of a driven, open-chemical
system (see Supplemental Section 1; follow the Supplemental Material link from the Annual
Reviews home page at http://www.annualreviews.org). In Reference 64, truncated geometric

COPY NUMBER FLUCTUATIONS AND POISSON AND PÓLYA DISTRIBUTIONS

Consider a cell-sized biochemical kinetic system, with volume V, that consists of a protein X with constant rate of
biosynthesis, J, and first-order degradation process with rate constant q:

constant source J−→ X
q−→ degradated.

In terms of the Delbrück-Gillespie stochastic model, the system’s transition rate from {nX = �} to {nX = �+ 1}
is J and the rate from {nX = � + 1} to {nX = �} is q (nX + 1). Then the stationary probability mass function (pmf)
for the copy number nX is a Poisson distribution (nX ≥ 0):

Pr{nX = �} = 1
�!

(
J
q

)�

e−J/q ,

with an expected value of 〈nX 〉 = J/q .
If the degradation process is catalyzed by an enzyme with very few copies according to the MM mechanism,

then the system’s transition rate from {nX = � + 1} to {nX = �} becomes vmax(� + 1)/(KM V + � + 1) where vmax

and KM are the MM parameters for the enzyme. Note that when (�+1)/V � KM , the reaction is first order; when
(�+1)/V � KM , it is zeroth order. The stationary pmf for nX then follows Pólya distribution (negative binomial):

Pr{nX = �} = 	(� + r)
�!	(r)

p�(1 − p)r ,

where r = KM V + 1 and p = J/vmax. vmax > J is necessary for the system to reach a stationary state.

VARIANCES OF NUMBER FLUCTUATIONS IN LINEAR AND NONLINEAR
BIOCHEMICAL REACTIONS

The copy number N of a chemical species in exchange with a material reservoir at a constant chemical potential, in
a dilute solution, fluctuates following a Poisson distribution: PN (n) = μne−μ/n!. Poisson distribution has 〈N 〉 =
〈(�N )2〉 = μ. Therefore we have an interesting relation

〈(�N )2〉 =
(

1
〈N 〉

)−1

. 1.

For a unimolecular, linear reaction A � B with equilibrium constant Keq in a dilute solution, the copy numbers
NA and NB fluctuate following binomial distributions, with p = 1/(1 + Keq) and NA + NB = N . We thus have
〈NA〉 = Np and 〈(�NA)2〉 = Np(1 − p). Therefore,

〈(�NA)2〉 = 〈(�NB )2〉 = 〈NA〉〈NB〉
〈NA〉 + 〈NB〉 =

(
1

〈NA〉 + 1
〈NB〉

)−1

. 2.

(Continued )
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We see that if 〈NB〉 � 〈NA〉, then Equation 2 is reduced to Equation 1: B can be considered as a quasi-static
chemical buffer.

Now for a nonlinear chemical reaction A + B � C with association constant Keq, such as biochemical binding
E + S � ES, the Delbrück-Gillespie theory predicts

Pr{NC = � + 1}
Pr{NC = �} = Keq(M − �)(N − �)

V (� + 1)
,

in which NA + NC = M and NB + NC = N are constants. Then,

〈(�NA)2〉−1 = 〈(�NB )2〉−1 = 〈(�NC )2〉−1 = 1
〈NA〉 + 1

〈NB〉 + 1
〈NC 〉 . 3.

We see that if N � M , for example, B and C are free E and bound ES, then 〈NA〉 � 〈NB〉, 〈NC 〉 and Equation 3
is reduced to Equation 2 for a pseudo-first-order reaction E � ES.

The deterministic kinetics based on the law of mass action for the above three reactions are, respectively,

dc (t)
dt

= J − kc , c = N
V

, μ = VJ
k

;

dc A(t)
dt

= k−(c t − c A) − k+c A, c A = NA

V
, c t = N

V
, p = k+

k+ + k−
; and

dc (t)
dt

= k+(c a − c )(c b − c ) − k−c , c = NC

V
, c a,b = M , N

V
, Keq = k+

k−
.

It is easy to verify that the steady-state concentrations obtained from these kinetic equations correspond to the
modal values in the respective probability distributions.

distribution is also used as a possible probability mass function for copy number fluctuations.
Truncated geometric distribution arises in zeroth-order ultrasensitivity (6, 76).

To experimentally measure copy number fluctuations, or more generally concentration fluc-
tuations, fluorescence correlation spectroscopy is one of the most feasible biophysical methods
(77, 83). Although single-molecule techniques have an ultimate signal-to-noise characteristic of
fluctuation measurements, in principle, they do not provide nonlinear information on biochemical
reaction systems.

Explaining SF by the EFAZ Mechanism

In this section, we explain how, as a mechanism, the end-effect at zero, or extinction effect at zero
(EFAZ), leads to fluctuation-enhanced sensitivity. Similar mechanisms are responsible for several
other stochastic effects: Keizer’s paradox (95), zeroth-order ultrasensitivity (6, 76), and stochastic
bimodality (8) (see below). EFAZ also shares certain features with the sharp transition in bistable
systems.

When the modal value and expected value of a fluctuation distribution are far apart, it implies
the fluctuation is severely non-normal, and then nontrivial phenomena due to statistics can occur.
To illustrate this, let us first consider Equation 9 with a fluctuating s that follows the distribution
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Figure 3
A comparison between the q(s) as a function of s (blue dashed line, Equation 9) and the mean q̄ (〈s 〉) as a
function of the mean 〈s 〉 (red line, Equation 10), with the distribution for s being Ps (x) = μe−μx with
〈s 〉 = 1/μ. (a) Semilog plot. (b) Linear plot.

Ps (x) = μe−μx . Note that with decreasing μ, the expected value, 〈s 〉 = 1/μ, and the modal value,
which remains at zero, become farther apart. Therefore, as a function of the 〈s 〉, the mean response

q̄ (〈s 〉) =
∫ ∞

0

μe−μx

1 + x/K
d x =

∫ ∞

0

e−y

1 + y〈s 〉/K
d y . 10.

Figure 3 shows a comparison between Equations 9 and 10.
As we have stated, exponential function is a rather special distribution whose expected value

increases with 1/μ while its modal value stays at s = 0. In cellular biochemistry, fluctuations
in an inhibitory signal s are usually related to the activity of a signaling protein. It has to be a
non-negative random variable. Therefore, when the distribution Ps (s ) has a very small expected
value, it usually peaks at s = 0. For example, a Poisson distribution has its peak located at n = 0
until its expected value is greater than 1.

Therefore, when the expected value of the signaling protein 〈s 〉 is less than a certain critical
value s∗, 〈s 〉 increases but the distribution continues peaking at zero. In this regime, the mean
response q̄ will be

q̄ =
〈

1
1 + s /K

〉
>

1
1 + 〈s 〉/K

, small 〈s〉. 11.

On the other hand, when the expected value of the signaling protein is greater than the critical
value s∗, the peak location (modal value) starts to increase with the expected value while the relative
variance decreases, such as in Poisson distribution. Then in this regime

q̄ =
〈

1
1 + s /K

〉
≈ 1

1 + 〈s 〉/K
, large 〈s〉. 12.

Thus, combining the two regimes in Equations 11 and 12, the transition from 1 to 0 in the mean
response, q̄ (〈s 〉), will be steeper than 1/(1 + s /K ).

In terms of the EFAZ mechanism, the critical value s∗ can be determined as the expected value
of a distribution Ps (s ) whose Ps (0) = Ps (1). Paulsson et al. (64) considered four distributions:
(a) Poisson, (b) binomial, (c) Pólya, and (d ) truncated geometric. Each has its critical expected
value: (a) s ∗ = 1; (b) s ∗ = 100/101 when N = 100; (c) s ∗ = 11 when p = 10/11; and (d ) s ∗ = 500
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Figure 4
The end-effect at zero (EFAZ) mechanism explains the origin of fluctuation-enhanced sensitivity. The mean
response with fluctuating s, q̄ = 〈1/(1 + s /K )〉, has a sharper transition than 1/(1 + 〈s 〉/K ) does. Results for
four distributions are as follows: Poisson; binomial with N = 100 and 〈s〉 = Np; Pólya with p = 10/11 and
〈s 〉 = rp/(1 − p); and truncated geometric with N = 1,000. The modal values of the distributions depart
from n = 0 when s ∗ = 1,100/101,11 and 500, correspondingly. They agree with the sharp transitions
shown. All computations use K = 0.01. The turquoise dashed line is a hyperbolic curve used for comparison.
Parameters are taken from Reference 64.

with N = 1,000. Figure 4 convincingly shows that all q̄ (〈s 〉) sharply decrease at the respective
critical s∗. See Supplemental Section 2 for more discussions.

SF with Possible Bimodality (Bistability)

SF in fact can lead to bimodal distribution for q. We give two examples through which we demon-
strate that SBD proposed in Reference 3 is a mechanism intimately related to SF.

Bimodality in q(s) = 1/(1 + s/K) with fluctuating s. One can in fact compute the probability
density function for q, Pq (q ), on the basis of the probability density function for s, Ps (x):

Pq (q ) = (K/q 2)Ps (K/q − K ), 13.

where 0 ≤ q ≤ 1. Figure 5 shows that for Ps (x) =
√

a
2 (a + x)−3/2 (x ≥ 0), the distribution for q is

bimodal.
In general, we note that the distribution Pq (q ) has a maximum at q = 1 if P ′

s (0) < −2Ps (0)/K .
On the other hand, the distribution also has a maximum at q = 0 if limx→∞ d ln Ps (x)/d ln x > −2.
This condition indicates that the distribution of Ps (x) has to have a fat tail ∼x−2 for the bimodality
to occur. While this is theoretically interesting, it is not realistic for most cellular processes: Note
that the mean value of s does not exist for such fat-tailed distribution.

Bimodality in y(z) = 1/(1+ ez) with fluctuating z. The bimodality in Equation 13 is similar to
the SBD problem in References 3 and 81, described as follows. Consider y = 1/(1 + e z) and 1 − y
represent the probabilities of a binary decision. Let z follow a Gaussian distribution with mean μ
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Figure 5
Bimodal distribution for the response Pq (q ) with fluctuating signal implies the response is all or none, i.e.,
either 0% or 100% (3, 81). Blue curve: q = 1/(1 + s /K ), where s follows Ps (x) = √

a(a + x)−3/2/2 with
a/K = 0.05. In fact, the distribution is bimodal for any a/K < 3/4 (see text). Orange curve: q = 1/(1 + ez),
where z follows a Gaussian distribution with mean μ = 0 and variance σ 2 = 10.

and variance σ 2. Then x = e z follows a lognormal distribution, and y can also exhibit bimodality:

fy (y) = 1√
2πσ 2

exp
{
− [ln(1 − y) − ln y − μ]2

2σ 2

} (
1

y(1 − y)

)
, 14.

where y ∈ [0, 1]. Figure 5 shows an example with μ = 0 and σ 2 = 10.

Stochastic Bimodality and Bistability

We have seen that a macroscopic nonlinear bistable biochemical reaction system corresponds to a
stationary bimodal distribution when the same reaction is in a mesoscopic volume. The two peaks
are separated by a trough, a unstable steady state, forming two basins of attraction.

For a macroscopic chemical reaction system with one dynamic species, its concentration x(t)
follows a differential equation according to the law of mass action: d x(t)/dt = b(x) − d (x) = r(x),
where b(x) and d (x) are the formation (birth) and degradation (death) rates. Figure 6a shows
an example with bistability. The same chemical reaction system in a mesoscopic volume V will
exhibit concentration fluctuations. Its stationary probability density function for the concentration,
px(x, V ), can be written as e−V φ(x,V ) (4, 71, 73, 75):

px(x, V ) = e−V φ(x,V ), where φ(x, ∞) = −
∫ x

0
ln

(
b(z)
d (z)

)
d z. 15.

We see that the minima and maxima of φ(x,∞) are where b(x) = d (x), i.e., r(x) = 0. In fact, the
minima and maxima correspond to the stable and unstable steady states of d x/dt = r(x), one to
one, as shown in Figure 6. The two basins of attraction, [0, x∗

2 ) and (x∗
2 , ∞), correspond to two

wells in the function φ(x, ∞) (Figure 6a).
What happens if deterministic kinetics has only two, not three, steady states, one stable and

one unstable, as shown in Figure 6b? In this case, the deterministic dynamics is not bistable; in
fact, it exhibits the phenomenon of extinction: x∗

1 = 0. However, the corresponding mesoscopic
kinetics has a φ(x, V ), as shown in Figure 6b. It has an additional minimum at x = 0 for finite
V. This leads to a stochastic bistability, or bimodality, that has no deterministic counterpart
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Concentration
ϕ(x,V)

Concentration

ϕ(x,V)

a b

r(x)

x*
3

x*
1

x*
2

x*
2

x*
1

x*
1

x*
1x*

2
x*

2x*
3

Figure 6
The steady states of nonlinear kinetics can be determined by d x/dt = r(x) = 0, the roots of r(x), as
illustrated by the orange curves. The blue arrows on the axis represent the direction in which a
concentration changes with time. Filled and open circles represent stable and unstable steady states,
respectively. In a mesoscopic volume V, the same chemical reaction exhibits concentration (or copy number)
fluctuation px (x, V ). The red curves are φ(x, V ) = −(1/V ) ln px (x, V ). Noting the minus sign, a maximum
(minimum) of px (x, V ) corresponds to a minimum (maximum) of φ(x, V ). A basin of attraction corresponds
to a well in the φ function. (a) A biochemical reaction system with nonlinear bistability. (b) A biochemical
reaction system with stochastic bistability: In a bulk solution with V = ∞, x = 0 is an unstable steady state
(i.e., extinction in the language of population dynamics), as shown by the orange curve. However, for small
V, there is a region left of the peak of φ(x, V ) (red curve). This constitutes another peak in the probability
density function px (x, V ) = e−V φ(x,v). The dark blue rectangle indicates that x cannot be negative.

(8, 84). In the limit of V → ∞, φ(x, V ) → φ(x,∞), which has the maximum at x = 0, as given
in Equation 15.

Therefore, there are two types of bistability. With increasing volume V, stochastic bistability
disappears whereas bistability due to nonlinear feedbacks emerges. The lifetime of the former
decreases with V whereas the lifetime of the latter increases with V. If one makes an analogue
between temperature and 1/V, then stochastic bistability has an entropic barrier and nonlinear
bistability has an enthalpic barrier.

Copy Number Distribution in Cell and Stochastic Single Gene Expression

There is now a sizable literature on this subject (see a review on earlier work in Reference 63).
Widely observed stochastic transcriptional and translational bursting (29, 107) has been inter-
preted by various stochastic kinetic models. At the conceptual level, Hornos et al. (38) obtained
an analytical solution to a model for a self-regulating gene that consists of a binary gene activation
and the copy number for a protein as the gene product. The protein is a repressor for its own gene
expression; hence negative feedback contributes a nonlinear term to the kinetics model. Kepler &
Elston (44) and Walczak et al. (99) also solved a self-regulating gene model with positive feedback.
The gene product, in a dimer form, activates transcription. Both models can predict bistability,
i.e., bimodal distributions in the copy number of the protein. The bimodality/bistability can be
interpreted as two different isogenetic phenotypes of a biochemical cell. Walczak et al. and Shi &
Qian (89) also studied the kinetics of transitions between the two attractors.
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In terms of classical kinetics, these models can be written in the form of a pair of ordinary
differential equations (ODEs) according to the law of mass action:

d x
dt

= h(y)(1 − x) − f x,
d y
dt

= (g0(1 − x) + g1x) − ky, 16.

where x is concentration of the DNA with bound transcription factor(s) (TFs), and y is the concen-
tration of the TF. One is particularly interested in the three cases of h(y) = ho yχ , with χ = 0, 1, 2,
corresponding to no self-regulation (χ = 0), feedback with a monomer, and a dimer (χ = 1, 2),
respectively. Furthermore, g0 < g1 means the TF is an activator, and g0 > g1 means the TF is a
repressor. f is the dissociation rate between DNA and the TF; k is the rate constant for protein
degradation.

The simplest case of χ = 0 serves as a control: There is a unique steady state for the ODEs in
Equation 16. The corresponding stochastic Delbrück-Gillespie model, assuming a single copy of
DNA in a volume V, yields a Poissonian stationary distribution for the protein copy number with
mean value

f g0 + hg1

( f + h)k
V . 17.

The ODEs in Equation 16, as a kinetic equation for a macroscopic system, correspond to a collec-
tion of homogenized cell-free extract that contains a large amount of DNA. A valid comparison
between deterministic chemical kinetics and its stochastic counterpart is made when both have
the same concentration, i.e., concentration = copy number/volume for a stochastic model. With
such a comparison, one can mathematically show that a steady-state concentration of a chemical
species, obtained from a system of ODEs, corresponds to the peak of the distribution for the
concentration fluctuation in a small system (4, 54, 71, 73, 75). See Supplemental Section 3 for
more discussions.

We note again that Equation 17 is a hyperbolic function of (h/ f ) if g0 = 0 or, in the form of
Equation 9, if g1 = 0. To look into this further, we adopt the model studied by Hornos et al. (38):
A single gene can be either in state 1 with the TF bound or in state 0 with the TF unbound. The
production rates for the corresponding protein, the TF repressor, are g1 and g0(� g1) and with
same degradation rate constant k. The gene state switches from 0 to 1 with rate nh, where n is the
copy number of the repressor, and from 1 to 0 with rate f. We note that this mathematical model
is intimately related to the motor protein ratchet model, also known as coupled diffusion (81, 89),
and to a version of the fluctuating enzyme model (66, 80).

Within this kinetic framework, if the on-and-off gene fluctuations are rapid, then the probability
of the gene being on is

p1|n = 1
1 + n/Kd

, 18.

where Kd = f/h. If the copy number fluctuation of the repressor is regulated by the gene, i.e., a
cis regulation, then the copy number fluctuation distribution

Pr{repressor # = n + 1)}
Pr{repressor # = n} = Kd μ1 + nμ0

(Kd + n)(n + 1)
, 19.

in which μ0 = g0V /k and μ1 = g1V /k. This distribution is not Poissonian; its generating
function is a hypergeometric function 1 F1(Kd μ1/μ0; Kd ; μ0z). It has only a single peak n∗, as
long as μ1 > μ0, which satisfies (n∗)2 + (Kd + 1 − μ0)n∗ − Kd (μ1 − 1) = 0. This equation
is essentially the same equation obtained by Shea & Ackers (88) in their pioneering work (38):
(x∗)2 + (K̃d − μ̃0)x∗ − K̃d μ̃1 = 0, where x∗ = n∗/V , K̃d = Kd /V , and μ̃ j = μ j /V are bulk
biochemical quantities. In the limit of rapid protein-DNA binding and unbinding, the stochastic
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self-regulating gene model recovers the deterministic behavior with equilibrium binding between
TF protein and DNA (88).

On the other hand, still in the limit of rapid TF protein-DNA binding and unbinding but
the transcription is for an independent gene, i.e., a trans-regulation with χ = 0, the problem is
precisely that of SF: The level of TF is the signal and the level of gene product is the response.
However, with the left-hand side of Equation 18 itself being a probability of a single gene, what
is the meaning of its distribution, as discussed in above? This question is addressed below.

SIGNAL AND NOISE IN MESOSCOPIC BIOCHEMICAL DYNAMICS

Probability Distribution of a Probability

We have discussed the probability distribution for the response q in Equation 9 when the signal s is
fluctuating. In Equation 18, which has a similar expression, the left-hand side p1|n is the probability
of a single gene with a TF bound in a cell, when the number of TF molecules is n. If n is fluctuating,
so is p1|n. But what does this mean? The answer to this question is closely related, in a fundamental
way, to the issue of dynamic disorder in single-molecule enzymology (57, 58, 81, 105). In fact,
it gives insights into the important question “What is noise?” and the invaluable perspective of
multiple timescales.

Consider two games of a coin toss: In the first game, one is tossing a fair coin, which has 50/50
chance of landing on heads or tails. In the second game, two coins are involved; one coin has 10
to 90 odds of landing on heads and the other coin has 90 to 10 odds of landing on heads. For the
second game, a hidden agent is switching the two coins randomly with equal probabilities. Are
the two games the same?

The answer depends very much on how often the hidden agent randomly switches the coins. If
he does it every time, then the two games will have identical outcomes—the difference cannot be
measured. However, if he does it only rarely, then the two games will be different, even though the
final tally for a very long run will give exactly 50/50 for heads and tails. The issue concerns adiabatic
and nonadiabatic, in the terminology of Hornos et al. (38). In single-molecule enzymology, the
slow conformational fluctuation of an enzyme is the hidden agent that randomly switches the
affinity of the enzyme for its substrate KM or turnover rate constant kcat.

With a slow hidden agent, the second game in fact fluctuates between two rather deterministic
modes: the head-dominant mode and the tail-dominant mode. This is the meaning of the bimodal
distribution in Figure 5 for p1 in Equation 18. The emergence of the bimodal distribution should
be considered as a self-organization in a highly nonlinear mesoscopic system, rather than simply
treated as large fluctuations. See Reference 79 for a more extensive discussion of this viewpoint, and
see References 49 and 81 for a philosophical commentary on the relationship between bistability
and the notion of complexity in mesoscopic systems.

What Is Noise?

With all the discourse on noise-induced phenomena (39) in recent years in relation to the functions
of cellular biochemical regulations, it is timely to ask the naive question, What is noise?

The answer(s) to this question is far from simple. Let us again use a radio as an analogue
(50). Using a voltage meter to measure the electrical potential of a node in an opened radio with
its power on, one is likely to observe a fluctuating voltage V(t). Over a period of few minutes,
the fluctuating V(t) is stationary. If the person is also listening to the speaker, then a correlation
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between the signal and the broadcasted music leads to the conclusion that “it is a signal.” If the
speaker emits only static, then “it is noise.” But if the speaker is turned off, how does one know?

Measurements of copy number (or concentration) fluctuations of biological molecules inside
a living cell face a similar problem. In fact, one man’s signal is another man’s noise. A clear
correlation between biochemical activity and certain biological functions, therefore, is often the
most valuable information.

At room temperature, thermal molecular fluctuation is inevitable. This is the physical ori-
gin of intrinsic noise in chemical and biochemical reactions in small systems. However, when
this molecular thermal noise is coupled with a nonlinear, driven, open biochemical reaction sys-
tem, nontrivial behavior emerges and such behavior can be exploited by biological organisms or
bioengineering. This is one of the origins of the current fascination with stochastic, nonlinear
systems in regards to a growing list of fluctuation-related phenomena: noise-induced transition
and Brownian ratchet (11, 42), stochastic resonance (22, 108), fluctuation-enhanced sensitivity (7,
64, 109), noise suppression by noise (65, 97), stochastic bifurcation (8, 81, 84), and noise-induced
stabilization (94), to name a few.

More fundamentally in terms of thermodynamics (69, 74), almost all above-mentioned phe-
nomena are nonequilibrium-driven processes with free energy input (11, 34) and should be con-
sidered self-organized emergent phenomena with dissipation (60). Nonlinearity, nonequilibrium,
and stochasticity are three key elements (78). Their interplay, we suggest, is the essence of com-
plexity in a mesoscopic world of living cells (49, 79, 81).

Concerning a fluctuating, stationary time course, two issues require further elaboration: its
structure and its energy. The structure might be hidden in the multimodality of stationary dis-
tribution, and the energy resides in the temporal irreversibility (52, 77). Stochastic dynamics
sustained under a nonzero chemical potential contains a certain amount of energy that can be
utilized to perform chemical work (26, 41, 108).

We use a simple example to illustrate the issue of signal versus noise in a mesoscopic chemical
system. This nonlinear reaction system contains two species X and Y in an open environment
(79, 96):

B → Y , Y + 2X → 3X , X � A, 20.

with chemical potential difference between A and B, μB − μA �= 0. Figure 7a,d shows the copy
number fluctuations of nX (t) and nY (t). A reasonable explanation of this stationary stochastic
data is that both nX (t) and nY (t) have a mean value and a variance, both of which are constant
over time. They are noise. But in fact, in Figure 7b,e they are expected macroscopic dynamics
of the reaction system in Equation 20, when fluctuations diminish. nX (t) and nY (t) are periodic
oscillations. Aided by this realization, a more insightful description of the data in Figure 7a,d
would be a noisy periodic oscillation with a time-dependent mean value and a time-dependent
variance, as shown in panels c and f of Figure 7, respectively. It is a periodic signal!

Structure in fluctuations. In biophysical measurements of fluctuations, limited by the amount of
data, one often computes only statistical quantities such as mean, variance, and time-correlation
function. A histogram is a statistical estimation of the entire probability distribution function.
A distribution deviating from unimodality cannot be detected from its mean and variance alone.
Bimodality or multimodality in a fluctuating system, and a ring-shaped or a Mexican sombrero-like
distribution for a pair of fluctuating concentrations, are emergent structures in stochastic dynamics.
To characterize such structures, Wang et al. (101) proposed a potential and flux landscape to
account for both of the global features in nonequilibrium stationary dynamics. There is a growing
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Figure 7
Nonlinear chemical oscillation in a reaction system (Equation 20) in a mesoscopic volume exhibiting fluctuating nX (t) and nY (t),
shown in panels a and d. The corresponding deterministic dynamics in a bulk solution is a periodic chemical oscillation as shown in
panels b and e. The differences between panels a and b and panels d and e are shown in panels c and f. Without knowing the macroscopic
behavior, a reasonable description of panels a and d would be noise. But with the realization of the corresponding macroscopic
behavior, panels a and d should be considered as signals with temporal complexity (79).

awareness of the importance of the stationary distribution of a biochemical reaction system as a
landscape (10, 71, 100).

Energy in a noise. Equilibrium concentration fluctuation as a function of time is symmetric with
respect to time reversal (41, 69). Time-irreversible stationary concentration fluctuation without
detailed balance implies a chemical driving force is at play (77). Turning this statement around, any
time-irreversible stationary noise contains a certain amount of energy that can be utilized. This
idea is at the heart of the Brownian ratchet theory. By utilizing chemical energy, a molecular system
need not obey Boltzmann’s law: An insight from Hopfield-Ninio kinetic proofreading is that a state
with higher internal energy could have greater probability. (An even earlier work by Overhauser
on nuclear spin polarization provided the possibility for inverted nuclear spin population due to
microwave irradiation.) Although the term kinetic proofreading has been widely taught in general
molecular biology, the deep insight into the necessity of energy expenditure, unfortunately, is
often lost. In fact, it is sometime misinterpreted, to the great dismay of Ninio (62), in terms of a
macromolecular structural mechanism, which it could not be.

Stochastic Nonlinear Kinetics of Prokaryotic and Eukaryotic Cellular Systems

For a concrete biological function, sensitivity and specificity are aspects of a biochemical response
to a molecular signal(s). One of the extensively studied systems of stimulus-response coupling in
cellular biochemistry is the two-component signaling system: how prokaryotic organisms sense
and respond to changes in their environment (30, 92). Kierzek et al. (45) developed a stochastic
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model and observed both all-or-none and graded responses depending on model parameters. See
Supplemental Section 4 for more discussions on the two-component system.

Stochastic, nonlinear kinetic models have been developed for various cellular and subcellular
biochemical systems. In addition to the two-component signaling, Miller et al. (56) studied the
bistability of a stochastic CaMKII (calmodulin-dependent protein kinase II) switch in single neu-
ronal cells. Dodd et al. (15) studied epigenetic cell memory based on nucleosome modification.
Cao et al. (10) studied the heritability and robustness of the lysogenic state of λ-phage. Skupin
et al. (90) showed how cellular calcium signaling arises from single-channel protein fluctuations.

An all-or-none bistability is also observed in lymphoid cells (12). Interestingly, Smith (91) had
proposed earlier a quantal theory for immunity that shares some of the key features of multistability.
Cağatay et al. (9) suggested that Bacillus subtilis discriminates different biochemical circuits on the
basis of their stochastic fluctuations (86) and demonstrated a stochastic switch between its two
fates: sporulation and competence. Kar et al. (43) studied the eukaryotic cell cycle and explored
the role of fluctuations from biochemical signaling as well as stochastic variations from unequal
cell division. Wang et al. (100) characterized cell cycle stability and robustness in budding yeast in
terms of a landscape theory. Levine & Hwa (51) studied general theory of stochastic fluctuations
in metabolic pathways.

Another interesting system is cell fate switching in Xenopus oocytes (18, 106). Even though
several studies on highly simplified caricatures of this system have already appeared (19, 24, 78),
a full stochastic kinetic model that predicts a distribution for the switching time remains to be
developed.

SUMMARY AND OUTLOOK

Regulation is a key notion in cellular molecular biology. To carry out regulations in molecular
terms, different parts of a biological macromolecule have to communicate via molecular interac-
tions. This gives rise to allosteric cooperativity. Hyperbolic response is usually a consequence of a
system containing identical, independent subsystems with two states. Cooperativity leads to non-
linear behavior; it often exhibits sigmoidal non-MM responses. Understanding the mechanisms
for cooperativity in terms of structures and thermodynamics has been a central theme of molecular
biophysics, from allosterism to protein folding. Enzyme kinetics operating inside a living cell is
in a NESS; biochemical regulations also can be achieved by dynamic cooperativity (1, 21, 37).

Regulations in cellular biochemical processes involve a network of signaling molecules with
nonlinear reactions. Feedback is a widely used term that represents a related concept such as coop-
erativity to a macromolecule: Ultrasensitivity corresponds to positive cooperativity, and adaptation
could be related to negative cooperativity (47, 55). Hence, it is not surprising that sensitivity in a
response is also discussed with respect to hyperbolic function and Hill’s coefficient. This review
aims to provide both of these phenomena in a unified theoretical framework in terms of stochastic
nonlinear biochemical kinetics.

Nonlinearity is not a term widely used in molecular biophysics. However, in a cellular biochem-
ical reaction network, nonlinear reactions lead to a wide range of new cooperative phenomena,
among which the most important is bistability in deterministic kinetics and its corresponding
bimodal distribution in a mesoscopic volume. Bistability leads to abrupt transitions. The Hill’s
coefficients for such a transition are proportional to the number of molecules in a system. In the
macroscopic limit, the transition is truly discontinuous, similar to a first-order phase-transition.

In terms of the hyperbolic, or MM function y = x/(K + x), SF considers 1 − y = 1/(1 + x/K )
with a fluctuating x, and dynamic cooperativity of fluctuating enzyme considers a fluctuating K.
Both lead to non-MM, sigmoidal behaviors. For some particular forms of fluctuating x or K, y

www.annualreviews.org • Cooperativity in Cellular Biochemical Processes 199

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

01
2.

41
:1

79
-2

04
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

by
 U

ni
ve

rs
ity

 o
f W

as
hi

ng
to

n 
on

 0
5/

23
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



can be bimodal, producing a purely SBD (3). A sigmoidal (e.g., square) dependence on substrate
concentration x in a fluctuating enzyme also leads to a specificity amplification with respect to
competing ligands with square law, similar to Hopfield-Ninio kinetic proofreading (70). Enhanced
sensitivities to variations in substrate concentration (sigmoidal response) and to affinity (kinetic
proofreading) are complementary.

Cellular biochemical processes have always been treated as deterministic machines in terms of
sequence of events (98). Rapid development of single-molecule and single-cell biophysics (53, 104)
has brought stochastic dynamics to the forefront of cell biology. See References 54, 71, 73, and 75
for recent reviews of the Delbrück-Gillespie process approach to cellular biochemical systems. As a
successor of molecular biophysics that focused on macromolecular structure, equilibrium statistical
thermodynamics, and relaxation kinetics, chemical biophysics (4) studies cellular biochemical
systems in terms of reaction networks, NESS thermodynamics, and nonlinear stochastic kinetics.
It is an analytical tool for a systems approach to cell biology (103). Nonlinearity, nonequilibrium,
and stochasticity are three key elements of dynamics at the cellular and subcellular levels. Their
interplay is the essence of complexity in a mesoscopic world of living cells (49).
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S1 Poisson and Pólya distributions
The Gibbs’ grand canonical ensemble is absolute for equilibrium fluctuations of parti-
cle numbers. While Poisson distribution can be derived for equilibrium number fluc-
tuations of a grand canonical system, the negative binomial distribution has to be a
consequence of a driven, open-chemical system.

To show this, one needs to realize that a fundamental physical principle of en-
zyme catalysis is that an enzyme has to catalyze both forward and backward steps of
a reversible chemical reaction. Hence, a more complete, thermodynamically correct
kinetic scheme for biosynthesis and degradation with Michaelis-Menten kinetics is

A
q+


q−
X, E +X 
 EX 
 E +B, (S1)

in which A and B represent a source and a sink with constant chemical potentials. If
we denote the parameters for reversible enzyme by forward and reversed Michaelis
constants K̃f

M , K̃r
M , and forward and reversed maximal velocities vfmax and vrmax,

then the stationary distribution

Pr{nX = `+ 1}
Pr{nX = `}

=
q+nA +

vrmaxnB/K
r
M

1+(`+1)/Kf
M+nB/Kr

M

q−(`+ 1) +
vfmax(`+1)/Kf

M

1+(`+1)/Kf
M+nB/Kr

M

, (S2)

1



in which Kf,r
M = K̃f,r

M V . There is a chemical potential difference between the source
for X biosynthesis and the sink for its degradation

∆G = kBT ln γ, γ =
nAq+

(
vfmax/K

f
M

)
q− (vrmax/K

r
M )nB

. (S3)

Thus in the limit of vanishing nB , the enzyme catalyzed kinetics becomes irreversible:

Pr{nX = `+ 1}
Pr{nX = `}

=

(
q+nA

q−(`+ 1)

) 1 + 1
γ

vfmax/(K
f
Mq−)

1+(`+1)/Kf
M+nB/Kr

M

1 +
vfmax/(K

f
Mq−)

1+(`+1)/Kf
M+nB/Kr

M

≈
(

q+nA
q−(`+ 1)

) 1 + 1
γ

vfmax/q−

Kf
M+(`+1)

1 + vfmax/q−

Kf
M+(`+1)

. (S4)

Eq. S4 is novel. It allows one to exam the role of nonequilibrium thermodynamics in
copy number fluctuations in a living biochemical system such as a cell. We see that if
γ = 1, then the distribution in Eq. S4 becomes Poissonian with 〈nX〉 = (q+nA/q−)!
Eq. S4 is not reduced to negative binomial if only γ = ∞: There is a “competition”
between first-order q− and vfmax. If q− is further negligibly small, q− � vfmax/(K

f
M+

`+ 1), then the distribution indeed becomes negative binomial.

S2 Stochastic focusing, bistability and EFAZ mecha-
nism

The end-effect at zero (EFAZ) mechanism contains an important element of bistability
(all-or-none): In an authentic, canonical bistable system, the distribution of s, Ps(s),
has two peaks, one near s = 0 and another near s = smax. With the increasing of
the mean signal 〈s〉, the peak probability near s = 0 decreases while the one near
smax increases. The locations of the two peaks move very little. The EFAZ effect we
described, therefore, shares a part of the mechanism for a sharp transition in a bimodal
(bistable) system. The same mechanism is also at work in zeroth-order ultrasensitivity.

Fig. S1 however, shows that the mean responses with fluctuating signal, while has
an enhanced sensitivity, did not yield a sigmoidal shape. In fact, it is easy to verify,
from Eq. 11, that for small s,

q(s) =

∞∑
j=0

(
− s

K

)j ∫ ∞
0

yne−ydy = 1− s

K
+

2s2

K2
+ · · · (S5)

That is, 1− q(s) has a negative curvature at s = 0, not positive.
Although the transition curves in Fig. 4 and Fig. S1 are not sigmoidal, are they

more “cooperative” than a hyperbolic function? How to address this question? Moti-
vated by the results in Fig. 2B, let us consider the relative variance of the response q
with fluctuating signal. Note that for a Bernoulli trial with mean z/(1+z), the variance
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Figure S1: The linear plot of Fig. 4 in the main text. The mechanism of “end-effect at zero”
(EFAZ) explains the origin of fluctuation enhanced sensitivity: The mean response with fluctu-
ating s in SF, q = 〈1/(1+s/K)〉, has a sharper transition when compared with 1/(1+ 〈s〉/K).
Results from four distributions are shown: Poisson, binomial with N = 100 and 〈s〉 = Np,
Polya with p = 10/11 and 〈s〉 = rp/(1− p), truncated geometric distribution with N = 1000.
The peak positions of the distributions depart from n = 0 when s∗ = 1, 100/101, 11 and 500,
correspondingly. They agree with the sharp transitions shown. All computations use K = 0.01.

is z/(1 + z)2. Hence the relative variance is 1/z, which monotonically decreases with
z. This is in sharp contrast to a highly cooperative transition in which relative variance
is maximum at transition mid-point.

Fig. S2 shows SF with Poisson fluctuating signal indeed has a maximum in the
relative variance, while for non-fluctuating 1/(1 + s/K), the relative variance s/K is
monotonic.

S3 Kinetic model for gene expression: mRNA and pro-
tein copy numbers

Delbrück-Gillespie stochastic kinetic model for gene expression corresponding to the
differential equations in Eq. (18) predicts the stationary distributions for the protein
copy number being bimodal for both χ = 1, g0 > g1 (Hornos et al., 2005) and χ =
2, g0 < g1 (Kepler and Elston, 2001; Walczak et al., 2005). From the ODEs in Eq.
(18), however, the bistability disappears in the first model since h(y) is a monotonic
increasing function. The second model has g1 > g0 and h(y) = hoy

2. It can be shown

3
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Figure S2: Green and blue dased lines are q = 1/(1 + s/K) withe K = 0.01 and K =
0.7, respectively. Red line is the mean q = 〈1/(1 + s/0.01)〉 with fluctuating s following
Poisson distribution. Compared with the green dashed line, there is a sensitivity amplification.
Furthermore, compared with the blue dashed line, which has a same mid-transition point at
s = 0.71, the q(s) is indeed sharper. The pink and orange curves are the relative variance
corresponding to blue and red curves (re-scaled with a factor of 0.01.) The pink curve represents
relative variance in the standard hyperbolic response. Orange curve indicates that SF indeed
exhibits certain “cooperative” characteristics.

that the system of Eq. (18), when parameters(
k

g0

√
f/ho,

g1
g0

)
(S6)

is in the region bound by the parametric curve{
2

z(1− z2)
,

1 + 3z2

z2(1− z2)

∣∣∣ 0 ≤ z ≤ 1

}
, (S7)

has three steady states in the positive quadrant, two stable and one unstable. In fact, in
the macroscopic limit, a Maxwell construction emerges. Mathematically, we note that
the first model has a quadratic nonlinearity (when h(y) ∝ y) and the second model has
a cubic nonlinearity. The kinetic system of self-regulating gene is nearly equivalent
to the kinetic system of phosphorylation-dephosphorylation signaling networks with
feedbacks (Bishop and Qian, 2010; Shi and Qian, 2011). More recently, Shahrezaei et
al. (2008) further studied a kinetic model with binary gene activation, together with
copy numbers for both the mRNA and the proteins, but without feedback.

Shahrezaei and Swain (2008) studied a kinetic model with binary gene activation,
together with copy numbers for both the mRNA and the proteins, but without feedback.
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This is a linear system very much similar to the Goodwin’s deterministic equation for
Central Dogma, first proposed in 1965 (Murray, 2007):

dx

dt
= k0(1− x)− k1x,

dy

dt
= v0x− d0y,

dz

dt
= v1y − d1z, (S8)

where x, y, z are concentrations of the activated gene, mRNA, and protein, respec-
tively. This is a further development of the two-variable, no-feedback model studied
by Kepler and Elston (2001). The generating function for the stationary distribution is
predicted to be in the form of hypergeometric functions 2F1(−,−;−;−). Stochastic
Delbrück-Gillespie approach to Goodwin’s model has also been studied in connection
to oscillatory testosterone levels in blood (Heuett and Qian, 2006).

S4 Two-component signaling system
One of the most extensively studied systems of stimulus-response coupling mechanism
in cellular biochemistry is the two-component system, which has been found widely
in prokaryotic organisms sensing and responding to changes in their environmental
conditions (Goulian, 2010; Stock et al., 2000).

Two-component systems consist of a trans-membrane histidine kinase whose ex-
tracellular domain senses environmental stimulus, usually in the form of hormone-like
ligands, and signals a change in the levels of expression of certain genes, via a second
intracellular response regulator. The system is called “two-component” because the
sensing histidine kinase and the response regulator are two proteins, in contrast to one-
component system such as the membrane tyrosin kinase signaling with homodimers
and trans-autophosphorylation (Schlessinger, 1986; Cooper and Qian, 2008).

In these systems, the sequential biochemical events are as follows: Ligand bind-
ing leads to the transfer of a phosphoryl group from an ATP to a histidine residue in a
histidine kinase, which in turn catalyses the transfer of the phosphate on the phosphory-
lated histidine to aspartic acid residues on the response regulator. The phosphorylation
of the response regulator yields a conformation change which activates target gene ex-
pression. One example is E. coli’s EnvZ/OmpR osmoregulation system that controls
the differential expression of the outer membrane porin proteins OmpF and OmpC.
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