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11. M achine learning and marketing
Daria Dzyabura and Hema Yoganarasimhan

Machine learning (ML) refers to the study of methods or algorithms 
designed to learn the underlying patterns in the data and make predic-
tions based on these patterns.1 ML tools were initially developed in the 
computer science literature and have recently made significant headway 
into business applications. A key characteristic of ML techniques is their 
ability to produce accurate out-of-sample predictions.

Academic research in marketing has traditionally focused on causal 
inference. The focus on causation stems from the need to make counter-
factual predictions. For example, will increasing advertising expenditure 
increase demand? Answering this question requires an unbiased estimate 
of advertising impact on demand.

However, the need to make accurate predictions is also important to 
marketing practices. For example, which consumers to target, which 
product configuration a consumer is most likely to choose, which version 
of a banner advertisement will generate more clicks, and what the market 
shares and actions of competitors are likely to be. All of these are predic-
tion problems. These problems do not require causation; rather, they 
require models with high out-of-sample predictive accuracy. ML tools can 
address these types of problems.

ML methods differ from econometric methods both in their focus and 
the properties they provide. First, ML methods are focused on obtaining 
the best out-of-sample predictions, whereas causal econometric methods 
aim to derive the best unbiased estimators. Therefore, tools that are opti-
mized for causal inference often do not perform well when making out-of-
sample predictions. As we will show below, the best unbiased estimator 
does not always provide the best out-of-sample prediction, and in some 
instances, a biased estimator performs better for out-of-sample data.2

Second, ML tools are designed to work in situations in which we do 
not have an a priori theory about the process through which outcomes 
observed in the data were generated. This aspect of ML contrasts with 
econometric methods that are designed for testing a specific causal theory. 
Third, unlike many empirical methods used in marketing, ML techniques 
can accommodate an extremely large number of variables and uncover 
which variables should be retained and which should be dropped. Finally, 
scalability is a key consideration in ML methods, and techniques such as 
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feature selection and efficient optimization help achieve scale and effi-
ciency. Scalability is increasingly important for marketers because many 
of these algorithms need to run in real time.

To illustrate these points, consider the problem of predicting whether 
a user will click on an ad. We do not have a comprehensive theory of 
users’ clicking behavior. We can, of course, come up with a parametric 
specification for the user’s utility of an ad, but such a model is unlikely 
to accurately capture all the factors that influence the user’s decision to 
click on a certain ad. The underlying decision process may be extremely 
complex and potentially affected by a large number of factors, such as 
all the text and images in the ad, and the user’s entire previous browsing 
history. ML methods can automatically learn which of these factors affect 
user behavior and how they interact with each other, potentially in a 
highly non-linear fashion, to derive the best functional form that explains 
user behavior virtually in real time. ML methods typically assume a model 
or structure to learn, but they use a general class of models that can be 
very rich.

Broadly speaking, ML models can be divided into two groups: super-
vised learning and unsupervised learning. Supervised learning requires 
input data that has both predictor (independent) variables and a target 
(dependent) variable whose value is to be estimated. By various means, 
the process learns how to predict the value of the target variable based 
on the predictor variables. Decision trees, regression analysis, and neural 
networks are examples of supervised learning. If the goal of an analysis 
is to predict the value of some variable, then supervised learning is used. 
Unsupervised learning does not identify a target (dependent) variable, 
but rather treats all of the variables equally. In this case, the goal is not to 
predict the value of a variable, but rather to look for patterns, groupings, 
or other ways to characterize the data that may lead to an understanding 
of the way the data interrelate. Cluster analysis, factor analysis (principle 
components analysis), EM algorithms, and topic modeling (text analysis) 
are examples of unsupervised learning.

In this chapter, we first discuss the bias-variance tradeoff and regu-
larization. Then we present a detailed discussion of two key supervised 
learning techniques: (1) decision trees and (2) support vector machines 
(SVM). We focus on supervised learning, because marketing researchers 
are already familiar with many of the unsupervised learning techniques. 
We then briefly discuss recent applications of decision trees and SVM in 
the marketing literature. Next, we present some common themes of ML 
such as feature selection, model selection, and scalability, and, finally, we 
conclude the chapter.

MIZIK 9781784716745 PRINT.indd   256 29/01/2018   11:31



Machine learning and marketing    257

Bias–Variance Tradeoff

The bias-variance tradeoff demonstrates the key difference between pre-
diction and causal-inference problems. In causal-inference problems, the 
goal is to obtain unbiased estimates of the model parameters. However, 
when the goal is the best out-of-sample prediction, parameter values do 
not need to be unbiased. Therefore, methods built for causal inference are 
not optimized for prediction, because they restrict themselves to unbiased 
estimators.

When assessing how good a model will be at making predictions, we 
distinguish between two different sources of error: bias and variance. 
Error due to bias is the systematic error we can expect from estimating 
the model on a new data set. That is, if we were to collect new data and 
estimate the model several times, how far off would these models’ predic-
tions be, on average? The error due to variance is the extent to which 
predictions for a point differ across different realizations of the data. For 
example, a model that overfits to the training data will have high variance 
error because it would produce very different estimates on different data 
sets. Overfitting occurs when a model is fit too closely to a finite sample 
data set. Thus, when the model is applied to a different finite sample, it 
performs poorly.

Let us now examine how these two sources of error affect a model’s pre-
dictive ability. Let y be the variable we want to predict, and let x1, . . . ,xn be 
the predictors. Suppose a function exists that relates y to x, y 5 f (x) 1 e, 
where e is normally distributed with mean 0 and variance se. We would 
like to estimate a model, f̂ (x) , to minimize the mean squared error 
of the prediction. The expected squared prediction error at point x is 
MSE(x) 5E [ (y 2 f̂ (x) )2 ], which can be decomposed as follows:

	 MSE(x) 5 (E [ f̂ (x) ] 2f (x) )2 1 E [ f̂ (x)2E [ f̂ (x) ] ]2 1 s2
e � (11.1)

The last term, s2, is inherent noise in the data, so it cannot be minimized 
and is not affected by our choice of f̂ (x) . The first term is the squared 
bias of the estimator; the second term is the variance. We can see that both 
the bias and variance contribute to predictive error. Therefore, when we 
are trying to come up with the best predictive model, an inherent tradeoff 
exists between bias and variance of the estimator. By ensuring no bias, 
unbiased estimators allow no tradeoff. We refer readers to Hastie et al. 
(2009) for the formal derivation of the above.

To allow for a tradeoff, we introduce the concept of regularization. 
Instead of minimizing in-sample error alone, we introduce an additional 
term and solve the following problem:

e
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	 minimizex a
n

i
(yi2 f̂ (xi) )2 1 lR( f̂ ) � (11.2)

The term R( f̂ )  is a regularizer. It penalizes functions that create sub-
stantial variance. The specific form of R ( f̂ )  will depend on the model to 
be estimated, f̂ , and is typically chosen a priori. The weight given to the 
regularizer relative to in-sample fit is captured by l, which controls the 
amount of regularization and allows us to maximize predictive perform-
ance by optimally trading off bias and variance. A key idea in ML is that 
l can be optimally derived from the data itself instead of being imposed 
exogenously. Usually it is selected using cross-validation, by splitting the 
data into several training and validation sets. By repeatedly holding out 
some subset of the data for validation, we can determine the value of l 
that leads to the best prediction for the holdout data. Therefore, the model 
is explicitly optimized to make the best out-of-sample prediction given the 
data. Note that by introducing regularization, we have sacrificed the unbi-
asedness of the estimator in favor of getting better out-of-sample predic-
tions. A more formal treatment of regularization follows later.

By empirically making the bias–variance tradeoff, regularization allows 
us to consider a much broader class of models. For example, we can have 
models with many more predictors than observations, or models with 
many parameters, such as high-degree polynomials, or highly non-linear 
models, such as decision trees or random forests.

The ability to consider a rich class of models is important for applica-
tions with no hypothesized parametric model that can be estimated on the 
data. For example, in the computer science literature, a commonly studied 
problem is image recognition, where the goal is to recognize the object in a 
picture, and the data are pixels. Of course, this case has many more predic-
tors than data points, and we have no model for how the pixels actually 
combine to make an image of, say, a dog or a house. As such, classical 
ML applications focus much less on modeling than does econometrics 
or classical statistics. Rather, the focus is on “learning” from the data. In 
such settings, weak assumptions about model structure combined with 
large data sets that are often characterized by high dimensions and a lot 
of missing data lead to natural concerns in (1) computation and (2) data 
overfitting. To deal with these challenges, several techniques have been 
developed, including regularization, cross-validation, and approximate 
optimization methods.
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Decision Tree-based Models

In the most general formulation of a statistical prediction problem, we are 
interested in the conditional distribution of some variable y given a set of 
other variables x 5 (x1,. . .,xp) . In ML, the x variables are often referred 
to as “predictors” or “features” (in marketing, these are usually called 
explanatory variables), and the focus of many ML problems is to find a 
function f (x)  that provides a good prediction of y. We typically have some 
observed data {x,y} and want to compute a good prediction of y for a new 
draw of x. The definition of a good predictor is based on its ability to mini-
mize a user-defined loss function such as the sum of squared residuals. The 
relevant loss in a prediction problem is associated with new out-of-sample 
observations of x, not the observations used to fit the model.

There are two main types of supervised learning models: (1) decision 
trees and (2) support vector machines. We discuss decision trees here and 
support vector machines in the next section.

Linear regression (for continuous variables) and logistic regression 
(for discrete data) are popular tools used for summarizing relationships 
in the data. An alternative way to build a predictor is to use a decision 
tree. We start by describing the simplest class of tree-based models, called 
classification and regression trees (CART). Breiman et al. (1984) discuss 
the advantages and disadvantages of CART and then conclude with a 
description of the boosting technique that alleviates some of the issues 
with CART.

Classification and Regression Trees (CART)

CART recursively partitions the input space corresponding to a set of 
explanatory variables into multiple regions and defines a local model on 
each region, which could be as simple as assigning an output value for each 
region. This type of partitioning can be represented by a tree structure, 
where each leaf of the tree represents an output region. Consider a data 
set with two input variables {x1,x2} that are used to predict or model an 
output variable y using a CART. An example tree with three leaves (or 
output regions) is shown in Figure 11.1. This tree first asks if x1 is less than 
or equal to a threshold t1. If yes, it assigns the value of 1 to the output y. 
If not (i.e., if x1 . t1), it then asks if x2 is less than or equal to a threshold 
t2. If yes, it assigns y 5 2 to this region. If not, it assigns the value y 5 3. 
The chosen y value for a region corresponds to the mean value of y in that 
region in the case of a continuous output and the dominant y in case of 
discrete outputs.

A general tree model can be expressed as follows:
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	 y 5 f (x) 5 a
K

k51
wk I (x[Rk) 5 a

K

k51
wk f (x;vk) ,� (11.3)

where x denotes the vector of features or explanatory variables, Rk is the 
kth region of the K regions used to partition the space, wk is the predicted 
value of y in region k, and vk is the choice of variables to split on as well 
as their threshold values for the path to the kth leaf. When y is continuous, 
wk is the mean response in the kth region. For classification problems where 
the outcome is discrete, wk refers to the distribution of the y’s in the kth leaf.

Growing a tree requires optimally partitioning the data to derive the 
points of split (threshold values of x at each tree node) as well as the value 
of y in each leaf, which is an NP-complete problem (Hyafil and Rivest, 
1976). It is commonly solved using a greedy algorithm that incrementally 
builds the tree by choosing the best feature and the best split value for that 
feature at each step of the tree-construction process. That is, the greedy 
algorithm makes the locally optimal choice at each stage of the optimiza-
tion process with the hope of finding a global optimum.

Trees are trained (or “grown”) by specifying a cost function that is 
minimized at each step of the tree using a greedy algorithm. For a tree that 
uses two-way splits, the split function determines the best feature ( j*)and 
its corresponding split value (v*)  as follows:	

	 ( j*,u*) 5 arg min
j[ (1,....,d),u[Xj

cost (xi,yi:xij # u) 1cost (xi, yi:xij . u) ,
� (11.4)

where d is the number of input variables, Xj is the domain of values 
assumed by xj , and cost is a function that characterizes the loss in pre-
diction accuracy due to a given split. The cost function that is used for 
evaluating splits depends on the setting in which the decision tree would 
be used. For example, the cost function could be the mean squared error 

x1 ≤ t1

x2 ≤ t2

y = 3y = 2

y = 1

A

B

Figure 11.1  Example of a CART model
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of the predictions in the case of the decision tree being used in a regres-
sion setting, or the misclassification rate in a classification setting. The 
split procedure evaluates the costs of using all of the input variables at 
every possible value that a given input variable can assume, and chooses a 
variable ( j*)  and the value (u*) that yields the lowest cost. The stopping 
criteria for the tree construction can either be based on the cost function or 
on desired properties of the tree structure. For example, tree construction 
can be stopped when the reduction in cost as a consequence of introduc-
ing a new tree node becomes small or when the tree grows to a predefined 
number of leaves or a predefined depth.

The greedy algorithm implies that at each split, the previous splits are 
taken as given, and the cost function is minimized going forward. For 
instance, at node B in Figure 11.1, the algorithm does not revisit the split 
at node A. However, it considers all possible splits on all the variables at 
each node, even if some of the variables have already been used at previous 
nodes. Thus, the split points at each node can be arbitrary, the tree can 
be highly unbalanced, and variables can potentially repeat at later child 
nodes. All of this flexibility in tree construction can be used to capture a 
complex set of flexible interactions, which are learned using the data.

CART is popular in the ML literature for many reasons. The main 
advantage of a simple decision tree is that it is very interpretable—infer-
ring the effect of each variable and its interaction effects is easy. Trees 
can accept both continuous and discrete explanatory variables, can work 
with variables that have many different scales, and allow any number of 
interactions between features (Murphy, 2012). A key advantage of CART 
over regression models is the ability to capture rich non-linear patterns in 
data, such as disjunctions of conjunctions (Hauser et al., 2010). CART 
models are also robust to errors, both in the output and in the explanatory 
variables, as well as missing explanatory variable values for some of the 
observations. Further, CART can do automatic variable selection in the 
sense that CART uses only those variables that provide better accuracy in 
the regression or classification task. Finally, because the CART technique 
is non-parametric, it does not require data to be linearly separable, and 
outliers do not unduly influence its accuracy. These features make CART 
the best off-the-shelf classifier available.

Nevertheless, CART has accuracy limitations because of its discon-
tinuous nature and because it is trained using greedy algorithms and thus 
can converge to a local maximum. Also, decision trees tend to overfit 
data and provide the illusion of high accuracy on training data, only to 
underperform on the out-of-sample data, particularly on small training 
sets. Some of these drawbacks can be addressed (while preserving all of the 
advantages) through boosting, which gives us MART.
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Boosting or MART

Boosting is a technique that can be applied to any classification or pre-
diction algorithm to improve its accuracy (Schapire, 1990). Applying the 
additive boosting technique to CART produces MART (multiple additive 
regression trees), which has been shown empirically to be the best classifier 
available (Caruana and Niculescu-Mizil, 2006; Hastie et al., 2009). MART 
can be interpreted as a weighted linear combination of a series of regres-
sion trees, each trained sequentially to improve the final output using a 
greedy algorithm. MART’s output FN(x)  can be written as

	 FN(x) 5 a
N

k51
ak fk(x, bk) ,� (11.5)

where fk(x, bk) is the function modeled by the kth regression tree and ak 

is the weight associated with the kth tree. Both fk(.)s and aks are learned 
during the training or estimation.

We choose fk(x, bk)  to minimize a prespecified cost function, which is 
usually the least-squares error in the case of regressions and an entropy or 
logit loss function in the case of classification or discrete choice models. 
Given the set of data points (xi,yi) 01 # i # n and a loss function L( yi, ŷi)  
corresponding to making a prediction of ŷi for yi, the boosting technique 
minimizes the average value of the loss function. It does so by starting 
with a base model F1(x)  and incrementally refining the model in a greedy 
fashion:

	 F1(x) 5 arg min
f1

a
n

i51
L(yi, f1(xi ) ) ,� (11.6)

	 Fk(x) 5 Fk21(x) 1 argmin
fk

a
n

i51
L(yi,Fk21(xi) 1 fk(xi) ) 	 (11.7)

At each step, fk(x, bn)  is computed so as to best predict the residual 
value y 2Fk21(x) . In particular, boosting techniques use gradient descent 
to compute fk(.)  at each step using gk , which is the gradient of L(y, F(x) )  
evaluated at F(x) 5 F(k – 1)(x):

	 gik 5 c 0L( yi, F(xi) )
0F(xi)

d
F(x)5Fk 2 1(x)

	 (11.8)

Given gk, gradient boosting makes the following update:

	 Fk(x) 5Fk21(x) 2gk·gk,� (11.9)
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where gk is the step length chosen so as to best fit the residual value:

	 gk 5 arg min
g

a
n

i51
L(yi, Fk21(xi) 2g 3 gk(xi) ) � (11.10)

Note the gradients are easy to compute for the traditional loss functions. 
For example, when the loss function is the squared-error loss function 
1/2(yi 2F(xi) )2, the gradient is simply the residual yi 2F(xi) . In general, 
boosting techniques can accommodate a broad range of loss functions and 
can be customized by plugging in the appropriate functional form for the 
loss function and its gradient.

MART can be viewed as performing gradient descent in the function 
space using “shallow” regression trees (i.e., trees with a small number 
of leaves). MART works well because it combines the positive aspects 
of CART with those of boosting. CART, especially shallow regression 
trees, tends to have high bias but low variance. Boosting CART models 
addresses the bias problem while retaining the low variance. Thus, MART 
produces high-quality classifiers.

Application of Boosted Decision Trees in Marketing

Two recent studies use boosted trees in marketing applications. In a study 
involving millions of searches, Yoganarasimhan (2017) used boosted 
regressions (MART) to show that personalized rank orderings for each 
consumer (and each instance of search) can improve the likelihood of 
consumers clicking and dwelling on search results. Further, she finds 
that logistic regression provides no improvement over the baseline.3 She 
uses the predictive model to examine the heterogeneity in returns from 
personalization as a function of user-history and query-type. Rafieian 
and Yoganarasimhan (2017) also use boosted trees to build a targeting 
model for mobile in-app advertisements. In their study, they use data from 
over 27 million impressions in mobile apps. They show that boosted trees 
perform better than other commonly used models such as OLS regres-
sions, logistic regressions, LASSO, and Random Forests for predicting 
click-through rates of consumers for mobile advertisements. They use 
their results to examine the relative value of behavioral and contextual 
targeting in mobile ads, and to explore the impact of targeting on com-
petition among advertisers and the incentives of the platform to share 
data with advertisers. Together, these studies establish the effectiveness of 
decision-tree-based models in improving marketing decisions.
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Support Vector Machines

A support vector machine, or SVM, is a semi-parametric method typically 
used for a specific kind of prediction problem—the classification problem. 
SVMs are robust to a large number of variables and small samples, can 
learn both simple (e.g., linear) and complex classification models, and 
have built-in regularizers that help avoid overfitting. They also produce 
classifiers with theoretical guarantees of good predictive performance 
(of unseen data). The theoretical foundations of this method come from 
statistical learning theory.

Classification Problems

Classification problems are prediction problems in which the variable of 
interest is discrete, such as which product(s) the consumer will consider or 
purchase, or whether or not a consumer will purchase. A general form of 
a binary (two-class) classification problem is described as follows: given 
a set S of labeled data points, S = { (xi, yi) }, |S| = N, where xi[Rd

 are 
vectors of predictor variables and yi [ { 11,21} are class labels, construct 
a rule that correctly assigns a new point x to one of the classes. A classi-
fier is a rule that is trained on the labeled data and applied to new data to 
predict the labels. A classifier is typically represented as a function (x) : 
Rd S R, called the classifier function. In the case of binary classifiers, a 
point is assigned the label +1 if f (x)  ≥ 0, and the label −1 otherwise.

Linear Classifiers

We start by describing the SVM methodology for the simple case 
of linear classifiers where the classifying function f (x)  has the form 
f (x) 5 b0 1 bTx. A set of points { (xi,yi) } is linearly separable if all the 
points in the set can be correctly classified using a linear classifier. That 
is, if yi [ { 21,11}, the set is linearly separable if a linear function f (x)  
exists such that yi · f (xi) . 0 for all i 5 1, . . . , N. For example, the set of 
points in Figure 11.2 is linearly separable. To aid visual exposition, the 
example depicts a simple case with two continuous predictors, x1, x2. 
However, the same concepts apply to tasks in which the problem is higher 
dimensional. Note that in this example, several lines (or, more generally, 
hyperplanes) exist that correctly classify the data; see Figure 11.2a. We 
can ask whether some are better than others. To help us choose a clas-
sifier, we define the concept of a margin, which captures this intuition: a 
line is a weak classifier if it passes too close to the points, because it will be 
sensitive to noise and will not generalize well. Therefore, our goal should 
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be to find a line that passes as far as possible from all the points, as shown 
in Figure 11.2b.

That is, we seek the classifier that gives the largest minimum distance 
to all the training examples; this distance is called the “margin” in SVM 
theory. For now, we rely on intuition to motivate this choice of the clas-
sifier; theoretical support for this choice is provided below. The optimal 
separating hyperplane maximizes the margin of the training data, as in 
Figure 11.2b. The training examples that are closest to the hyperplane are 
called support vectors. Note that the margin in Figure 11.2b, M, is twice 
the distance to the support vectors. The distance between a point xi and 
the hyperplane (b, b0)  is given by

	 distance 5
0b0 1btxi 0
0 0b 0 0 	 (11.11)

Thus, the margin is given by M 5 2 . 0b0 1 btxi 0
0 0b 0 0 , which is twice the dis-

tance to the closest points. Because a single hyperplane can be defined in 
infinitely many ways, by scaling with 7b 7 , the parameters of the hyperplane 
are normalized such that 0b0 1 bTx 0= 1. Then the margin is simply given 
by  5 2

0 0b 0 0 . A hyperplane (b, b0)  is called a g-margin separating hyperplane 
if yi · f (xi) . g for all (xi,yi)[S.

We can now write the problem of finding the maximum margin linear 
(MML) classifier as an optimization problem that maximizes the margin 
M subject to some constraints. It is typically written as minimizing 1

M2, 
which is a function of b, and the constraints require that the hyperplane 
correctly classifies all the training examples xi :

	 minimizex
1
2
7 b 72	 (11.12)

(a) Many linear classifiers can correctly classify
this set of points

(b) The maximum margin classifier is the
strongest

Optimal Hyperplane

Maximum
margin

Figure 11.2  A linearly separable set of points
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subject to 

	 yi (bTxi 1 b0) $ 1  4i 5 1,...,N.

The MML has several noteworthy properties. First, it can be efficiently 
solved because it is a quadratic optimization problem that has a convex 
objective function. Second, it has a unique solution for any linearly sepa-
rable set of points. Third, the solution to the MML classifier depends only 
on the subset of points that act as the support vectors. The other points 
can lie anywhere outside the margin, and their positions do not affect the 
solution.

Allowing Misclassified Examples

Because the optimal separating hyperplane is drawn as far away from the 
training examples as possible, the MML is only robust to noisy predictors, 
not to noisy labels. Because it does not allow for misclassified examples, 
even a single misclassification error in the training data can radically affect 
the solution. To address this problem, the above approach can be relaxed 
to allow for misclassified examples. The main idea is this: instead of con-
straining the problem to classify all the points correctly, explicitly penalize 
incorrectly classified points. The magnitude of the penalty attached to 
a misclassification will determine the tradeoff between misclassifying a 
training example and the potential benefit of improving the classification 
of other examples. The penalization is done by introducing slack variables 
for each constraint in the optimization problem in equation (11.12), which 
measure how far on the wrong side of the hyperplane a point lies—the 
degree to which the margin constraint is violated. The optimization 
problem then becomes

	 minimizex
1
2
0 0 b 0 0 2 1 Ca

N

i51
ji	 (11.13)

subject to yi (bTxi 1 b0) $ 1 2 ji, ji $ 0,4i 5 1,. . .,N.

Now, if the margin constraint is violated, we will have to set ji > 0 for 
some data points. The penalty for this violation is given by c·ji , and it is 
traded off with the possibility of decreasing 0 0 b 0 0 2. Note that for linearly 
separable data, if C is set to a sufficiently large value, the optimal solution 
will have all the ji = 0, corresponding to the MML classifier. In general, 
the larger the value of C, the fewer margin constraints will be violated. 
The users typically choose the value of C by cross-validation. Note that 
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in this more general formulation, many more data points affect the choice 
of the hyperplane: in addition to the points that lie on the margin, the 
misclassified examples also affect it. We will come back to this formulation 
shortly and see how this formulation can be seen from the point of view 
of regularization.

The above problem is also a quadratic optimization problem that has 
a convex objective function and therefore can be efficiently solved. One 
common method for solving it is by introducing Lagrange multipliers and 
forming a dual problem. The Lagrange function resulting from the opti-
mization problem in equation (11.13) is obtained by introducing Lagrange 
multipliers to the objective function for the constraints:

Lp5
1
2
0 0 b 0 0 2 1Ca

N

i51
ji 2a

N

i51
ai ( yi (bTxi 1 b0)2(12ji) )2a

N

i51
mi ji ai, mi, ji $0, 

� (11.14)

where mi and ai are Lagrange multipliers. We obtain first-order conditions 
by taking derivatives with respect to b, b0, and xi:

	 b 5a
N

i51
aiyi xi,	 (11.15)

	 0 5 a
N

i51
ai yi, ai 5 C 2 mi,4i 5 1,... , N.�

Plugging these into the Lagrangian function in (11.14), we obtain the 
Lagrangian dual problem:

	 maximizea
N

i51
ai 2

1
2a

N

i51
a
N

ir51
ai ari yi yri xT

i xri 	 (11.16)

	 subject to 0 # ai # C, g
N

i51
ai yi 5 0.

Note that in the above optimization problem, the input features xi only 
enter via inner products. This property of SVM is critical to the com-
putational efficiency for nonlinear classifiers. Next, we show how the 
SVM machinery can be used to efficiently solve nonlinear classification 
problems.

Non-linear Classification—Kernel Method

Suppose now that our data are not separable by a linear boundary, but can 
be separated by a non-linear classifier, such as in Figure 11.3a. The kernel 
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method, also known as the “kernel trick,” is a way to transform the data 
into a different space, and construct a linear classifier in this space. If the 
transformation is non-linear, and the transformed space is high dimen-
sional, a classifier that is linear in the transformed space may be nonlinear 
in the original input space.

Consider the example of the circle shown in Figure 11.3a, which 
represents the equation x2

1 1x2
2 5 2. That is, the non-linear classifier 

f (x) 5 22 1 x2
1 1x2

2 separates the data set perfectly. Let us now apply the 
following nonlinear transformation to x:

	 z 5 (x) : z1 5 x2
1, z2 5 x2

2� (11.17)

After the transformation, the classifier becomes a linear one defined as 
follows: (z) 522 ·1 1 1 · z111· z2 5 b

|
z.

Now, if we plot the data in terms of z, we have linear separation, as 
shown in Figure 11.3b. The transformed space that contains the z vectors 
is called the feature space, because its dimensions are higher-level features 
derived from the raw input x. The transform, typically referred to as the 
feature transform, is useful because the non-linear classifier (circle) in 
the X-space can be represented by a linear classifier in the Z-space. Let d 
be the dimensionality of the X space, and d

|
  the dimensionality of the Z 

space; similarly, we let b| represent the weight vector. Then a linear classi-
fier f

|
 in z corresponds to a classifier in x, f (x) 5 f

|((x) ) .
If the transformed data are linearly separable, we can apply methods 

developed for linear classifiers to obtain the solution in the transformed 

(a) Points cannot be correctly separated
with a linear classi�er, but a nonlinear
classi�er f (x) = –2 + x1

2 + x2
2

separates them perfectly.

(b) The same points in the transformed
space are now linearly separable.

x2 z2

x1 z1

Figure 11.3  Nonlinear classification
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space, b
|
, and then transform it back to the X space. Note the in-sample 

error in the original space X is the same as in the feature space Z.
The feature transform can be general, but as it becomes more complex, 

the dimensionality of the feature space increases, which in turn affects the 
guarantees on the classifier’s performance on new data. The kernel trick 
addresses this issue by using so-called kernel functions, the mapping does 
not have to be explicitly computed, and computations with the mapped 
features remain efficient. This efficiency is obtained by noting that the 
Lagrangian dual formulation in equation (11.16) only involves the inner 
products of input features. The objective function in the transformed 
feature space becomes

	 a
N

i51
ai 2

1
2a

N

i51
a
N

ir51
ai a

r
i yiyri 8(xi ),(xri) 9.� (11.18)

Thus, the solution involves (x)  only through inner products. Therefore, 
we never need to specify the transform (x), but only the function that 
computes inner products in the transformed space:

	 K(x,xr) 5 8(x) ,(x) 9.	 (11.19)

The function K(x, x r)  is known as the kernel function. The most com-
monly used choices for K are polynomial kernels:

	 k(x, xr) 5 (11 8x, xr9 )d, 	 (11.20)

and Gaussian kernels:

	 K(x,xr) 5  exp(–||x – x′||2/(2σ2))� (11.21)

By replacing the inner product in the SVM formulation in equation 
(11.14) by the kernel, we obtain a MML classifier in the transformed fea-
ture space defined by the kernel, which is non-linear in the original space.

Margin, VC Dimension, and Generalization

Generalization refers to a ML model’s predictive power outside the 
training data, that is, its ability to make the best prediction ŷ for a new 
data point x, which is not a part of the training set. In this context, we 
present the Vapnik-Chervonenkis generalization theorem, which provides 
a bound on the ability of a model fit to a training set to generalize to new 
data points.
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The Vapnik-Chervonenkis (VC) dimension measures the richness, or 
flexibility, of a classifier. The VC dimension measures how complex a 
classifier can be through the maximum number k of data points that can 
be separated into all possible 2k ways using the model, a process which is 
referred to as “shattering” the set of data points. A classifier f (x)  with 
parameter vector q shatters a set of data points if, for all possible labels 
of  those points, a q exists such that f correctly classifies all the data 
points.

The more complex the set of classifiers captured by f, the higher the VC 
dimension. For example, the VC dimension of a line in two dimensions is 
three, because any three points (that are not collinear) can be shattered 
using this model, but no set of four points can be shattered. In higher 
dimensions, the VC dimension of hyperplanes in Rd is known to be d 1 1. 
The VC dimension can be viewed as the number of a model’s hypotheses. 
We have the following result that provides the upper bounds for the VC 
dimension h for the set of g-margin separating hyperplanes.

Let xi be a set of points in Rd that belong to a sphere of radius Q. Then 
the set of g-margin separating hyperplanes has VC dimension h:

	 h # minaaR
g
b

2
, db11.	 (11.22)

Note the upper bound is inversely proportional to the margin g, suggest-
ing the larger the margin, the lower the VC dimension of the correspond-
ing set of classifiers.

In evaluating a classification algorithm, we are interested in the number 
of errors the classifier will make when classifying unseen, out-of-sample, 
data when all we know for sure is the number of errors made on the train-
ing, or in-sample, data. This number cannot be computed exactly, but it 
can be upper-bounded using the VC dimension. The VC generalization 
bound gives an upper bound on the probability of a test sample being 
misclassified by a g-margin hyperplane. With probability 12d, the prob-
ability of a test sample being misclassified is

	 Perr #
m
N

1
E
2
a11Å1 1

4m
NE

b,� (11.23)

where

	 E 5 4
haln

2N
h

1 1b 2 ln
d

4
N

.	 (11.24)

N is the number of points in the training sample, m is the number 
of training examples misclassified by the hyperplane, and h is the VC 
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dimension. Vapnik and Chervonenkis (1971) developed the unifying rela-
tionship between the VC dimension, sample size, and classification errors.

The first term in equation (11.23) is the proportion of misclassified data 
points in the training sample; the second term is a function of the model 
complexity, which increases with the VC dimension, h. Therefore, the 
bound on the probability of misclassifying a new data point is proportional 
to the VC dimension of the set of classifiers. Thus, all else being equal, a 
more complex classifier (one with a higher VC dimension) is likely to be 
a worse predictor than a simple classifier. We have also seen in equation 
(11.22) that the VC dimension decreases as the margin (g)  increases; this 
finding provides a theoretical foundation for looking for classifiers with 
the maximum margin, such as the MML. More generally, it motivates 
regularization, which is a method used to prevent model overfitting.

Regularization

The VC generalization bound tells us that, as far as out-of-sample predic-
tion is concerned, we should be better off fitting the data using a “simpler” 
model. Therefore, rather than simply finding a model that minimizes 
error, we introduce a term to the optimization that penalizes for model 
complexity, called the regularization penalty. This approach avoids over-
fitting by constraining the algorithm to fit the data using a simpler model.

Consider the SVM optimization problem in equation (11.13). ji is set to 
1 2 yi (bTxi 1b0) , if a data point in the training set is misclassified, and 
0 if it is classified correctly. The optimization problem can be rewritten as

	 minimizex
1
2
g b g

2
1 Ca

N

i51
(1 2yi (bTxi 1b0)) 1	 (11.25)

Here, we can view the second term, CgN
i51 (12yi ( bTxi 1b0)) 1, as the 

loss for misclassifying a data point, and can view the first term, the inverse 
squared geometric margin 1

2 0 0b 0 0 2, as the regularization penalty that helps 
stabilize the objective. Regularization thus helps us select the solution with 
the largest geometric margin, corresponding to lower VC dimension, or 
model complexity.

This type of regularizer, which penalizes the squared or L2 norm of the 
parameter values, is sometimes referred to as weight decay, because it forces 
the weights to decay toward 0. Note that when applied to linear regression, 
it results in what is called ridge regression in econometrics. Similarly, the 
L1 regularizer 0b 0  corresponds to lasso regression when applied to linear 
regression. With the L1 regularizer, many of the less relevant features 
will be set exactly to 0, resulting in feature selection. Other than linear 
regression, regularization is also used for logistic regression, neural nets, 
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and some matrix-decomposition methods. In the more general form of 
this regularization, called Tikhonov regularization, different penalties can 
be placed on different weights being large, resulting in the form bT GT Gb 
(Tikhonov and Arsenin, 1977).

Typically, the optimization is written in the form of minimizing in-
sample errors, plus the regularization penalty, that is,

	 minimizex    Ein (w) + lC wT w� (11.26)

for L2 regularization. The functional form of the regularizer is usually 
chosen ahead of time, whereas the parameter l, which determines the 
amount of regularization, needs to be trained. Such training is necessary 
because the type of regularization is usually known based on the type of 
data, and type of model to be fit, but the data themselves should dictate 
the amount of regularization. We want to pick the l that will result in 
the best out-of-sample prediction (the best in-sample fit is achieved using 
l 5 0 ). To determine which value of l leads to the best out-of-sample 
prediction, we train it using a validation method, which we describe next.

In general, regularization is necessary if the class of models is too rich 
for the data. Then we can combat overfitting by regularization, which 
penalizes the sizes of the parameters. For example, Hauser et al. (2010) 
estimated a very rich model of non-compensatory consideration-set 
formation, called disjunction of conjunctions, which allow for non-
compensatory rules of the form (fuel efficient AND Toyota AND sedan) 
OR (powerful AND BMW AND sports car). Note the complexity of this 
model is exponential in product attributes and is prone to overfitting. In 
fact, any training data consisting of considered and non-considered prod-
ucts can be perfectly fit with a separate conjunction for all the features 
of each considered product. The authors use regularization to combat 
overfitting and look for “simple” decision rules to fit the data, resulting in 
good out-of-sample performance.

Note that, because we are explicitly penalizing for complexity, we can 
consider a much broader class of models (e.g., many more predictors than 
data points, high-degree interactions, etc.) because the regularizer will 
guarantee we find the best predictive model that does not overfit.

Applications of SVM in Marketing

Because of SVM’s robustness and ability to handle large, high dimensional 
data, it has become one of the most popular classification algorithms over 
the past 20 years, with applications in image recognition, text mining, 
and disease diagnosis. Cui and Curry (2005) introduced it to marketing 
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and provide an excellent overview of SVM theory and implementations. 
They also compare the predictive performance of SVM to that of the 
multinomial logit model on simulated choice data, and demonstrate SVM 
performs better, particularly when data are noisy and products have many 
attributes (i.e., high dimensionality). They also see that when predicting 
choices from larger choice sets, SVM more significantly outperforms the 
multinomial logit model. Although both methods’ predictive ability falls 
as the size of the choice set increases, because the first-choice prediction 
task becomes more difficult, the decline is much steeper for multinomial 
logit than for SVM. Evgeniou et al. (2005) present and test a family of 
preference models, including highly non-linear ones, which are estimated 
using SVM methodology. The estimation procedure uses regularization 
to prevent the complex models from overfitting that is similar to that of 
SVM. For linear utility models, they find the SVM significantly outper-
forms logistic regression on out-of-sample hit rates. The improvement of 
using SVM versus logistic regression is particularly large when the choice 
design is random; the methods perform approximately equally well for a 
balanced orthogonal choice design. Similar to Cui and Curry (2005), they 
find SVM performs significantly better when noise increases, suggest-
ing SVM is more robust to noise. Next, they test the performance of the 
methods on utility models that involve interactions among attributes. For 
these models, they show SVM performs similar to hierarchical Bayes (HB) 
estimation of a correctly specified nonlinear model. However, SVM better 
captures the nonlinear parts of the model. Additionally, SVM can handle 
more complex models with more interactions than HB can, because it is 
computationally efficient.

Evgeniou et al. (2007) extend SVM to develop a framework for 
modeling choice data for multi-attribute products, which allows the 
capturing of respondent heterogeneity and the pooling of choice data 
across respondents. The attribute partworths are shrunk to the mean with 
regularization parameters that are trained using cross-validation.

More recently, Huang and Luo (2015) used fuzzy SVM, an extension of 
SVM methodology, for preference elicitation of complex products with a 
large number of features. They proposed an adaptive question-selection 
process using fuzzy SVM active learning to adaptively select each sub-
sequent question. They showed that, due to the convex nature of SVM 
optimization, such an approach is computationally efficient for preference 
elicitation of complex products on the fly.

Another extension is the latent-class SVM model, which allows the 
use of latent variables within SVM. Liu and Dzyabura (2016) develop an 
algorithm for estimating multi-taste consumer preferences by building on 
the convex–concave procedure used to estimate latent-class SVM while 
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capturing respondent heterogeneity. They show their model’s prediction is 
better than single-taste benchmarks.

Common Issues in ML Methods

Training, Validation, and Testing

Dividing the data into separate sets for the purpose of training, valida-
tion, and testing is common. Researchers use the training data to estimate 
models, the validation data to choose a model, and the testing data to 
evaluate how well the model performs. We discuss below the reasons 
for splitting the data into the constituent parts and issues related to this 
framework.

We first examine the need for using a testing data set. As discussed 
earlier, the goal of ML techniques is to provide the best out-of-sample 
predictions as opposed to simply improving the model fit on the sample 
data set. Given this need, the predictive ability of ML techniques is 
evaluated by first constructing a model on a training data set and then 
evaluating its accuracy on a testing data set, whose corresponding data 
items weren’t  included in the training data set. This approach provides 
a meaningful estimate of the expected accuracy of the model on out-of-
sample data.

Let us now examine the need for having a validation data set. Consider 
an ML technique that trains multiple models on a training set S, and 
picks the model that provides the best in-sample accuracy (the lowest 
error on the set S). This approach will prefer larger and more detailed 
models to less detailed ones, even though the less detailed ones might 
have better predictive performance on out-of-sample data. For example, 
if we are approximating a variable y using a polynomial function applied 
on inputs x, then, if we determine the order of the polynomial based on 
the accuracy of prediction on the training set S, we would always pick a 
very high-degree, high-variance polynomial model that overfits the data 
in S and may, as a consequence, perform poorly on the testing data. To 
address this issue, cross-validation splits the input data set S into two 
components: St (training) and Sv (validation). It then uses the training set 
St to generate candidate models, and then picks a model that performs best 
on Sv as opposed to basing the decision solely on St fit. Cross-validation 
thus ensures the chosen model does not overfit St and performs well on 
out-of-sample data.

The cross-validation enhancement can be applied to any ML algorithm. 
For example, in the case of boosted MART, cross-validation typically 
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works as follows. After each tree is computed based on St and added to the 
MART ensemble, the MART is evaluated on the validation data set Sv . 
Although the additional tree would have improved the accuracy on St, it 
might not have necessarily improved the accuracy on Sv . So the algorithm 
could introduce a stopping rule for MART construction that terminates 
the MART construction when k consecutive iterations (or trees) have not 
yielded accuracy improvements on Sv. The algorithm would then select 
the MART (or the output of an intermediate step) that yielded the best 
accuracy on Sv as the best model.

Note that validation is not free. The algorithm has to split the input 
data set into two smaller components and use only one of them for the 
purpose of training. This procedure leaves fewer samples to train a model, 
resulting in a suboptimal model. However, the accuracy gains realized 
from avoiding overfitting typically trump the reduction in the size of the 
training data, particularly for large data sets. As a consequence, most ML 
practitioners use cross-validation as part of their modeling toolkit.

Additional Techniques to Avoid Overfitting

In addition to the cross-validation method discussed above, additional 
techniques exist for reducing the effect of overfitting. We now discuss 
some of those techniques.

Regularization

Because simple models tend to work better for out-of-sample forecasts, 
ML researchers have come up with ways to penalize models for excessive 
complexity. This process is known in ML as “regularization” or “complex-
ity control,” and we will give examples when we discuss specific methods. 
Although economists also tend to prefer simpler models (for the same 
reason), they have not been as explicit about quantifying complexity costs.

Tuning regularization parameters using cross-validation
If we have an explicit numeric measure of model complexity, we can 
view it as a parameter that can be tuned to produce the best out-of-
sample predictions. The standard way to tune a parameter is to use k-fold 
cross-validation:

(1) �D ivide the data into k equal subsets (folds) and label them s 5 1,. . .,k. 
Start with s 5 1.

(2) � Pick an initial value for the tuning parameter.
(3) F it your model using the k 2 1 subsets other than s.
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(4) � Predict the outcome variable for subset s and measure the associated 
loss.

(5) S top if s 5 k; otherwise, increment s by 1 and go to step 2.

After cross-validation, we end up with k values of the tuning parameter 
and the associated loss, which you can then examine to choose an appro-
priate value for the tuning parameter. Even if no tuning parameter exists, 
using cross-validation to report goodness-of-fit measures is generally a 
good idea, because it measures out-of-sample performance, which is gen-
erally more meaningful than in-sample performance (such as R2). Using 
the test–train cycle and cross-validation in ML is common, particularly 
when large data sets are available. If the data are large enough that a 
model can be estimated on a subset of the data, using separate training and 
testing sets provides a more realistic measure of prediction performance.

Feature selection
Feature selection is a standard step in ML settings that involve supervised 
learning (Guyon and Elisseeff, 2003). Feature selection typically provides 
a faster and more computationally efficient model by eliminating less rele-
vant features with minimal loss in accuracy. It is thus particularly relevant 
for training large data sets that are typical in various target application 
settings. Feature selection also provides more comprehensible models that 
offer a better understanding of the underlying data-generating process. 
When the data sets are modest in size and the number of features is large, 
feature selection can actually improve the predictive accuracy of the model 
by eliminating irrelevant features whose inclusion often results in overfit-
ting. Many ML algorithms, including neural networks, decision trees, 
CART, and naive Bayes learners, have been shown to have significantly 
worse accuracy when trained on small data sets with superfluous features 
(Duda and Hart, 1973; Aha et al., 1991; Breiman et al., 1984; Quinlan, 
1993).

The goal of feature selection is to find the smallest set of features that 
can provide a fixed predictive accuracy. In principle, this problem is 
straightforward because it simply involves an exhaustive search of the 
feature space. However, with even a moderately large number of features, 
an exhaustive search is practically impossible. With F  features, an exhaus-
tive search requires 2F runs of the algorithm on the training data set, 
which is exponentially increasing in F. In fact, this problem is known to be 
NP-hard (Amaldi and Kann, 1998).

The wrapper method addresses this problem by using a greedy algo-
rithm (Kohavi and John 1997). Wrappers can be categorized into two 
types—forward selection and backward elimination. In forward selection, 
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features are progressively added until a desired prediction accuracy is 
reached or until the incremental improvement is very small. By contrast, a 
backward-elimination wrapper starts with all the features and sequentially 
eliminates the least valuable features. Both wrappers are greedy in the 
sense that they do not revisit former decisions to include (in forward selec-
tion) or exclude features (in backward elimination). More importantly, 
they are “black box” techniques in the sense that they can work with any 
ML algorithm by invoking them without needing to understand their 
internal structure.

To enable a wrapper algorithm, the researcher needs to specify a selec-
tion as well as a stopping rule. A commonly used and robust selection rule 
is the best-first selection rule (Ginsberg, 1993), wherein the most promising 
node is selected at every decision point. For example, in a forward-selec-
tion algorithm with 10 features, at the first node, this algorithm considers 
10 versions of the model (each with one of the features added) and then 
picks the feature whose addition offers the highest prediction accuracy. 
The process continues until a stopping-rule condition is satisfied. A stop-
ping rule consists of a cut-off point for the incremental gain obtained at 
each step of the algorithm, and when the incremental gain is less than this 
cut-off point, the feature-selection process ends and emits the currently 
selected set of features.

Wrappers offer many advantages. First, they are agnostic to the 
underlying learning algorithm and the accuracy metric used for evaluating 
the predictor. Second, greedy wrappers have been shown to be robust 
to overfitting and computationally advantageous (Reunanen, 2003); the 
resulting model requires fewer features to be computed during testing, 
and the testing-classification process itself is faster because the model is 
compact.

Conclusion

ML methods are gaining traction in both marketing practice and aca-
demic research. They provide a set of valuable tools to help us increase 
the out-of-sample performance of marketing models and thereby improve 
the quality of marketing decisions. In this chapter, we presented a brief 
overview of the two most commonly used ML methods, decision trees and 
SVM, as well as a discussion of their applications in marketing. With the 
advent of large data sets, focus on real-time performance, and the avail-
ability of cheap and fast computing (e.g., Amazon EC2), we hope market-
ers can use ML techniques to answer a new set of exciting and challenging 
substantive questions going forward.
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Notes

1.	T he authors thank Bryan Bollinger, Shahryar Doosti, Theodoros Evgeniou, John 
Hauser, Panos Ipeirotis, Lan Luo, Eugene Pavlov, Omid Rafieian, and Amin ZadKazemi 
for their comments.

2.	F or a detailed discussion of the roles of causal, predictive, and descriptive research in 
social sciences, please see Shmueli (2010).

3.	I n a comparison of logistic regression and decision trees, Perlich et al. (2003) examined 
several data sets. Taking different sized subsamples of the data, they estimated both 
models using learning curves, that is, how the model’s predictive accuracy improves as 
the sample size increases. They found that logistic regressions work better for smaller 
data sets, and trees work better for larger data sets. Interestingly, they found this pattern 
holds even for training sets from the same domain.
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