
Web Appendix for Estimation of Beauty Contest Auctions

A Nonparametric Identification of Component Mixtures of Bid Distributions
and Mixing Probabilities with Unobserved Auction Heterogeneity

We assume that bids arrive independently in this sealed bid setting. LetQ be the number of bids that
an auction receives andK the total number of unobserved buyer/auction specific state variables. We
present the proof for the case where price is the only bid attribute bji. Expanding to include more
bid-specific variables is straightforward.

Let ζ∈R be a cut-off in the positive Real line, and define:

µji(Ai,ζ)=

1, if bji≤ζ

0, otherwise
(1)

Then, µi(Ai,ζ) =
Q∑
j=1

µji(Ai,ζ) is the number of times the ith auction, with observed auction at-

tributes Ai, received bids which are less than or equal to ζ. Based on this expansion, at each ζ,
µi(Ai,ζ),µ2(Ai,ζ),...,µn(Ai,ζ) are i.i.d. Then, we can write out the mixture model as:

L(m,Q)=
K∑
k=1

πkB(m;Q,Tk(ζ)) (2)

where Tk(ζ)=
ζ∫
0

Gk(b|Ai,vk)db is the CDF that a bid-draw bwill be less than or equal to ζ , if the unob-

served auction type is k, and B(m;Q,Tk(ζ)=
(
Q
m

)
[Tk(ζ)]m[1−Tk(ζ)]Q−m is the binomial probability

function.
At any given ζ, the number of such equations is Q. The number of parameters to be identified

consist ofK−1 mixing probabilities andK CDFs, Tk(ζ)s. Thus, at each point in the non-negative
real line, ζ , this system of equations is identified if:

Q≥2K−1 (3)
Thus, the CDFs of the component distributions and the mixing probabilities can be retrieved at each
point in the non-negative real line if the number of bids received is greater than or equal to 2K−1. Note
that this is a strong identification condition since it requires that the mixing probabilities be identified at
each ζ , which is, of course, not necessary since identifying πks just once is sufficient for identification.



B Estimation with Assumption 7

B.1 Modified EM-like Algorithm in the First Step

Consider the following nonparametric EM-like algorithm to estimate the bid prices. At this stage,
GX(Xji|Ai) is assumed to have been already estimated. Since it is not dependent on the unob-
served type, its estimation is straightforward. Now, letAXji={Ai,Xji} take on H̄ possible levels,
AXji∈{AX1,AX2,...,AXH̄}. Then all the bids in the data can be partitioned into H̄ groups based
on observed auction and seller attributes AXji. Note that because seller attributes (Xjis) can vary
across bids within the same auction, bids from the same auction can belong to different partitions.
This is one of the key ways in which this algorithm differs from the standard nonparametric mixture
algorithms. Then, the three-step iterative algorithm is as follows:

B.1.1 KDE-Step

Let Gth,k(b|AXh,vk) denote the probability density function of observing bid price b at observed state
AXh and unobserved type vk in iteration t. We now define:

Gth,k(b|AXh,vk)=
1

µth

[
nh∑
m=1

λt−1
mhk

] nh∑
m=1

λt−1
mhkK

(
b−bm
µth

)
(4)

whereµth is the bandwidth for group h in iteration t,K(·) is a univariate kernel such that
∫
R
K(b)d(b)=

1.

B.1.2 E-Step

In the E-step, we update the posterior probabilities λtiks, for each auction, for this iteration, as follows:

λtik=

πt−1
k

qi∏
j=1

Gth,k
(
bji|AXji=AXh,vk

)
K∑
k=1

πt−1
k

[
qi∏
j=1

Gth,k(bji|AXji=AXh,vk)

]∀k (5)

where πt−1
k s is the population probability of unobserved type k from the previous iteration. An

important point of note is that even when updating the posterior probabilities for a single auction, we
might have to use many different bid distributions because the group that a bid belongs to depends
on bothAi andXji.

B.1.3 M-Step

The Maximization step is the same as before.
We iteratively perform the above steps till convergence, at which point, we have consistent estimates

of the population probabilities of unobserved types, posterior probability of an auction belonging
to a given unobserved type, and H̄×K probability density functions of bid prices Gh,k

(
b|AXh,vk

)
.
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B.2 Modified Second Step Estimation

The second step estimation is similar to that outlined in §4.2, with the following changes to Step i:

• We first make (qi− 1) draws of equilibrium seller attributes from ĜX(Xji|Ai). Denote these
draws as: X̃−ji={X̃1i,...,X̃(j−1)i,X̃(j+1)i,...,X̃qii}.
• Then, for each draw of Xji, based on AXji = {Ai, Xji}, make a draw of bid price from
Ĝh,k(bji|AXji = AXh, vk). Denote these as b̃−ji = {b̃1i, ... , b̃(j−1)i, b̃(j+1)i, ... , b̃qii}. Together
with j’s own attributes and bid, this constitutes one simulation of auction i for vi=vk.

Continue with the estimation as before.

C Details of the First Step Estimation for the Freelancing Context

C.1 Non-Parametric Joint Distributions of Number of Ratings and Mean Rating

We model the joint distributions of these two attributes using bivariate kernel density functions. First,
we classify all the bids according to the number of bids received in the corresponding auction (Table
A1) and then sub-classify the bids based on the buyer’s reputation (Table A2). These classifications
allow us to capture the differences in sellers’ expectations about the attributes of her competitors. For
example, buyers with a large number of high ratings (sub-class 4) receive better bids (e.g., low bid
price, high bidder reputation), on average, compared to those with no ratings (sub-class 1). Ideally,
of course, we would prefer a more fine-grained classification. However, further classification is not
feasible given the size of our data.1

Classes Number of bids
Class 1 0<Number of bids≤5
Class 2 5<Number of bids≤10
Class 3 10<Number of bids≤20
Class 4 20<Number of bids

Table A1: The four classes of auctions.

Sub-classes Number of ratings Avg. rating
Sub-class 1 Number of ratings =0 –
Sub-class 2 0<Number of ratings Avg. rating≤9.3
Sub-class 3 0<Number of ratings≤10 Avg. rating>9.3
Sub-class 4 Number of ratings>10 Avg. rating>9.3

Table A2: The four sub-classes of buyers.

Let {1,...,T} be the set of categories, where T =16 since we have four classes for number of bids,
each with four sub-classes. t=1 denotes class 1 and sub-class 1, t=2 denotes class 1 and sub-class 2,
and so on. The observed bids in each category are indexed bym∈{1,2,..,Mt}, whereMt is the total
number of bids in category t. Themth bid in any category is denoted by vector Ym, where the two
elements of Ym are the number of ratings and mean rating of themth bid. We model the probability
density function at a point Y in the two dimensional space, in category t, using the multivariate kernel
density estimator:

ψt(Y,µt)=
1

Mtµ2
t r(lt,Y )2

Mt∑
m=1

K
{

1

µtr(lt,Y )
(Y −Ym)

}
(6)

1Results are robust to modifications in cut-offs used to sub-classify the data.
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where µt is the optimal bandwidth window for category t,K(·) is the two dimensional kernel function
satisfying the property

∫
R2K(Y )d(Y )=1. r(lt,Y ) is a scaling parameter that represents the Euclidean

distance from Y to the ltht nearest point in the data.2

The choice of the bandwidth is crucial to the quality of the kernel estimator. We estimate the
optimal bandwidths, µt∀t, using likelihood cross-validation (Silverman, 1986). Let ψ̂t(µ,Y ) and
ψ̂t,−m(µ,Y ) be the PDF estimate of point Y from the tth category using bandwidth µ and datasets
{Y1,...,YMt} and {Y1,...,Ym−1,Ym+1,...,YMt}, respectively. Then the cross-validation score of µ for
category t is given by:

CVt(µ)=M−1
t

Mt∑
m=1

ln[ψ̂t,−m(µ,Y )] (7)

The likelihood cross-validation choice of the optimal bandwidth is the value that maximizesCVt(µ).
Intuitively, the cross-validation scoreCVt(µ) is the log-likelihood of observing the dataset. ψ̂t,−m(µ,Y )

is the probability of drawing the data-point A (assuming it is not part of the dataset). SoM−1
t ΠMt

m=1ψ̂t,−m(µ,Y )

is the total probability of observing the dataset.
While the maximization is conceptually simple, it is computationally intensive. To evaluate the

likelihood at a given bandwidth, we need to evaluate the density at each data point at that bandwidth
and then sum over the density contributions of all data points. Moreover, at each data point, we need
to find the ltht nearest point in the Euclidean space to calculate its density contribution. This becomes
prohibitively expensive as the size of the dataset and the number of dimensions increase. Moreover,
this has to be done multiple times to reach the optimal µt. To address these computational issues, we
follow the recent method proposed by Gray and Moore (2003), which is based on k-d trees and has
been shown to be much faster than previous methods. We use the MATLAB-based KDE toolbox to
perform the estimation (Ihler, 2003).

C.2 Multinomial Logit Model of Bidder’s Geographic Region

Sellers can belong to one of four discrete geographic regions (Table 2). Conditional on buyer and
auction specific state variables, and a given draw of bidder mean rating and number of ratings,
we model the distribution of seller’s geographic region using a Multinomial Logit model. Let
Zg(regionji|Xg

ji,θg) be the conditional probability of seller j’s region, whereXg
ji is the set of vari-

ables that influences the draw of the bidders’ geographic region and θg = {θg1, θg2, θg3} are the
parameter vectors associated with regions 1, 2, and 3, respectively. Then, the probability that bidder

2In the absence of r(lt,Y ), the same bandwidth is used for all parts of the distribution. This is problematic in finite
samples because it is difficult to pick one optimal bandwidth for the entire range; low bandwidths lead to spurious
noise in the tails of the distribution, while high bandwidths cause over-smoothing in the main parts of the distribution
(Silverman, 1986). Scaling the bandwidth locally using r(lt,Y ) provides a simple but effective solution to this problem.
Further, as is common in the literature, we set lt=

√
Mt.
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j in auction i belongs to geographic region k is:

Zg(regionji=γ|Xg
ji,θg) =

exp(Xg
jiθgk)

1+exp(Xg
jiθg1)+exp(Xg

jiθg2)+exp(Xg
jiθg3)

∀γ∈{1,2,3}

Zg(regionji=4|Xg
ji,θg) =

1

1+exp(Xg
jiθg1)+exp(Xg

jiθg2)+exp(Xg
jiθg3)

(8)

θg4 =0 because γ=4 is the base region. The set of parameters to be estimated in this context is θg=

{θg1,θg2,θg3}. The log-likelihood of drawing the sellers’ geographic regions observed in the data is:

Lg(θg)=
n∑
i=1

qi∑
j=1

4∑
γ=1

ln[Zg(regionji=γ|Xg
ji,θg)

I(regionji=γ)] (9)

Maximizing the above log-likelihood gives us a consistent estimate of θg.

C.3 Logit Model of Buyer-Bidder Past Interaction Indicator

The indicator for whether a buyer and seller have interacted in the past is modeled using a binary
Logit model. Let Zl(intji|X l

ji,θl) be the conditional probability of seller j’s having positive past
interactions with buyer i, given state variablesX l

ji and parameter vector θl. Then, the probability of
drawing intji is:

Zl(intji=1|X l
ji,θl)=

eXjiθl

1+eXjiθl
; Zl(intji=0|X l

ji,θl)=
1

1+eXjiθl
(10)

The parameters of interest in this context are θl, which can be estimated using maximum likelihood.
The log-likelihood of observing the indicators of past buyer-seller interactions observed in the data
is given by:

Ll(θl)=
n∑
i=1

qi∑
j=1

1∑
γ=0

ln[Zl(intji=γ|X l
ji,θl)

I(intji=γ)] (11)

C.4 Nonparametric Estimation of Mixtures of Bid Prices

Figure 4 depicts the kernel density estimate of all the bids in the data. Note that it is lumpy and does
not resemble any parametric distribution. Therefore, we employ a fully nonparametric estimation
method. To estimate the nonparametric mixtures of bid prices, we first distribute all the bids in the
data into bins based on auction and seller attributes as follows:

• Three groups based on number of bids: (a) No. of bids≤13, (b) 13<No. of bids≤30, and (c)
No. of bids>30.

• Three groups based on sum of seller ratings: (a) Sum seller ratings =0, (b) 0< Sum seller ratings
≤90, and (c) Sum seller ratings>90.

• Two groups based on seller geographic region: (a) Seller region =1, and (b) Seller region 6=1.

Note that our binning is coarser than our state space. As discussed earlier, this is necessary in large
state space settings with finite samples. We experimented with a large number of binning strategies
before finalizing this one. The chosen binning strategy is the one which accomplishes the following
three goals to the best possible extent – (1) Bin cut-offs should be such that the distributions of bid
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prices across bins should be as different as possible. (2) Bin cut-offs should be such that each bin
has sufficient data for nonparametric estimation ofK unobserved types. (3) Bin cut-offs should be
such that each bin has approximately the same amount of data. Unbalanced binning will give rise
to some bins with a large number of data points and others with very few data points. In such cases,
estimation in smaller bins is likely to be biased.

Our binning strategy gives us a total of 3×3×2=18 bins. Further, in all our analysis, we consider
three unobserved types, K = 3. So we estimate a total of 18×3 = 54 bid distributions. Since we
have around 44,000 bids, this gives us approximately 1000 data points in each distribution, if the
unobserved types are equally distributed (which they are not). With an unbalanced distribution of
unobserved types, some distributions will have fewer points. This is the main reason why further
binning is not feasible for this dataset; doing so would introduce significant finite sample bias. Nev-
ertheless, we performed many robustness checks with different binning strategies, and found that
the results are, in general, robust to modifications in the bin cut-offs and the number of bins used.

For each of the 18 bins, we employ the nonparametric EM-like algorithm described in detail in
Web Appendix §B, and retrieve the 54 component distributions and their population probabilities.

C.5 Nested Logit Model of Buyers’ Equilibrium Allocation Rule

Purely nonparametric models of the CCP of buyers’ decision, P(·), are not feasible in our large
state space setting with finite data. Hence, we parameterizeP(·) using a Generalized Extreme Value
(GEV) distribution and use a flexible nested Logit model. That is, in addition to the observed state
variables, we introduce εji, which is an unobserved seller-auction specific state variable that captures
the unobserved preference of the buyer in auction i for seller j. εji is a (qi+1)×1 mean-zero vector
with supportRqi+1 and is assumed to be independent of observed seller attributesXji. εji is buyer
i’s private information and not observable to sellers. Hence, sellers cannot condition their bids on
the realizations of εjis. We further assume that the errors, εjis, are drawn from a Generalized Extreme
Value (GEV) distribution. All the bid options are in one nest, and the cancel option is in a separate
singleton nest. Let σ∈ [0,1] be the correlation of errors in the nest with the bid options, where σ=0

implies perfect correlation and σ=1 indicates no correlation. Errors across nests are not correlated.
The probability that buyer i will choose to cancel, and the probability that i will choose the bid

from seller j, given state variablesXn
ji={Ai,Xji,bji,X−ji,b−ji} are given by:

P(canceli|Xn
ji,θw,θv,σ)=

1

1+exp[W(Oi,θw)+σI(Xji,bji,X−ji,b−ji,θv,σ)]
(12)

P(bidji|Xn
ji,θw,θv,σ)=

exp[W(Oi,θw)+σI(Xi,bi,X−ji,b−ji,θv,σ)]

1+exp[W (Ai,θw)+σI(Xji,bji,X−ji,b−ji,θv,σ)]

expV(Xji,bji,θv)

σ
qi∑
k=1

exp
[
V(Xki,bki,θv)

σ

]
(13)

W(Oi,θw) is a function of observable buyer/auction level variables and parameter vector θw that
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affects the upper level nest choice. V(Xji, bji, θv) is a function of seller j’s attributes and bid
price and parameter vector θv that dictates the choice of the seller within the bid nest. Finally,

I(Xji,bji,X−ji,b−ji,θv,σ) = ln
[
qi∑
k=1

exp
(
V(Xki,bki,θv)

σ

)]
is the inclusive value of the bid nest. Thus,

the probability that a specific bid j will be chosen (Equation (13)) is obtained by multiplying the
probability that bid nest will be chosen with the probability that bid j will be chosen conditional on
the nest choice.

This model is estimated using a maximum likelihood procedure. The parameters {θw,θv,σ} are
obtained from the following maximization:

argmax
θw,θv ,σ

n∑
i=1

[
ln
[
P(canceli|Xn

ji,θw,θv,σ)
]I(di)=cancel+ qi∑

j=1

ln
[
P(bidji|Xn

ji,θw,θv,σ)
]I(di)=j] (14)

where di is buyer i’s observed decision.
The estimates for this model are shown in Table A5, and discussed in §6.4.1 in the main text.

D Details of Second Step Estimation for the Freelancing Context – Seller
Costs

Finally, using the first step estimates, we estimate seller costs. Since we consider three unobserved
types and 18 bins of observed states when binning the bid prices, we estimate 54 kernel density
functions of costs, as described in Web Appendix B.2.

A data issue that we face is that the bids are mainly clustered in certain regions (multiples of 50). A
key question is whether such clumping is due to the underlying data-generating process being discrete
or due to data deficiencies in the finite sample of a continuous distribution. If it is the former, then
our FOC approach would be invalid. To ensure that it is not the case, we examined the data further.
First, we found that there 372 unique prices between 85 and 500, i.e., most integer prices are covered
and the data is far from sparse. Second, we found that the average distance between two adjacent
unique bids is only 1.398, i.e., observed bids are mostly close by and hence likely to have come from
a continuous distribution.

In principle, we have a choice of either adopting a continuous or discrete choice model here (both
would be approximations). We chose the continuous set-up for two reasons. First, with 372 unique
price observations, a continuous choice model seemed more appropriate (and feasible) compared
to a discrete choice model. Second, from a conceptual standpoint, it is reasonable to assume cost
distributions to be continuous.

With the assumption of a continuous distribution, we still have the problem of empty regions in
the data. This could be either due to data deficiencies in finite samples or because these regions
are off-equilibrium. We handled these gaps by smoothing both P (·) andG(·). We now clarify the
need and the impact of this smoothing. Smoothing over off-equilibrium paths is both necessary and
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common in two-step estimators (Bajari et al., 2007). In our model, we don’t needG(·)s to be smooth,
since they only represent sellers’ equilibrium beliefs on the distributions of other bids in the market.
We use kernel smoothing for bids simply because from a conceptual standpoint, we believe that
cost distributions should have full support. However, we do need mild smoothness requirements
for the probability of winning P (·) in order to calculate the derivative of P (·) at optimal observed
bids (Assumption 2). To do that, we need estimates of agents’ beliefs on winning probabilities in
off-equilibrium paths arbitrarily close to the equilibrium path. For example, if we only see $10 and
$20 bids in data, we not only need estimates ofP (·) at 10 and 20, but also at points very close to 10 and
20 to obtain the derivative of P (·) at these values. Note that this smoothness requirement is weaker
than that needed in two-step estimators for discrete choice models, where researchers need to smooth
over all off-equilibrium paths. In terms of estimation, we tried to make P (·) as flexible as possible.3

E Endogenous Buyer Entry
We now present a model of buyer entry. In order to do so, we need to take a stance on buyers’ choices.
Specifically, we need to treat the estimates from the nested logit model of buyers’ decision (Table
A5) as structural parameters that define the utility of profit-maximizing buyers.

Before entering the auction, the buyer has uncertainty on both the number of bids he will get and
their attributes. We have already modeled and retrieved the equilibrium distribution of bid attributes,
G(Xji,bji|Oi,qi,vi). So we now model buyers’ expectations on the number of bids they expect to
receive after entry.

E.1 Bid Arrival Model

A Poisson model is appealing for two reasons. First, it models count data. Second, a key feature of
data generated by Poisson arrivals is the equality of mean and variance, an empirical regularity shared
by our data (see Table 4). The expected conditional probability of observing qi bids as a function of
auction specific observables is:

H(qi|Oi,ri,θp)=
K∑
k=1

πk
eηik ·(ηik)qi

qi!
(15)

where ηik =exp({Oi,I(vi=vk),ri}′ ·θp), and θp is a parameter vector to be estimated. In the above
equation, the unobserved type vi is integrated out since it is not known to us.

For estimation, we include this bid arrival model within the EM-like loop, and recover both non-
parametric estimates of bids and the parameters of the Poisson model as functions of the unobservable
vi, along with population distribution of types. These first step estimates are then used to recover the
cost distributions.
3Of course, data sparseness is a non-issue if we take a parametric stance on buyers’ decision since the derivative of P (·)
would then be available from the parametric model.
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E.2 Buyers’ Decision to Post the Auction

Using the estimates from above, we now specify a buyer entry model. A buyer i chooses to post an
auction/enter the market if his expected utility from doing so is greater than that from not entering. If
we normalize the utility of not posting an auction to zero (similar to that from canceling), and assume
that buyers’ costs of making the actual post is negligible, we can write out i’s entry decision as:

EU i+εenteri0 >εno−enteri0 (16)

where the first term is the expected value of entering the auction (and making optimal decisions
henceforth) and right hand side is the utility from not entering. The two error terms, εenteri0 ,εno−enteri0

are assumed to be i.i.d extreme value. The expected utility from entry can be expanded as:

EU i=
∫
qi

∫
(Xji,bji)|

qi
j=1

[
Ui ·G

(
(Xji,bji)|qij=1|Oi,ri,qi,vi

)
·H(qi|Oi,ri,vi,θp)

]
d
(
Xji,bji)|qij=1|Oi,ri,qi,vi)

)
dqi

(17)

whereUi is the expected utility from posting the auction and receiving qi bids with attributes {Xji,bji}
for j∈{1,qi}. Ui is given by:

Ui=1+exp
[
W(Oi,θw)+σI((Xji,bji)|qij=1,θv,σ)

]
(18)

whereW(Oi,θw), V(Xji,bji,θv), and I((Xji,bji)|qij=1 ,θv,σ) were defined in §C.5. W(Oi,θw) is a
function of observable buyer/auction level variables and parameter vector θw that affects nest choice.
V(Xji,bji,θv) is a function of seller j’s attributes and bid price and parameter vector θv that dictates

the choice of bid within the bid nest. Finally, I(Xji,bji,X−ji,b−ji,θv,σ)= ln
[
qi∑
k=1

exp
(
V(Xki,bki,θv)

σ

)]
is the inclusive value of the bid nest.

Since the buyer doesn’t know how many bids or what kinds of bids he will get before entering
the auction, we need to integrate Ui over his beliefs on the number of bids he expects as well as their
attributes. Thus, the inside integral in Equation (17) is the integral over bid attributes for all the
bids for a given draw of number of bids (or qi) and the outside integral is the summation over the
distribution of the number of bids, qi, where G(·) is the distribution of bid attributes andH(·) is the
distribution of number of bids.

In our estimation, we obtain numerical estimates of EU i for each buyer simulating from the esti-
mated equilibrium distribution of bids derived in the paper and the Poisson bid arrival model shown
in §E.1. Once we have EU i, we can obtain the entry probability of buyer i as:

P (enter|Oi,ri,vi)=
eEU i

1+eEU i
(19)

E.3 Results of Poisson Model and Entry Probabilities

We find that buyers with longer tenure on the site, and those who have posted many successful auctions
and canceled few auctions, are likely to get more bids. (Please see Table A6 in the Web Appendix for
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the parameter estimates of the Poisson model.) We also find that buyers from the Indian sub-continent
and Eastern Europe attract more bids, followed by those from developed countries. Finally, High
and Medium type auctions attract fewer bids than Low type auctions, possibly because the supply
of sellers who can perform low type jobs is larger.

In Figure A2, we present box plots of entry probabilities of buyers for the three auction types.
There are two points of note here. First, entry probability is decreasing with unobserved auction
difficulty/type. The average entry probability for a Low type auction is 0.635, whereas it is 0.532
for a High type auction. This difference (≈19%) reiterates the importance of accounting for auction
specific unobservables. The discrepancy in entry probabilities stems from the difference in the
number of bids received and the equilibrium distribution of bid prices across auction types – Low
type auctions get many more bids and significantly cheaper ones, increasing the expected value of
entry for buyers. Second, after accounting for the entry model, the a priori (before entry) population
distribution of the Low, Medium, and High type jobs/auctions is found to be: 16.78%, 45.92%, and
37.29%, respectively. While these post-hoc findings have no impact on the estimates of seller costs,
they can have significant implications for counterfactuals; see §6.7 for details.

F Step-by-Step Procedure for Counterfactual Simulations

F.1 Step 1: Solving for sellers’ bidding strategy

First, we solve for sellers’ bidding strategy given a set of auction attributes and number of bids,
{Ai,vi}. Since unobserved auction heterogeneity vi is known during counterfactuals, we essentially
have the problem of obtaining optimal bids given a set of state variables. Recall that the FOC of
seller’s optimization is:

bji = β(Ai,Xji,cji,G(·),P(·))=β(Oi,qi,ri,vi,Xji,cji,G(·),P(·))

=
cji

1−ri
−
(
∂Sji(Xji,bji|Oi,ri,qi,vi)

∂bji

)−1

Sji(Xji,bji|Oi,ri,qi,vi) (20)

Throughout this section, we use the expanded nomenclature Ai = {Oi,qi,ri} to be explicit about
the primitives that are modified in counterfactuals. To derive a seller’s equilibrium bid under a
counterfactual scenario, we need information on both the equilibrium distribution of bids, G(·), and
the buyers’ decision, P(·). With a structural interpretation of buyers’ decisions, we can treat the
estimates from the Nested logit model from §C.5 as primitives of buyer utilities. Since primitives of
utility are unlikely to change under counterfactual scenarios, we can continue using them. However,
equilibrium distribution of bids will change, and we need to estimate the new Gnew(·).

To obtain the new equilibrium distribution of bids and seller attributes, Gnew(X−ji,b−ji|Oi,qi,ri,vi),
we start by assuming a distribution, G1(X−ji,b−ji|Oi,qi,ri,vi), in the first iteration. Then, for each
seller j, in each auction i, we solve for the optimal bid b1

ji in iteration 1 based on the current estimate
of seller attributes and bids, G1(X−ji,b−ji|Oi,qi,ri,vi), using Equation (20). Note that solving for the
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optimal bid is not straightforward because the FOC is an implicit function of bji. Thus, for each seller
j in each auction i, we not only need to use a root-finding algorithm such as Newton-Raphson4 to
obtain the new b1

ji, but we also need to numerically simulate the expected probabilities of winning and
its derivatives at each step of the root finding algorithm. Next, with the new estimates of b1

jis andXjis,
we update our estimate of the distribution of seller attributes and bids to G2(X−ji,b−ji|Oi,qi,ri,vi).
These in turn are used to generate the new estimates of bids, b2

jis. This process continues till the joint
distributions of equilibrium bids and seller attributes converge.

This process is computationally intensive, because in order to reach the overall fixed-point of the
system, we need to calculate the fixed-point of each agent using a root-finding algorithm at each
iteration, which in turn requires numerical simulations at each of its iterations.5 Since we need to derive
the equilibrium bids for all auction-seller combinations observed in the data, this can take some time.

F.2 Step 2: Solve for buyers’ entry decisions

Once we have estimates of optimal bids for each auction-seller combination, we solve for buyers’
entry decisions. For each combination of auction attributes, {Oi,ri,vi}, simulate entry probability
as follows:

• Step (a): Simulate a draw of number of bids, qnewi , from the estimated Poisson bid arrival
model. Next, simulate the seller-bid attributes for the qnewi bids using the bid distribution
Gnew(X−ji,b−ji|Oi,q

new
i ,ri,vi) estimated in Step 1. Then using the Nested Logit estimates, derive

the Inclusive value from entry, Unewi , as specified in §E.2. This constitutes one realization of the
auction.

• Step (b): Perform Step (a) a large number of times and average to derive the new expected
Inclusive value EUnewi for the given combination of auction attributes.

• Step (c): Derive the new entry probability P new(enter|Oi,ri,vi) using Equation (19).

Using these steps, derive the entry probability for each auction type.

F.3 Step 3: Combine buyer and seller decisions to obtain new system-level equilibrium

Start with the pre-entry population distribution of auction types {Oi,ri,vi}. Draw a large number of
auctions from this distribution. For each draw, simulate: (a) buyer’s entry decision using estimates
from Step 2, (b) number of bid arrivals using estimates of Poisson bid arrival model (Table A6), (c)
seller-bid attributes using the bid distributions estimated in Step 1, and (d) buyer’s choice decision

4Since there exists a unique best-response for a givenG(·) and P(·), any root-finding algorithm will reach the unique
optimal bid.

5It is possible to ease the computational burden by avoiding root-finding algorithms in the initial iterations. For example,
the researcher may simply substitute the previous estimate of the bid in the right hand side of the FOC and obtain the
new estimate of the bid. This requires only one set of numerical simulations of probabilities of winning and its derivative
per iteration, as opposed to repeated simulations at each step of the root-finding algorithm. We found that employing
this method for the first few steps and then switching to the full solution speeds up the convergence considerably without
compromising convergence.
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using estimates from the Nested logit model (Table A5). Keep track of the outcomes to calculate the
new clearance rates and site revenues.

G Code and Monte-Carlo
We provide code for estimating costs in beauty contest auctions. Synthetic data for a set of beauty
contest auctions with reputation and price as seller attributes with three unobserved types of auctions
are generated for a set of parameter values. The code necessary to retrieve the cost distributions for
this dataset are posted on the authors’ website. The code comes with a detailed ReadMe file.

To demonstrate the performance of the estimator we employ a bootstrap procedure with 100
samples. Figure A3 shows the three true distribution of costs and Figure A4 shows the retrieved
distribution of costs, and the standard errors.

H Additional Tables and Figures

Explanatory variables (X l
ji) Coefficient Std. error

Buyer region = 1 −4.585×10−1 6.472×10−1

Buyer region = 2 −3.480×10−1 2.889×10−1

Buyer region = 3 −6.335×10−1 7.785×10−1

Number of bids −8.369×10−2 1.072×10−2

Square of number of bids 6.262×10−4 1.255×10−4

Indicator for auction attachment −6.495×10−1 2.279×10−1

Buyer’s success ratio 3.485 4.861×10−1

ln(Number of past auctions canceled by buyer) −4.027×10−1 1.983×10−1

ln(Number of past auctions posted by buyer) 1.132 2.105×10−1

ln(Buyer tenure in days + 1) −2.543×10−1 6.099×10−2

Indicator for zero buyer ratings −8.531 4.050
ln(No. of buyer ratings + 1) −1.634×10−1 1.449×10−1

Buyer mean rating (centered) −8.833×10−1 4.082×10−1

ln(No. of buyer ratings + 1)×Buyer mean rating (centered) 9.916×10−1 3.045×10−1

ln(No. of seller ratings + 1) 5.664×10−1 5.742×10−2

Seller mean rating (centered) 5.581×10−1 1.365×10−1

Square of seller mean rating (centered) 4.161×10−2 1.782×10−2

Seller mean rating (centered)×Buyer mean rating (centered) 3.320×10−2 7.916×10−3

Seller region = 1 −7.604×10−1 2.301×10−1

Seller region = 2 5.399×10−1 2.129×10−1

Seller region = 3 −5.493×10−1 2.649×10−1

Constant −7.506 6.015×10−1

No. of observations = 44274; Log likelihood =−868.526

Table A3: Estimates of Logit model of indicator for buyer-seller past interactions.
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Explanatory variables (Xn
ji)

Coefficients varying within the bids nest(θv)
Model N1 Model N2

Coefficient Std. error Coefficient Std. error
price −6.007×10−3 4.608×10−4 −6.246×10−3 4.791×10−4

price×Buyer’s success ratio 2.532×10−4 4.196×10−4 2.633×10−4 4.363×10−4

price× ln(Deadline days+1) 2.529×10−4 1.303×10−4 2.629×10−4 1.354×10−4

Indicator for zero seller ratings −3.560×10−1 8.132×10−2 −3.702×10−1 8.456×10−2

ln(Number of seller ratings + 1) 1.637×10−1 2.129×10−2 1.702×10−1 2.213×10−2

ln(Number of seller ratings + 1)× 2.065×10−1 1.962×10−2 2.147×10−1 2.040×10−2

Seller mean rating (centered)
Seller region = 1 −1.891×10−1 6.627×10−2 −1.966×10−1 6.891×10−2

Seller region = 2 2.556×10−1 1.179×10−1 2.657×10−1 1.226×10−1

Seller region = 3 3.093×10−1 6.662×10−2 3.216×10−1 6.927×10−2

Seller region = Buyer region 2.548×10−1 1.136×10−1 2.649×10−1 1.181×10−1

Indicator for no buyer-seller past interaction −1.242 1.510×10−1 −1.291 1.570×10−1

Coefficients common for bid nest (θw)
ln(Deadline days+1) 1.526×10−1 5.316×10−2 1.552×10−1 3.400×10−2

ln(No. of buyer ratings + 1) −4.726×10−1 1.101×10−1 −4.624×10−1 1.091×10−1

ln(No. of auctions uncanceled by buyer) 1.392 1.322×10−1 1.368 1.161×10−1

ln(No. of auctions canceled by buyer) −9.540×10−1 8.495×10−2 −9.496×10−1 7.669×10−2

Indicator that auction has attachment 1.048 1.124×10−1 1.058 1.126×10−1

Buyer region = 1 −1.930 5.135×10−1 −1.927 5.131×10−1

Buyer region = 2 4.286×10−1 1.853×10−1 4.157×10−1 1.855×10−1

Buyer region = 3 −2.733×10−1 3.863×10−1 −2.802×10−1 3.846×10−1

Indicator high type 1.567×10−1 1.554×10−1

Indicator medium type −4.067×10−1 1.275×10−1

Constant −5.327×10−1 2.788×10−1 −3.065×10−1 2.250×10−1

Nest correlation 3.710×10−1 2.343×10−2 3.858×10−1 2.200×10−2

No. of auctions, Log-likelihood 4002,−2323.155 4002,−2312.002

Table A5: Nested Logit Estimates of Buyers’ Equilibrium Allocation Rule.

Explanatory variables (ηi) Coefficient Std. error
ln(Sum of buyer ratings + 1) −3.418×10−2 2.084×10−2

Buyer region = 1 3.179×10−1 9.178×10−2

Buyer region = 2 1.300×10−1 6.112×10−2

Buyer region = 3 3.458×10−1 1.123×10−1

ln(Buyer tenure in days + 1) 1.769×10−2 9.403×10−3

ln(Number of past auctions canceled by buyer) −5.849×10−2 2.437×10−2

ln(Number of auctions uncanceled by buyer) 9.663×10−2 3.545×10−2

Indicator high type −2.099×10−1 7.118×10−2

Indicator medium type −2.612×10−1 7.890×10−2

Constant 2.430 8.783×10−2

No. of observations = 4002; Log likelihood =−27557.068

Table A6: Estimates of Poisson bid arrival model, θp.



Percentile Low Type Medium Type High Type
Model C1 Model C2 Model C1 Model C2 Model C1 Model C2

10% 30.77 32.46 144.33 143.73 354.74 363.70
20% 80.33 82.77 195.46 195.45 361.69 364.92
30% 112.46 118.69 255.40 256.54 363.80 365.35
40% 153.12 153.58 280.48 280.53 364.71 365.51
50% 195.55 195.45 322.49 322.76 365.14 365.58
60% 246.61 254.95 353.36 360.50 365.37 365.61
70% 280.65 285.76 364.71 364.88 365.50 365.63
80% 361.46 362.38 365.49 365.53 365.57 365.64
90% 365.62 365.55 365.62 365.63 365.62 365.65

Table A7: Cost distributions without and with uncertainty in number of bids.

0
.2

.4
.6

.8
1

De
nsi

ty

0 2 4 6 8 10
ln(Sum of seller ratings +1)

High Type Medium Type Low Type

Figure A1: CDF of ln(Sum of seller ratings + 1) for
the three auction types – Low, Medium, and High.
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Figure A2: Distribution of buyer entry probability
by unobserved auction type.
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Figure A3: True cost distributions used to generate
the synthetic data.
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Figure A4: Estimated cost distributions and
standard errors for the synthetic data.
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