
Web Appendix for “Search Personalization using
Machine Learning”

Hema Yoganarasimhan ∗

University of Washington

A Table of Features

Table A.1: List of features.

Feature No. Feature Name Feature Classes

1 Listings(q, u, g) FG, FQ, FU

2 CTR(q, u, g) FG, FQ, FU

3 ADT(q, u, g) FG, FQ, FU

4 AvgPosn(q, u, g) FG, FQ, FU

5 HDCTR(q, u, g) FG, FQ, FU

6 WCTR(q, u, g) FG, FQ, FU

7 PosnCTR(q, u, g) FG, FQ, FU

8 SkipRate(q, u, g) FG, FQ, FU

9 Listings(q, d, g) FG, FQ, FD

10 CTR(q, d, g) FG, FQ, FD

11 ADT(q, d, g) FG, FQ, FD

12 AvgPosn(q, d, g) FG, FQ, FD

13 HDCTR(q, d, g) FG, FQ, FD

14 WCTR(q, d, g) FG, FQ, FD

15 PosnCTR(q, d, g) FG, FQ, FD

16-19 Listings(l1..4, u, g) FG, FT , FU

20-23 CTR(l1..4, u, g) FG, FT , FU

24-27 ADT(l1..4, u, g) FG, FT , FU

28-31 AvgPosn(l1..4, u, g) FG, FT , FU

32-35 HDCTR(l1..4, u, g) FG, FT , FU

36-39 WCTR(l1..4, u, g) FG, FT , FU

40-43 PosnCTR(l1..4, u, g) FG, FT , FU

Continued on next page

∗Please address all correspondence to: hemay@uw.edu.

1

Table A.1 – continued from previous page
Feature No. Feature Name Feature Classes

44-47 SkipRate(l1..4, u, g) FG, FT , FU

48-51 Listings(l1..4, d, g) FG, FT , FD

52-55 CTR(l1..4, d, g) FG, FT , FD

107-110 HDCTR(l1..4, u, it) FP , FT , FU

111-114 WCTR(l1..4, u, it) FP , FT , FU

115-118 PosnCTR(l1..4, u, it) FP , FT , FU

119-122 SkipRate(l1..4, u, it) FP , FT , FU

123-126 Listings(l1..4, d, it) FP , FT , FD

127-130 CTR(l1..4, d, it) FP , FT , FD

131-134 ADT(l1..4, d, it) FP , FT , FD

135-138 AvgPosn(l1..4, d, it) FP , FT , FD

139-142 HDCTR(l1..4, d, it) FP , FT , FD

143-146 WCTR(l1..4, d, it) FP , FT , FD

147-150 PosnCTR(l1..4, d, it) FP , FT , FD

151 Listings(q, u, ijt) FS , FQ, FU

152 CTR(q, u, ijt) FS , FQ, FU

153 ADT(q, u, ijt) FS , FQ, FU

154 AvgPosn(q, u, ijt) FS , FQ, FU

155 HDCTR(q, u, ijt) FS , FQ, FU

156 WCTR(q, u, ijt) FS , FQ, FU

157 PosnCTR(q, u, ijt) FS , FQ, FU

158 SkipRate(q, u, ijt) FS , FQ, FU

159 Listings(q, d, ijt) FS , FQ, FD

160 CTR(q, d, ijt) FS , FQ, FD

161 ADT(q, d, ijt) FS , FQ, FD

162 AvgPosn(q, d, ijt) FS , FQ, FD

163 HDCTR(q, d, ijt) FS , FQ, FD

164 WCTR(q, d, ijt) FS , FQ, FD

165 PosnCTR(q, d, ijt) FS , FQ, FD

166-169 Listings(l1..4, u, ijt) FS , FT , FU

170-173 CTR(l1..4, u, ijt) FS , FT , FU

174-177 ADT(l1..4, u, ijt) FS , FT , FU

178-181 AvgPosn(l1..4, u, ijt) FS , FT , FU

182-185 HDCTR(l1..4, u, ijt) FS , FT , FU

186-189 WCTR(l1..4, u, ijt) FS , FT , FU

190-193 PosnCTR(l1..4, u, ijt) FS , FT , FU

194-197 SkipRate(l1..4, u, ijt) FS , FT , FU

198-201 Listings(l1..4, d, ijt) FS , FT , FD

202-205 CTR(l1..4, d, ijt) FS , FT , FD

206-209 ADT(l1..4, d, ijt) FS , FT , FD

Continued on next page

2

Table A.1 – continued from previous page
Feature No. Feature Name Feature Classes

210-213 AvgPosn(l1..4, d, ijt) FS , FT , FD

214-217 HDCTR(l1..4, d, ijt) FS , FT , FD

218-221 WCTR(l1..4, d, ijt) FS , FT , FD

222-225 PosnCTR(l1..4, d, ijt) FS , FT , FD

226 Listings(∅, u, g) FG, FU

227 CTR(∅, u, g) FG, FU

228 ADT(∅, u, g) FG, FU

229 AvgPosn(∅, u, g) FG, FU

230 HDCTR(∅, u, g) FG, FU

231 WCTR(∅, u, g) FG, FU

232 PosnCTR(∅, u, g) FG, FU

233 SkipRate(∅, u, g) FG, FU

234 Listings(∅, d, g) FG, FD

235 CTR(∅, d, g) FG, FD

236 ADT(∅, d, g) FG, FD

237 AvgPosn(∅, d, g) FG, FD

238 HDCTR(∅, d, g) FG, FD

239 WCTR(∅, d, g) FG, FD

240 PosnCTR(∅, d, g) FG, FD

241 Listings(∅, u, it) FP , FU

242 CTR(∅, u, it) FP , FU

243 ADT(∅, u, it) FP , FU

244 AvgPosn(∅, u, it) FP , FU

245 HDCTR(∅, u, it) FP , FU

246 WCTR(∅, u, it) FP , FU

247 PosnCTR(∅, u, it) FP , FU

248 SkipRate(∅, u, it) FP , FU

249 Listings(∅, d, it) FP , FD

250 CTR(∅, d, it) FP , FD

251 ADT(∅, d, it) FP , FD

252 AvgPosn(∅, d, it) FP , FD

253 HDCTR(∅, d, it) FP , FD

254 WCTR(∅, d, it) FP , FD

255 PosnCTR(∅, d, it) FP , FD

256 Listings(∅, u, ijt) FS , FU

257 CTR(∅, u, ijt) FS , FU

258 ADT(∅, u, ijt) FS , FU

259 AvgPosn(∅, u, ijt) FS , FU

260 HDCTR(∅, u, ijt) FS , FU

261 WCTR(∅, u, ijt) FS , FU

Continued on next page

3

Table A.1 – continued from previous page
Feature No. Feature Name Feature Classes

262 PosnCTR(∅, u, ijt) FS , FU

263 SkipRate(∅, u, ijt) FS , FU

264 Listings(∅, d, ijt) FS , FD

265 CTR(∅, d, ijt) FS , FD

266 ADT(∅, d, ijt) FS , FD

267 AvgPosn(∅, d, ijt) FS , FD

268 HDCTR(∅, d, ijt) FS , FD

269 WCTR(∅, d, ijt) FS , FD

270 PosnCTR(∅, d, ijt) FS , FD

271 AggListings(it) FP

272 AggCTR(it) FP

273 AggHDCTR(it) FP

274 AggADT(it) FP

275 AggListings(ijt) FS

276 AggCTR(ijt) FS

277 AggHDCTR(ijt) FS

278 AggADT(ijt) FS

279-288 ClickProb(i, p, t) FP

289 NumSearchResults(q) FG, FQ

290 NumClickedURLs(q) FG, FQ

291 Day(i, j, t) FS , FU

292 QueryTerms(q) FQ

293 SERPRank(u, i, j, k)

B Gradient Boosted Regression Trees
Gradient boosted regression trees is a machine learning algorithm that models a dependent or output variable as a
linear combination of a set of shallow regression trees (a process known as boosting). In this section, we introduce the
concepts of Classification and Regression Tree (CART) and boosted CART. We present the high level overview of these
models here and refer interested readers to Murphy (2012) for details.

B.1 Classification and Regression Tree

CART methods are a popular class of prediction algorithms that recursively partition the input space corresponding to a
set of explanatory variables into multiple regions and assign an output value for each region. This kind of partitioning
can be represented by a tree structure, where each leaf of the tree represents an output region. Consider a dataset with
two input variables {x1, x2}, which are used to predict or model an output variable y using a CART. An example tree
with three leaves (or output regions) is shown in Figure B.1. This tree first asks if x1 is less than or equal to a threshold
t1. If yes, it assigns the value of 1 to the output y. If not (i.e., if x1 > t1), it then asks if x2 is less than or equal to a
threshold t2. If yes, then it assigns y = 2 to this region. If not, it assigns the value y = 3 to this region. The chosen y

4

A

B

Figure B.1: Example of a CART model.

value for a region corresponds to the mean value of y in that region in the case of a continuous output and the dominant
y in case of discrete outputs.

Trees are trained or grown using a pre-defined number of leaves and by specifying a cost function that is minimized
at each step of the tree using a greedy algorithm. The greedy algorithm implies that at each split, the previous splits are
taken as given, and the cost function is minimized going forward. For instance, at node B in Figure B.1, the algorithm
does not revisit the split at node A. It however considers all possible splits on all the variables at each node. Thus, the
split points at each node can be arbitrary, the tree can be highly unbalanced, and variables can potentially repeat at latter
child nodes. All of this flexibility in tree construction can be used to capture a complex set of flexible interactions,
which are not predefined but are learned using the data.

CART is popular in the machine learning literature because it is scalable, is easy to interpret, can handle a mixture
of discrete and continuous inputs, is insensitive to monotone transformations, and performs automatic variable selection
(Murphy, 2012). However, it has accuracy limitations because of its discontinuous nature and because it is trained using
greedy algorithms. These drawbacks can be addressed (while preserving all the advantages) through boosting, which
gives us boosted regression trees.

B.2 Boosting

Boosting is a technique that can be applied to any classification or prediction algorithm to improve its accuracy (Schapire,
1990). Applying the additive boosting technique to CART produces gradient boosted trees, which has now been shown
empirically to be the best classifier available (Caruana and Niculescu-Mizil, 2006; Hastie et al., 2009). This method can
be viewed as performing gradient descent in the function space using shallow regression trees (with a small number of
leaves). Gradient boosting with regression trees works well because it combines the positive aspects of CART with
those of boosting. CART, especially shallow regression trees, tend to have high bias, but have low variance. Boosting
CART models addresses the bias problem while retaining the low variance. Thus, produces high quality classifiers.

A gradient boosted tree model can be interpreted as a weighted linear combination of a series of regression trees,
each trained sequentially to improve the final output using a greedy algorithm. Let L(x) be the output of a gradient
boosted regression trees. Then, we can write L(x) can be written as:

LN (x) =

N∑
n=1

αnln(x, βn) (B.1)

where ln(x, βn) is the function modeled by the nth regression tree and αn is the weight associated with the nth tree.
Both l(·)s and αs are learned during the training or estimation. MARTs are also trained using greedy algorithms.
ln(x, βn) is chosen so as to minimize a pre-specified cost function, which is usually the least-squared error in the case
of regressions and an entropy or logit loss function in the case of classification or discrete choice models.

5

Optimization Metric AERC Gain (%) NDCG Gain (%)
DCG 9.17 2.26
MAP 9.31 2.29
RR 9.33 2.29
ERR 9.19 2.26
NDCG 9.43 2.32

Table C.1: Comparing AERC gains and NDCG gains under different optimization metrics.

C Robustness Checks and Model Comparisons

C.1 Model Comparisons Using Other Optimization Metrics

We now examine whether our results are robust to using other optimization metrics. We consider four other metrics:

• Discounted Cumulative Gain (DCG)
This is the non-normalized version of NDCG, as defined in Equation (8). Unlike NDCG, DCG gives more weight to
searches that recover more relevant documents. Please see (Järvelin and Kekäläinen, 2000; Järvelin and Kekäläinen,
2002) for details.

• Mean Average Precision (MAP)
We start by defining the Precision-at-p (P@p), which is the fraction of relevant results at position p. For example,
consider a list of five documents, with relevant documents at positions 1 and 3. Then: P@1 = 1, P@2 = 1

2 , P@3 =
2
3 , P@4 = 2

4 , P@5 = 2
5 . To calculate Average Precision AP for a list, we simply average the P@p for all ps where

there is a relevant document. For the example above, it would be: AP = 1
2

(
1
1 + 2

3

)
= .83. When AP is averaged

over all the searches in the data, we get MAP. Please see Baeza-Yates et al. (1999) for details.

MAP is better than pairwise metrics like Pairwise Likelihood because it takes the entire list into account. However,
it cannot handle multiple levels of relevance making it less efficient that NDCG.

• Reciprocal Rank (RR)
Is the reciprocal of the rank at which the first relevant document was retrieved. RR = 1 if a relevant document was
retrieved at rank 1, RR = 0.5 if not if the first relevant document was retrieved at rank 2 and so on.

RR implicitly assumes that the user only wishes to see one relevant document and that she will scroll down until a
relevant document is found. If that document is ranked at p, then RR = p. While this is reasonable for navigational
(or do) queries, it may not capture the behavior of users in more general settings. See Craswell (2009) for details.

• Expected Reciprocal Rank (ERR)
Is the expectation of the reciprocal of the position at which a user is satisfied with his search. It was introduced by
Chapelle and Chang (2011) and depends on a cascade user model, as defined in their paper.

We re-run the LambdaMART model with each of the above as the optimization metric and present the results in
Table C.1. We show the percentage improvement in both AERC and NDCG on the test data compared to the baseline.
The reason we include AERC is that one could argue that models that didn’t optimize NDCG will perform poorly when
evaluated on NDCG. However, AERC is a substantive metric that none of the models directly optimize and is therefore
a more objective evaluation criterion.

The main finding is that results are robust to the metric used. All four metrics – DCG, MAP, RR, and ERR, perform
reasonably well. However, NDCG offers the best performance on AERC, suggesting that when we optimize on this
metric, we are able to achieve the best performance on substantive measures of search quality.

6

C.2 Model Comparisons Using Other Training Algorithms

Method Training parameters
Pairwise Maximum Likelihood Logistic regression with linear combination of the 293 features and BFGS optimizer
Ranknet 1 hidden layer with 10 nodes; learning rate of 5× 105

Rankboost 300 trees with 10 features each
Adarank 500 training rounds
Coordinate Ascent 25 iterations per dimension
LamdaRank with CART Tree with 1000 leaves
LambdaRank Random Forests 300 trees with 100 leaves each

Table C.2: Details of training parameters used for each model in the comparative analysis.

Method AERC Gain (%) NDCG Gain (%)
Pairwise Maximum Likelihood 0.03 0.01
Ranknet 0.03 0.01
RankBoost 3.50 0.94
AdaRank 3.12 1.49
Coordinate Ascent 6.96 1.77
Lambda Rank with CART 2.60 1.50
LambdaRank with Random Forests 5.24 1.63
LambdaRank with MART (our approach) 9.43 2.32

Table C.3: Model comparisons. The percentage gain in AERC and NDCG are shown.

We now compare the performance of our approach to a number of other models. In all the comparisons, we present
the percentage improvement in AERC as well as NDCG compared to the baseline. For all the models, the training and
tuning parameters are shown in Table C.2, and the results are shown in Table C.3.

First, we consider the standard technique used in the marketing literature – Pairwise Maximum Likelihood with
an assumed functional form for f(·). We find that Pairwise Maximum Likelihood with a score vector that is linear in
features shows no improvement in test data compared to the single feature benchmark (with just SERPRank). The
lackluster performance of the Maximum Likelihood model stems from two issues. First, because it is a pairwise
gradient-based method it cannot optimize a list of documents well. Second, it cannot capture the unknown patterns in
data because it assumes the functional form of the score vector. The next algorithm considered, RankNet, relaxes the
second assumption using a neural network (Burges et al., 2005), and it also does not produce any improvement. The
third pairwise algorithm, RankBoost, uses boosted regression trees (Freund et al., 2003) as the underlying learner. This
performs better than the former two, i.e., boosted trees are better learners for our problem than both neural nets and
fixed functional forms.

Next, we consider two other listwise algorithms that are commonly used in the learning to rank literature –
Coordinate Ascent and AdaRank (Metzler and Croft, 2007; Xu and Li, 2007). In both these cases, we optimize for
NDCG. While these two models are better than pairwise models, they still do not approach the performance of our
method.

Finally, we consider methods that use LambdaRank but instead of MART use a different machine learning
algorithm to learn f(·). We explore two other tree-based algorithms – CART (a single decision tree) and Random
Forests (averaging with trees). In both cases, we use NDCG the optimization metric.

7

We find that LambdaMART continues to offer the best performance among all these models. Below we discuss
a few interesting details from this comparative analysis. LambdaRank algorithm paired with CART (which consists
of a single deep decision tree) only offers a small improvement in prediction (2.6% in AERC and 1.50% in NDCG).
A key disadvantage of CART is that while increasing tree depth reduces prediction bias, it also increases prediction
variance on test data, making it a weak predictor. The solution to this problem is to use a combination of trees. There
are two methods that use this approach. The first one, MART, which we use in our main model, starts with shallow trees
(that have high bias and low variance) and through the process of boosting adds trees to continually reduce the bias in
different parts of the data. In contrast, Random Forest starts with deep trees (that have low bias and high variance) and
averages over a large number of trees to reduce the variance. In general, boosting performs better than random forests
because the latter is simply a process of bootstrapping or averaging over many samples whereas boosting fine-tunes the
performance of the model in each additional step by focusing on the aspects of the data which the earlier steps do not
explain well.1 In our setting, while Random Forest performs better the CART by achieving improvements of 5.24%
and 1.63% in AERC and NDCG respectively. However, it still falls short of MART. In sum, we find that our modeling
approach offers better performance on both predictive accuracy as measured by NDCG and substantive search quality
as measured by AERC.

C.3 NDCG at Different Positions

With Personalization Baseline Percentage
Position NDCG@p on NDCG@p on NDCG@p on NDCG@p on Gain on

Training Data Validation Data Test Data on Test Data Test Data
P = 3 0.7762 0.7744 0.7745 0.7621 1.627%
P = 5 0.8034 0.8009 0.8010 0.7849 2.051%
P = 8 0.8126 0.8100 0.8105 0.7926 2.258%
P = 10 0.8141 0.8117 0.8121 0.7937 2.318%

Table C.4: Results for NDCGP , where P = 3, 5, 8, 10.

Finally, we compare how our results change when we train and test the model on smaller subsets of data, specifically
up to position P . In addition to position ten, we consider three other positions, P = 3, 5, 8. The results from this
analysis are presented in Table C.4.

At a high level, we find that personalization helps even if we assume that consumers only look at the top P < 10

positions. However, the extent of improvement is monotonically reducing in P because of two reasons. First, when we
train only on the top P positions, we throw away the data (and information) in positions below P . This naturally reduces
the accuracy of the trained model. For example, for P = 3, we are working with less than one-third of the data used in
the full model. Second, when we ignore positions below P , we forgo the possibility of migrating relevant documents
from positions below P to the top P positions. Recall that we showed earlier that personalization increases the CTR for
position one by drawing from lower positions, mainly positions three and ten (see Figure 11). By focusing only on
the top P positions, we are forgoing the ability to migrate the clicks to positions lower than P upwards. Intuitively,
this suggests that if the consumers in fact look and click at positions at lower positions, then models that ignore lower
positions will suffer.

1We refer interested readers to the lecture notes by Trevor Hastie available at
http://jessica2.msri.org/attachments/10778/10778-boost.pdf for a nice discussion of this issue.

8

D Scalability
We now present some measures on the scalability of our approach to large datasets. Note that there are three aspects of
modeling – feature generation, testing, and training – all of which are computing and memory intensive. In general,
feature generation is more memory intensive (requiring at least 140GB of memory for the full dataset), and hence it is
not parallelized. The training module is more computing intensive. The RankLib package that we use for training and
testing is parallelized and can run on multi-core servers, which makes it scalable. All the module (feature generation,
training, and testing) were run on Amazon EC2 nodes since the computational load and memory requirements for these
analyses cannot be handled by regular PCs. The specification of the compute server used on Amazon’s EC2 node is –
Intel(R) Xeon(R) CPU E5− 2670 v2 @ 2.50GHz with 32 cores and 256GB of memory. This was the fastest server
with the highest memory available at Amazon EC2.

We now discuss the scalability of each module – feature generation, training, and testing – one by one, using
Figures D.1, D.2 and D.3. The runtimes are presented as the total CPU time added up over all the 32 cores. To construct
the 20% dataset, we continue to use all the users and sessions from days 1− 25 to generate the global features, but use
only 20% of the users from days 26− 27 to generate user and session specific features.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100

Fe
at

ur
e

ge
ne

ra
tio

n
tim

e
(s

ec
s)

Percentage of dataset

Figure D.1: Runtimes for generating the features
the model on different percentages of the data.

0

200000

400000

600000

800000

1000000

 0 20 40 60 80 100

Tr
ai

ni
ng

 ti
m

e
(s

ec
s)

Percentage of dataset

Figure D.2: Runtimes for training the model on
different percentages of the data.

0

500

1000

1500

2000

2500

 0 20 40 60 80 100

Te
st

in
g

tim
e

(s
ec

s)

Percentage of dataset

Figure D.3: Runtimes for testing the model on dif-
ferent percentages of the data.

 0.808

 0.809

 0.81

 0.811

 0.812

 0.813

 0.814

 0 20 40 60 80 100

N
D

C
G

Percentage of dataset

Figure D.4: NDCG improvements from using dif-
ferent percentages of the data.

For the full dataset, the feature generation module takes about 83 minutes on a single-core computer (see Figure
D.1), the training module takes over 11 days (see Figure D.2), and the testing module takes only 35 minutes (see

9

Figure D.3). These numbers suggest that training is the primary bottleneck in implementing the algorithm, especially if
the search engine wants to update the trained model on a regular basis. So we parallelize the training module over a
32-core server. This reduces the training time to about 8.7 hours. Overall, with sufficient parallelization, we find that
the framework can be scaled to large datasets in reasonable time-frames.

Next, we compare the computing cost of going from 20% of the data to the full dataset. We find that it increases by
2.38 times for feature generation, by 20.8 times for training, and 11.6 times for testing. Thus, training and testing costs
increase super-linearly whereas it is sub-linear for feature generation. These increases in computing costs however
brings a significant improvement in model performance, as measured by NDCG (see Figure D.4). Overall, these
measurements affirm the value of using large scale datasets for personalized recommendations, especially since the cost
of increasing the size of the data is paid mostly at the training stage, which is easily parallelizable.

References
R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern Information Retrieval, volume 463. 1999.
C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning to Rank

Using Gradient Descent. In Proceedings of the 22nd International Conference on Machine Learning,
pages 89–96. ACM, 2005.

R. Caruana and A. Niculescu-Mizil. An Empirical Comparison of Supervised Learning Algorithms. In
Proceedings of the 23rd International Conference on Machine Learning, pages 161–168. ACM, 2006.

O. Chapelle and Y. Chang. Yahoo! Learning to Rank Challenge Overview. Journal of Machine Learning
Research-Proceedings Track, 14:1–24, 2011.

N. Craswell. Mean Reciprocal Rank, pages 1703–1703. Springer US, 2009. ISBN 978-0-387-39940-9. URL
http://dx.doi.org/10.1007/978-0-387-39940-9_488.

Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An Efficient Boosting Algorithm for Combining Preferences.
Journal of Machine Learning Research, 4(Nov):933–969, 2003.

T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, J. Friedman, and R. Tibshirani. The Elements of Statistical
Learning, volume 2. Springer, 2009.

K. Järvelin and J. Kekäläinen. IR Evaluation Methods for Retrieving Highly Relevant Documents. In
Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’00, pages 41–48. ACM, 2000.

K. Järvelin and J. Kekäläinen. Cumulated Gain-based Evaluation of IR Techniques. ACM Transactions on
Information Systems (TOIS), 20(4):422–446, 2002.

D. Metzler and W. B. Croft. Linear Feature-based Models for Information Retrieval. Information Retrieval,
10(3):257–274, 2007.

K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012. ISBN 0262018020,
9780262018029.

R. E. Schapire. The Strength of Weak Learnability. Machine learning, 5(2):197–227, 1990.
J. Xu and H. Li. Adarank: A Boosting Algorithm for Information Retrieval. In Proceedings of the 30th

Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 391–398. ACM, 2007.

10

http://dx.doi.org/10.1007/978-0-387-39940-9_488

	Table of Features
	Gradient Boosted Regression Trees
	Classification and Regression Tree
	Boosting

	Robustness Checks and Model Comparisons
	Model Comparisons Using Other Optimization Metrics
	Model Comparisons Using Other Training Algorithms
	NDCG at Different Positions

	Scalability

