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A Propensity Scores and Unconfoundedness Assumption
Our empirical strategy relies on randomization in the allocation of ads, which gives us the uncon-
foundedness assumption and allows us to perform targeting counterfactuals. As outlined in §4.2.2
in the main text of the paper, one diagnostic test for unconfoundedness assumption is to assess
covariate balance. For this, we first need to estimate propensity scores, and then examine whether
adjusting for these propensity scores achieves covariate balance. We do the former in §A.1 and the
latter in §A.2.

A.1 Estimation of Propensity Scores

We now propose our approach to estimate propensity scores. First, recall the allocation rule
presented in Equation (1) in the main text of the paper:

πia =
baqa∑
j∈Ai

bjqj

Our goal is to estimate πia for all top 37 ads in each impression i. In our filtering procedure, we
identify ads with zero propensity of being shown and filter them out of the competition. However,
our filtering procedure does not estimate the magnitude of the propensity score for ads with non-zero
propensity scores. We therefore discuss our procedure to estimate propensity scores below.

The outcome and covariates for our propensity score model are listed below:

∗Please address all correspondence to: rafieian@uw.edu, hemay@uw.edu.
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1. Outcome: The main outcome of interest is the ad shown. This is a categorical variable that
has 38 classes, i.e., ai ∈ A = {a(1), a(2), . . . , a(37), a(s)}, where a(1), a(2), . . . , a(37) refer to
the identities of the top 37 ads, and all the smaller ads are grouped into one category denoted
by a(s).

2. Covariates: The set of covariates that we control for are:

• Filtering indicators for each ad ei,a. This controls for whether the ad a is in Ai.
• All the targeting variables, including province, app category, hour of the day, smartphone

brand, connectivity type, and MSP.

• Exact location (latitude and longitude), to control for any geographical targeting beyond
province-level targeting.

• Minute-level time of the day, to control for any shocks or changes in the quality scores
and bids in the system. Note that we do not expect bids or quality scores to change within
the observation window. Nevertheless, this control simply ensures that there are no biases
even if they did due to system bugs etc.

We use a multi-class XGBoost model to regress our outcome of interest on the set of covariates. We
use multi-class logarithmic loss as the evaluation metric, which is defined as follows:

Lmlog loss(π̂, a) = − 1

N

N∑
i=1

∑
j∈A

1(ai = a(j)) log(π̂i,j), (A.1)

where the summation over j refers to all the outcome classes that we have. Using a softmax objective,
we can then estimate the propensity scores. Figure A.1 shows the distribution of propensity scores
for top eight ads, using box plots. As shown in this figure, the average propensity of winning for
each ad is below 0.25. Further, there is no disproportionately high propensity of winning: the
highest is slightly above 0.50. We also notice that Ad 5 has higher median propensity score than Ad
2, even though the total number of impressions is higher for Ad 2. This is because Ad 5 is targeting
more narrowly, and is not available for all the impressions.

A.2 Assessing Covariate Balance Using Inverse Probability Weighting

Now, we use our estimated propensity scores to assess covariate balance across different ads. We
begin by describing the balance for a simple case in which we have a fully randomized experiment
with one treatment and one control group in §A.2.1. We then extend the same notion to the case
where we want to assess balance using propensity scores across multiple treatment arms §A.2.2.
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Figure A.1: Distribution of propensity scores for top 8 ads

A.2.1 Covariate Balance in a Fully Randomized Experiment with a Binary Treatment

To assess the covariate balance in a fully randomized experiment with two treatment arms, we
simply need to show that the distribution of covariate Z is the same across treated and control
samples. As such, we rely on standardized bias, which is the absolute mean difference in covariate
Z across the treatment and control groups, divided by the standard deviation of the Z in the pooled
sample:

SB(Z) =
|Z̄treated − Z̄control|

σZ
, (A.2)

where Z̄treated and Z̄control are the mean value of covariate Z for the treated and control groups, and
σZ is the standard deviation of Z for the pooled sample.

Clearly, the lower the standardized bias is, we have greater balance in covariate Z across
treatment and control groups. In practice, different cutoffs are considered acceptable by the
researchers. A common cutoff is 0.20 – that is, a standardized bias greater than 0.20 is taken as
evidence for imbalance (McCaffrey et al., 2013). In this paper, we follow this norm and set our
cutoff to be 0.20.
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A.2.2 Covariate Balance Using Inverse Propensity Weights for Multiple Treatments

Our empirical setting is more complicated than a fully randomized experiment with a binary
treatment because of two reasons: (1) ad assignment is not fully exogenous, but a function of
observed covariates, so covariate balance may not be satisfied for the unweighted distribution of
covariates, and (2) unlike a binary treatment, we have multiple treatment arms (ads), so the balance
is not simply the difference between two groups. To address the first issue, we need to use our
estimated propensity scores to weight our original sample such that an observation with a lower
propensity score gets a larger weight to represent what the sample would have been if the platform
had run a fully randomized experiment. For the second issue, we follow the approach in McCaffrey
et al. (2013) and compare the weighted mean of covariate Z when assigned to ad with the population
mean of that covariate and check for the balance by measuring the standardized bias. In principle, if
weights are accurate, the weighted mean of covariate Z when assigned to ad a must be the same
as the population mean. As such, we define the weight-adjusted standardized bias for covariate Z
when assigned to ad a as follows:

SBπ̂a(Z) =
|Z̄ π̂

a − Z̄|
σZ

, (A.3)

where superscript π̂ indicates the propensity score estimates used to weight the samples, and Z̄ π̂
a is

defined as follows:

Z̄ π̂
a =

∑N
i=1

1(ai=a)
π̂ia

Zi∑N
i=1

1(ai=a)
π̂ia

, (A.4)

where Zi is the value of covariate Z in impression i, the term 1(ai = a) indicates whether ad a is
actually shown in that impression, and the weights are simply the inverse propensity scores.

We can then calculate the weight-adjusted standardized bias measure for each ad a and define
the standardized bias for variable Z as follows:

SBπ̂(Z) = max
a

SBπ̂a(Z), (A.5)

where by construction, if SBπ̂(Z) satisfies the balance criteria, it means that each SBπ̂a(Z) satisfies
this criteria. To have a baseline of how imbalanced covariates were before adjusting for inverse
propensity weights, we define the unweighted measure of standardized bias for covariate Z when
assigned to ad a as follows:

SB(Z) = max
a

SBa(Z) = max
a

|Z̄a − Z̄|
σZ

, (A.6)
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Comparing SB(Z) (unweighted standardized bias) and SBπ̂(Z) (weight-adjusted standardized bias)
allows us to see how adjusting for inverse propensity scores helped balance covariates.

Now, we focus on all the targeting variables in our sample and calculate both unweighted and
weight-adjusted measures of standardized bias. Targeting variables are the main candidates that
could potentially fail the balance test because advertisers can target these variables. Since all these
variables are categorical, for each targeting variable (Z), we need to assess balance for the dummy
variable for each separate category within that targeting variable.

For a given targeting variable (e.g., province), let Z denote the set of dummy variables corre-
sponding to each sub-category within that targeting variable. We define the standardized bias as
the maximum standardized bias across all its sub-categories. As such, for both unweighted and
weight-adjusted methods, we have:

SBπ̂(Z) = max
Z∈Z

SBπ̂(Z) = max
Z∈Z

max
a

SBπ̂a(Z)

SB(Z) = max
Z∈Z

SB(Z) = max
Z∈Z

max
a

SBa(Z)

Figure A.2 shows both unweighted and weight-adjusted measures of standardized bias for all of our
targeting variables (on the filtered test data sample, which is used for the counterfactual analysis).
Notice that all six targeting variables are initially imbalanced in the actual data. In particular,
province, hour of the day, and MSP are the variables with the largest magnitude of imbalance.
However, after adjusting for inverse propensity scores, we find that all measures of standardized
bias are below the 0.2 cutoff. Thus, we have covariate balance.

What is striking about Figure A.2 is the very large measures of unweighted standardized bias for
some targeting variables. This is due to the presence of some ads with very low propensity scores
and sparse categories within certain targeting variables. For example, there are some provinces in
our data that constitute less than 1% of our observations. Likewise, there are some ads with less
than 1% share of observations. As a result, there are very few observations where these ads are
shown in these provinces. This may result in substantial imbalance in the original data.

Next, we focus only on ads that are shown at least in 1% of our sample and make the same
balance plot in Figure A.3. In this case, the measures of standardized bias are significantly lower
compared to Figure A.2, especially the unweighted measures. Interestingly, we find that four out
of six covariates are balanced in the unweighted sample: app category, connectivity type, MSP,
and smartphone brand. This is because these variables are not widely used for targeting and their
sub-categories have a sufficiently large number of observations. The only two variables that are
imbalanced in the original sample are state and hour of the day, most likely because these are the
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Figure A.2: Weight-adjusted and unweighted measures of standardized bias for all targeting
variables (balance plot). The dotted red line shows the 0.2 cut-off.

variables are most used for targeting among advertisers. We also find that in both cases, hour of
the day has the highest standardized bias (even though we achieve balance at the 0.2 cutoff in
both cases). This may also be due to the unavailability of some ads because of reasons other than
targeting such as budget exhaustion.

In sum, the above analysis presents strong empirical evidence for covariate balance in our data
after adjusting for propensity scores. This suggests the unconfoundedness assumption is valid in
our setting.
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Figure A.3: Weight-adjusted and unweighted measures of standardized bias for all targeting
variables, when we only consider ads with over 1% share of total number of observations in the
filtered sample in test data (balance plot). The dotted red line shows the 0.2 cut-off.

B Feature Generation Framework
We need a set of informative features that can help accurately predict the probability of click for a
given impression. Given our research agenda, our features should be able to capture the contextual
and behavioral information associated with an impression over different lengths of history preceding
the impression (long-term, short-term, and session-level). Therefore, we adopt the main ideas from
the functional feature generation framework proposed by Yoganarasimhan (2020). In §B.1, we
describe the inputs to the feature functions, in §B.2, we describe the functions, and finally in §B.3,
we present the full table of features and their classification.

B.1 Inputs for Feature Functions

Each impression i in our training, validation, and test data can be uniquely characterized by the
following four variables:

• the ad ai which was shown in the impression, where ai ∈ A = {a(1), a(2), . . . , a(37), a(s)}. The
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elements a(1), a(2), . . . , a(37) refer to the identities of the top 37 ads, whereas all the smaller ads
are grouped into one category, which is denoted by as a(s). A denotes the set of all ads.

• the app pi within which it occurred, where pi ∈ P = {p(1), p(2), . . . , p(50), p(s)}. p(1) through
p(50) refer to the top 50 apps, and p(s) refers to the category of all smaller apps (which we do not
track individually).

• the hour of the day during which the impression occurred (denoted by ti). ti can take 24 possible
values ranging from 1 through 24 and the set of these values is: T = {1, 2, . . . , 24}.
• the user ui who generated the impression, where ui ∈ U = {u(1), . . . , u(728,340)}. U is thus the

full sample of users in the training, validation, and test data.

We also have an indicator for whether the impression was clicked or not (denoted by yi). In addition,
we have a history of impressions and clicks observed in the system prior to this impression.

To generate a set of features for a given impression i, we use feature functions that take some
inputs at the impression level and output a corresponding feature for that impression. Our feature
functions are typically of the form F (θia, θip, θit, θiu; ηib, ηie) (though some functions may have
fewer inputs). We now define each of these inputs:

1. Ad related information: The first input θia captures the ad related information for impression
i. It can take two possible values: θia ∈ Θia = {{ai}, A}. If θia = {ai}, then the feature is
specific to the ad shown in the impression. Instead, if θia = A, then it means that the feature
is not ad-specific and is aggregated over all possible ads.

2. Contextual information: The second and third inputs θip and θit capture the context (where
and when) for impression i.

(a) θip ∈ Θip = {{pi}, P} can take two possible values. If θip = {pi}, then the feature is
specific to the app where the impression was shown. Instead, if θip = P , the feature is
aggregated over all apps.

(b) θit ∈ Θit = {{ti}, T} characterizes the time-related information for impression i. If
θit = {ti}, then the feature is specific to the hour during which the impression occurred.
Instead, if θit = T , the feature is aggregated over all hours of the day.

3. Behavioral information: The fourth input, θiu ∈ Θiu = {{ui}, U}, captures the behavioral
information for impression i. If θiu = {ui}, the feature is specific to user ui who generated
the impression. Instead, if θiu = U , the feature is aggregated over all users.

4. History: The last two inputs, ηib and ηie, capture the history over which the function is
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aggregated. ηib denotes the beginning or starting point of the history and ηie denotes the
end-point of the history.

(a) ηib ∈ Hib = {l, s, oi} can take three possible values which we discuss below:

• ηib = l denotes long-term history, i.e., the starting point of the history is September
30, 2015, the date from which data are available.

• ηib = s denotes short-term history, i.e., only data on or after October 25, 2015, are
considered.

• ηib = oi denotes ongoing session-level history, i.e., the history starts from the
beginning of the session within which the impression occurs.1 This history is the
most accessible in the user’s short-term memory. Note that by definition, ηib = oi

implies that the function is calculated at the user level.

(b) ηie ∈ Hie = {g, ri} can take two possible values which we define them as follows:

• ηie = g implies that the feature is calculated over the global data, i.e., data after
October 27, 2015, are not considered. These features are calculated without using
any impression from the training, validation and test data-sets.

• ηie = ri refers to real-time aggregation, i.e., the feature is calculated over all the
information up till the focal impression i.

In Figure A.4, we present a picture with five example users to illustrate different types of
history.

B.2 Feature Functions

We now use the nomenclature described above to define the following functions.

1. Impressions(θia, θip, θit, θiu; ηib, ηie): This function counts the number of impressions with
the characteristics given as inputs over the specified history.

Impressions(θia, θip, θit, θiu; ηib, ηie) =
∑

j∈[ηib,ηie]

1(aj ∈ θia)1(pj ∈ θip)1(tj ∈ θit)1(uj ∈ θiu),

(A.7)
where j denotes an impression whose time-stamp lies between the starting point of the history
ηib and end point of the history ηie.

1A session ends when there is a five-minute interruption in a user’s exposure to the ads. So if the time difference
between two consecutive impressions shown to a user-app combination is more than five minutes, we assume that the
two impressions belong to different sessions.
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Figure A.4: Depiction of history for five example users.The N refers to the focal impression i
for which the features are being generated. + denotes the last impression just before the focal
impression, and × refers to the first impression in the session in which the focal impression occurs.

For example, Impressions({ai}, {pi}, {ti}, {ui}; l, ri) returns the number of times ad ai is
shown to user ui while using app ai at the hour of day ti in the time period starting September
30, 2015, and ending with the last impression before i. Instead, if we are interested in the
number of times that user ui has seen ad ai over all apps and all hours of the days from
October 25, 2015, (ηib = s) till the end of the global data (ηie = g), then we would have:

Impressions({ai}, P, T, {ui}; s, g) =
∑
j∈[s,g]

1(aj ∈ {ai})1(pj ∈ P )1(tj ∈ T )1(uj ∈ {ui})

=
∑
j∈[s,g]

1(aj ∈ {ai})1(uj ∈ {ui})

Intuitively, the Impressions function captures the effects of repeated ad exposure on user
behavior, and ad exposure has been shown to yield higher ad effectiveness in the recent
literature (Sahni, 2015; Johnson et al., 2016). In some cases, it may also capture some
unobserved ad-specific effects, e.g., an advertiser may not have enough impressions simply
because he does not have a large budget.
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2. Clicks(θia, θip, θit, θiu; ηib, ηie): This function counts the number of clicks with the character-
istics given as inputs over the history specified. It is similar to the Impressions function, but
the difference is that Clicks only counts the impressions that led to a click.

Clicks(θia, θip, θit, θiu; ηib, ηie) =
∑

j∈[ηib,ηie]

1(aj ∈ θia)1(pj ∈ θip)1(tj ∈ θit)1(uj ∈ θiu)1(yj = 1)

(A.8)
Clicks is a good indicator of both ad and app performance. Moreover, at the user-level, the
number of clicks captures an individual user’s propensity to click, as well as her propensity to
click within a specific ad and/or app. Thus, this is a very informative metric.

3. CTR(θia, θip, θit, θiu; ηib, ηie): This function calculates the click-through rate (CTR) for a
given set of inputs and history, i.e., the ratio of clicks to impressions. If
Impressions(θia, θip, θit, θiu; ηib, ηie) > 0, then:

CTR(θia, θip, θit, θiu; ηib, ηie) =
Clicks(θia, θip, θit, θiu; ηib, ηie)

Impressions(θia, θip, θit, θiu; ηib, ηie)
, (A.9)

else if Impressions(θia, θip, θit, θiu; ηib, ηie) = 0, CTR(θia, θip, θit, θiu; ηib, ηie) = 0. The CTR

function is a combination of Impressions and Clicks. It captures the click-propensity at the
user, ad, app, and time-levels as well their interactions.2

4. AdCount(θip, θiu; ηib, ηie): This function returns the number of distinct ads shown for a given
set of inputs.

AdCount(θip, θiu; ηib, ηie) =
∑
a∈AF

1(Impressions({a}, θip, T, θiu; ηib, ηie) > 0), (A.10)

We use the full set of ads seen in our data (denoted by AF ) and not just the top 37 ads in this
function.3 This ensures that we are capturing the full extent of variety in ads seen by users.
Features derived using this function capture the variety in ads for a given set of inputs. In a
recent paper, Rafieian and Yoganarasimhan (2020) show that higher variety of previous ads
increases the CTR on the next ad.

2In principle, we do not need to CTR over and above Clicks and Impressions if our learning model can automatically
generate new features based on non-linear combinations of basic features. Machine learning models like Boosted
Trees do this naturally and it is one of their big advantages. However, other methods like OLS and Logistic regressions
cannot do automatic feature combination and selection. So we include this feature to help improve the performance of
these simpler models. This ensures that we are not handicapping them too much in our model comparisons.

3We observe 263 unique ads in our data. Thus, the range of AdCount in our data goes from 0 to 263.
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An example of a feature based on this function is AdCount({pi}, U ; l, ri), which counts the
number of unique ads that were shown in app pi across all users in the time period starting
September 30 2015 and ending with the last impression before i.

5. Entropy(θip, θiu; ηib, ηie): This function captures the entropy or dispersion in the ads seen by
a user. We use Simpson (1949)’s measure of diversity as our entropy metric.

Entropy(θip, θiu; ηib, ηie) =
1∑

a∈AF Impressions({a}, θip, T, θiu; ηib, ηie)2
(A.11)

Entropy contains information over and above just the count of the number of unique ads
seen in the past since it captures the extent to which ads were dispersed across impressions.
Consider two users who have both seen five impressions in the past, but with the following
difference – (a) the first user has seen five distinct ads, or (b) the second has seen same ad
five times. Naturally, the dispersion of ads is higher in case (a) than in case (b). The Entropy

function reflects this dispersion – in case (a) the entropy is 1
12+12+12+12+12

= 0.2, whereas in
case (b) it is 1

52
= 0.04. Thus, entropy is higher when ads are more dispersed.

The literature on eye-tracking has shown that individuals’ attention during advertisements
reduces as ad-repetition increases (Pieters et al., 1999). We therefore expect the dispersion
of previous ads to influence a user’s attention span in our setting. Since attention is a
prerequisite to clicking, we expect entropy-based measures to have explanatory power in our
click prediction model.

6. AppCount(θia, θiu; ηib, ηie): This function calculates the number of distinct apps in which a
given ad is shown to a specific user. Similar to AdCount, it can be defined as follows:

AppCount(θia, θiu; ηib, ηie) =
∑
p∈P

1(Impressions(θia, {p}, T, θiu; ηib, ηie) > 0), (A.12)

where P is the set of apps, as defined in §B.1.4 Previous studies have documented the spillover
effects in multichannel online advertising (Li and Kannan, 2014). We therefore expect click
probabilities to vary if a user saw an ad in just one app vs. saw it in many apps. We also expect
the click behavior of users to vary based on the number of apps they use. AppCount-based
features help us capture these differences.

4P has 51 elements, the top 1–50 apps and the 51st element being the group of all smaller apps. In principle, we could
use all the apps observed in the data and not just the Top 50 apps (like we did in the case of AdCount). However, we
found that doing so does not really improve model performance. So we stick with this simpler definition.

xii



7. TimeVariability(θiu; ηib, ηie): This function measures the variance in a user’s CTR over
different hours of the day. We can define this function as follows:

TimeVariability(θiu; ηib, ηie) = Vart[CTR(A,P, {t}, θiu; ηib, ηie)] (A.13)

Features based on this function capture variations in the temporal patterns in a user’s clicking
behavior, and we expect this information to help predict clicks.

8. AppVariability(θiu; ηib, ηie): This function measures the variance in a user’s CTR across
different apps and is analogous to TimeVariability. This function is defined as follows:

AppVariability(θiu; ηib, ηie) = Varp[CTR(A, {p}, T, θiu; ηib, ηie)] (A.14)

Note that both TimeVariability and AppVariability are defined at the user level.

We use the functions defined above to generate 98 features for each impression. In addition, we
include a few standalone features such as a dummy for each of the top ads, the mobile and Internet
service providers, latitude, longitude, and connectivity type as described below:

9. Bid(ai): The bid submitted for ad ai shown in impression i.

10. Latitude(ui): The latitude of user ui when impression i occurs.

11. Longitude(ui): The longitude of user ui when impression i occurs.

12. WiFi(ui): Denotes whether the user is connected via Wi-Fi or mobile data plan during
impression i. It can take two possible values, {0, 1}.

13. Brand(ui): Denotes the brand of the smartphone that user ui is using. We observe eight
smartphone brands in our data and therefore capture each brand using a dummy variable. So
the range for this function is {0, 1}8.

14. MSP (ui): Denotes the Mobile Service Provider used by user ui during impression i. We
observe four MSPs in our data. So the range for this function is {0, 1}4.

15. ISP (ui): Denotes the Internet service providers (ISP) of user ui. We observe nine unique
ISPs in our data. So the range of this function is {0, 1}9.

16. AdDummy(ai): Generates dummy variables for each of the top ads in the data. Although
we expect our main features to capture many of the ad-fixed effects, we include ad dummies
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to capture any residual ad-fixed effects, e.g., banner design. The range of this function is
{0, 1}38, since there are 37 top ads and a 38th category comprising all the smaller ads.

B.3 Table of Features

In Table A1, we now present our full list of 160 features derived from the feature-functions
described above as well as their classification as behavioral, contextual, and/or ad-specific based on
the categorization scheme described in §4.3.3 in the main text of the paper.

Table A1: List of Features for impression i.

No. Feature Name
Feature Classification Contextual Features

Behavioral Contextual Ad-specific App-specific Time-specific

1 Impressions (A,P, T, ui; l, ri) X

2 Impressions (ai, P, T, U ; l, g) X

3 Impressions (A, pi, T, U ; l, g) X X

4 Impressions (A,P, ti, U ; l, g) X X

5 Impressions (ai, P, T, ui; l, ri) X X

6 Impressions (A, pi, T, ui; l, ri) X X X

7 Impressions (A,P, ti, ui; l, ri) X X X

8 Impressions (ai, pi, T, U ; l, g) X X X

9 Impressions (ai, P, ti, U ; l, g) X X X

10 Impressions (A, pi, ti, U ; l, g) X X X

11 Impressions (ai, pi, T, ui; l, ri) X X X X

12 Impressions (ai, pi, ti, U ; l, g) X X X X

13 Impressions (A,P, T, ui; s, ri) X

14 Impressions (ai, P, T, U ; s, g) X

15 Impressions (A, pi, T, U ; s, g) X X

16 Impressions (A,P, ti, U ; s, g) X X

17 Impressions (ai, P, T, ui; s, ri) X X

18 Impressions (A, pi, T, ui; s, ri) X X X

19 Impressions (A,P, ti, ui; s, ri) X X X

20 Impressions (ai, pi, T, U ; s, g) X X X

21 Impressions (ai, P, ti, U ; s, g) X X X

22 Impressions (A, pi, ti, U ; s, g) X X X

23 Impressions (ai, pi, T, ui; s, ri) X X X X

24 Impressions (ai, pi, ti, U ; s, g) X X X X

25 Impressions (A,P, T, ui; oi, ri) X

26 Impressions (ai, P, T, ui; oi, ri) X X

27 Clicks (A,P, T, ui; l, ri) X

Continued on next page
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Table A1 – continued from previous page

No. Feature Name
Feature Classification Contextual Features

Behavioral Contextual Ad-specific App-specific Time-specific

28 Clicks (ai, P, T, U ; l, g) X

29 Clicks (A, pi, T, U ; l, g) X X

30 Clicks (A,P, ti, U ; l, g) X X

31 Clicks (ai, P, T, ui; l, ri) X X

32 Clicks (A, pi, T, ui; l, ri) X X X

33 Clicks (A,P, ti, ui; l, ri) X X X

34 Clicks (ai, pi, T, U ; l, g) X X X

35 Clicks (ai, P, ti, U ; l, g) X X X

36 Clicks (A, pi, ti, U ; l, g) X X X

37 Clicks (ai, pi, T, ui; l, ri) X X X X

38 Clicks (ai, pi, ti, U ; l, g) X X X X

39 Clicks (A,P, T, ui; s, ri) X

40 Clicks (ai, P, T, U ; s, g) X

41 Clicks (A, pi, T, U ; s, g) X X

42 Clicks (A,P, ti, U ; s, g) X X

43 Clicks (ai, P, T, ui; s, ri) X X

44 Clicks (A, pi, T, ui; s, ri) X X X

45 Clicks (A,P, ti, ui; s, ri) X X X

46 Clicks (ai, pi, T, U ; s, g) X X X

47 Clicks (ai, P, ti, U ; s, g) X X X

48 Clicks (A, pi, ti, U ; s, g) X X X

49 Clicks (ai, pi, T, ui; s, ri) X X X X

50 Clicks (ai, pi, ti, U ; s, g) X X X X

51 CTR (A,P, T, ui; l, ri) X

52 CTR (ai, P, T, U ; l, g) X

53 CTR (A, pi, T, U ; l, g) X X

54 CTR (A,P, ti, U ; l, g) X X

55 CTR (ai, P, T, ui; l, ri) X X

56 CTR (A, pi, T, ui; l, ri) X X X

57 CTR (A,P, ti, ui; l, ri) X X X

58 CTR (ai, pi, T, U ; l, g) X X X

59 CTR (ai, P, ti, U ; l, g) X X X

60 CTR (A, pi, ti, U ; l, g) X X X

61 CTR (ai, pi, T, ui; l, ri) X X X X

62 CTR (ai, pi, ti, U ; l, g) X X X X

63 CTR (A,P, T, ui; s, ri) X

64 CTR (ai, P, T, U ; s, g) X

Continued on next page
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Table A1 – continued from previous page

No. Feature Name
Feature Classification Contextual Features

Behavioral Contextual Ad-specific App-specific Time-specific

65 CTR (A, pi, T, U ; s, g) X X

66 CTR (A,P, ti, U ; s, g) X X

67 CTR (ai, P, T, ui; s, ri) X X

68 CTR (A, pi, T, ui; s, ri) X X X

69 CTR (A,P, ti, ui; s, ri) X X X

70 CTR (ai, pi, T, U ; s, g) X X X

71 CTR (ai, P, ti, U ; s, g) X X X

72 CTR (A, pi, ti, U ; s, g) X X X

73 CTR (ai, pi, T, ui; s, ri) X X X X

74 CTR (ai, pi, ti, U ; s, g) X X X X

75 AdCount (A, ui; l, g) X X

76 AdCount (pi, U ; l, g) X X X

77 AdCount (pi, ui; l, g) X X X X

78 AdCount (A, ui; s, g) X X

79 AdCount (pi, U ; s, g) X X X

80 AdCount (pi, ui; s, g) X X X X

81 AdCount (A, ui; oi, ri) X X

82 AppCount (A, ui; l, g) X X X

83 AppCount (ai, U ; l, g) X X X

84 AppCount (ai, ui; l, g) X X X X

85 AppCount (A, ui; s, g) X X X

86 AppCount (ai, U ; s, g) X X X

87 AppCount (ai, ui; s, g) X X X X

88 Entropy (A, ui; l, g) X X

89 Entropy (pi, U ; l, g) X X X

90 Entropy (pi, ui; l, g) X X X X

91 Entropy (A, ui; s, g) X X

92 Entropy (pi, U ; s, g) X X X

93 Entropy (pi, ui; s, g) X X X X

94 Entropy (A, ui; oi, ri) X X

95 TimeVariability (ui; l, g) X X X

96 TimeVariability (ui; s, g) X X X

97 AppVariability (ui; l, g) X X X

98 AppVariability (ui; s, g) X X X

99 Latitude (ui) X

100 Longitude (ui) X

101 WiFi (ui) X

Continued on next page
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Table A1 – continued from previous page

No. Feature Name
Feature Classification Contextual Features

Behavioral Contextual Ad-specific App-specific Time-specific

102-109 Brand (ui) X

110-113 Operator (ui) X

114-122 ISP (ui) X

123-160 AdDummy (ai) X

C XGBoost: Overview and Implementation

C.1 Overview of XGBoost

We start by considering a generic tree ensemble method as follows: let yi and xi denote the click
indicator and the vector of features for impression i such that yi ∈ {0, 1} and xi ∈ Rk, where k is
the number of features. Then, a tree ensemble method is defined as follows:

ŷi = φ(xi) =
J∑
j=1

τj(xi) =
J∑
j=1

w
(j)
qj(xi), (A.15)

where qj : Rk → {1, 2, . . . , Lj} and w(j) ∈ RLj constitute the jth regression tree τj with Lj leaves.
Here qj maps an impression to the leaf index and w(j) represents the weight on leaves. Hence,
w

(j)
qj(xi) indicates the weight on the leaf that xi belongs to. The tree ensemble method uses J additive

functions to predict the output. In order to estimate the set of functions, Chen and Guestrin (2016)
minimize the following regularized objective:

L(φ) =
∑
i

l(ŷi, yi) + γ
∑
j

Lj +
1

2
λ
∑
j

∥∥w(j)
∥∥2 , (A.16)

where γ and λ are the regularization parameters to penalize the model complexity, and l is a
differentiable convex loss function (in our case, we use log loss as defined in §5.1.1 in the main text
of the paper). Here, in contrast to MART, XGBoost penalizes not just tree depth but leaf weights as
well.

Since the regularized objective in Equation (A.16) cannot be minimized using traditional
optimization methods in Euclidean space, we employ Newton boosting in function space to train
the model in an additive manner. Formally, if we define ŷ(j)i as the prediction of the ith impression
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at the jth iteration, we will add τj to minimize the following objective:

L(φ) =
∑
i

l
(
ŷ
(j−1)
i + τj(xi), yi

)
+ γLj +

1

2
λ
∥∥w(j)

∥∥2 (A.17)

In each iteration, we greedily add the tree that most improves our model according to the objective
function in Equation (A.16). Since the model uses a greedy algorithm to find the best split at each
iteration, it is impossible to search over all tree structures. Thus, we restrict the set of trees by
specifying the maximum depth of a tree. To optimize this objective function, Friedman et al. (2000)
propose a second-order approximation:

L(φ) '
∑
i

[
l(ŷ

(j−1)
i , yi) + Giτj(xi) +

1

2
Hiτ

2
j (xi)

]
+ γLj +

1

2
λ
∥∥w(j)

∥∥2 , (A.18)

where Gi = ∂
ŷ
(j−1)
i

l(ŷ
(j−1)
i , yi) and Hi = ∂2

ŷ
(j−1)
i

l(ŷ
(j−1)
i , yi) are first and second order gradient

statistics on the loss function. This approximation is used to derive the optimal tree at the step.
To implement this optimization routine, the researcher needs to provide a set of hyper-parameters.

These include the regularization parameters γ and λ defined in Equation (A.16). Further, XGBoost
uses two additional parameters to prevent over-fitting. The first is called shrinkage parameter (ν)
introduced by Friedman (2002), which functions like learning rate in stochastic optimization. The
second is the column sub-sampling parameter (χs), which is used to pick the fraction of features
supplied to a tree and ranges from 0 to 1. In addition, we also need to specify parameters that
structure the optimization problem and control the exit conditions for the algorithm. The first is
dmax, the maximum depth of trees. As mentioned earlier, this ensures that the model searches over
a finite set of trees. Second, we set the number of maximum number of iterations. Finally, the last
parameter defines the early stopping rule, κ ∈ Z+, which stops the algorithm if the loss does not
change in κ consecutive iterations. This parameter also helps prevent over-fitting.

Note all that these parameters cannot be inferred from the training data alone and should be
set based on a scientific validation procedure. In the next section of the Web Appendix, §C.2,
we provide a step by step explanation and the final values used for these hyper-parameters in our
analysis.

C.2 Validation

The goal of validation is to pick the optimal tuning parameters. They cannot be inferred from the
training data alone because they are hyper-parameters. The validation procedure uses two separate
data-sets – training and validation data (from October 28 and 29, as shown in Figure 1 in the main
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text of the paper) to pin down the hyper-parameters. It is worth noting that at this stage, the test data
is kept separate and is brought out only at the end after the model has been finalized to evaluate the
final model performance.

As discussed earlier in §C.1, XGBoost uses five hyper-parameters that need tuning. Let
W = {γ, λ, ν, dmax, χs} denote the set of hyper-parameters, where γ and λ are the regularization
parameters, ν is the shrinkage parameter or learning rate, dmax is maximum depth of trees, and χs is
the column sub-sampling parameter, which refers to the percentage of features randomly selected in
each round. For each of these parameters, we consider the following sets of values:

• γ ∈ {7, 9, 11}
• λ ∈ {0, 1, 2}
• ν ∈ {0.05, 0.1, 0.5, 1}
• dmax ∈ {5, 6, 7}
• χs ∈ {0.5, 0.75}

Overall, W contains 216 elements. We now describe the validation and testing procedure in
detail.

• Step 1: For each element of W , train the model on the first two-thirds of the training and
validation data and evaluate the model’s performance on the remaining one-third. This is the
typical hold-out procedure (Hastie et al., 2001). Boosted trees typically over-fit when they are
stopped at some point. So when training the model, we use the early stopping rule to avoid this
problem (Zhang et al., 2005).

• Step 2: Choose the set of hyper-parameters that gives the best model performance on the
validation set (as measured by RIG in our case). Denote this asW∗.
• Step 3: UsingW∗, train the final model on the full training and validation data, and here too we

use the early stopping rule.

• Step 4: Evaluate the final model’s performance on the test data.

Based on the above procedure, we derive the set of optimal hyper-parameters for our empirical
setting asW∗ = {γ = 9, λ = 1, ν = 0.1, dmax = 6, χs = 0.5}. Further, when training on the full
training and validation data (Step 3), we do not see any improvement in model fit after 276 steps, so
at this iteration number (following the early stopping rule).

Note that our validation procedure addresses two potential complications with our data and
problem setting. First, our data and features have a time component. Thus, if we are not careful in
how we split the validation and training data-sets, we can end up in situations where we use the
future to predict the past (e.g., train on data from period t and validate on data from t − 1). To
avoid this problem, the splits should be chosen based on time. Our validation procedure does this
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by using the first two-thirds of the validation+training data for training and the latter one-third for
validation. However, doing so gives rise to a second problem – by choosing the most recent data
for validation (instead of training), we forgo the information in the most recent impressions. In
CTR prediction, it is important not to waste the most recent impressions while fitting the model
because these impressions are more likely to be predictive of the future (McMahan et al., 2013).
To address this, in Step 3, after choosing the optimal hyper-parameters, we train a final model on
the full training and validation data. This model is then used as the final model for results and
counterfactuals.

D Evaluating Efficient Targeting Policy Using Importance Sampling
As discussed in §5.2 in the main text of the paper, the overlap between our data and the efficient
targeting policy provides a unique opportunity to use model-free approaches to evaluate the efficient
targeting policy. Intuitively, if we weight the overlapping sample such that it represents the full
sample, we can estimate the outcome of interest under the efficient targeting policy. In particular,
we use importance sampling whereby we weight the impressions in the overlapping area by the
inverse propensity score of those impressions. We can now define the average match value under
the efficient targeting as follows:

m̂τ∗

IS =
1

NF

NF∑
i=1

∑
a∈Ai

1(ai = a)1(τ ∗(i) = a)

π̂ia
yi,a, (A.19)

where yi,a is the click outcome for ad a in impression i, and the indicator functions both take value
one only if the efficient targeting policy coincides the actual data. As such, for non-zero elements in
the summation above, we actually observe the actual outcome of interest yi,a. Now, we can even
show that under unconfoundedness assumption, m̂τ∗

IS is a consistent estimator for the match value
under the efficient targeting policy, conditional on observed covariates. We can write:
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E
[
m̂τ∗

IS | X
]

= E

[
1

NF

NF∑
i=1

∑
a∈Ai

1(ai = a)1(τ ∗(i) = a)

π̂ia
yi,a | X

]

=
1

NF

NF∑
i=1

∑
a∈Ai

E

[
1(ai = a)1(τ ∗(i) = a)

π̂ia
yi,a | X

]

=
1

NF

NF∑
i=1

∑
a∈Ai

π̂ia1(τ ∗(i) = a)

π̂ia
E [yi,a | X]

=
1

NF

NF∑
i=1

∑
a∈Ai

1(τ ∗(i) = a)E [yi,a | X]

= E

[
1

NF

NF∑
i=1

∑
a∈Ai

1(τ ∗(i) = a)yi,a | X

]
,

(A.20)

where the last term is the true match value under the efficient targeting policy. In the first two lines
in Equation (A.20), we just use the linearity of the expectation function. In the third line, we use the
unconfoundedness assumption. In the last two lines, we again use the linearity of the expectation
function.

Now, we use the specification in Equation (A.20) to estimate the match value under the efficient
targeting policy. We find that the efficient targeting policy coincides with the ads shown in the
Filtered Sample in 67,152 impressions. We use inverse propensity weights to adjust for this fraction
of the sample and find that the efficient targeting policy improves the average CTR in the current
regime by 65.53%. This is very similar to our original finding using a direct method based on our
match value estimates.

E Appendix for Robustness Checks

E.1 Other Evaluation Metrics

We consider three alternative evaluation metrics.

• Area Under the Curve (AUC): It calculates the area under the ROC curve, which is a graphical
depiction of true positive rate (TPR) as a function of false positive rate (FPR). This metric is
often used in classification problems, but is less appropriate for prediction tasks such as ours
because of two reasons. First, it is insensitive to the transformation of the predicted probabilities
that preserve their rank. Thus, a poorly fitted model might have higher AUC than a well-fitted
model (Hosmer Jr et al., 2013). Second, it puts the same weight on false positive rate (FPR) and
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false negative rate (FNR). However, in CTR prediction, the penalty of FNR is usually higher
than FPR (Yi et al., 2013).

• 0/1 Loss: This is a simple metric used to evaluate correctness in classification tasks. It is simply
the percentage of incorrectly classified impressions. As with AUC, it is not very useful when
accuracy of the prediction matters since it is not good at evaluating the predictive accuracy of
rare events (e.g., clicks). For example, in our case, the loss is lower than 1% loss even if we
blindly predict that none of the impressions will lead to click.

• Mean Squared Error (MSE): This is one of the most widely used metrics for measuring the
goodness of fit. It is similar to LogLoss, which we use to calculate RIG. Both LogLoss and
SquareLoss are often used for probability estimation and boosting in the machine learning
literature. Let di be the Euclidean distance between the predicted value and actual outcome for
impression i. This can be interpreted as the misprediction for the corresponding impression.
SquareLoss and LogLoss for this impression will then be d2i and − log (1− di) respectively.
Since both functions are convex with respect to di, they penalize larger mispredictions more
than smaller ones. However, a big difference is that SquareLoss is finite, whereas LogLoss
is not. In fact, LogLoss evaluates di = 1 as infinitely bad. In our problem, this translates to
either predicting 1 for non-clicks or predicting 0 for clicks. Therefore, the model optimized by
LogLoss will not predict 0 or 1. Given that we do not know how users interact with the app
at the moment, it is quite unrealistic to predict 1 for an impression, especially because each
impression only lasts a short time. Thus, we choose LogLoss as our main metric, which is also
the most common choice in the literature on CTR prediction (Yi et al., 2013).

• Confusion Matrix: We also present the Confusion Matrix for our main models. Like AUC and
0/1 Loss, Confusion Matrix is mostly used in classification problems. However, this gives us an
intuitive metric to evaluate the performance of our model.

We now take the optimized models presented in §5 in the main text of the paper and evaluate their
performance on these alternative metrics. The results from this exercise are presented in Table A2.
Overall, all our substantive results remain the same when we use alternative evaluation metrics.

E.2 Other Learning Methods

We now compare the performance of XGBoost with other five other learning algorithms and present
the results in Table A3. Note that XGBoost outperforms all of them.

For each learning model, we describe the hyper-parameters associated with it and our approach
to optimizing these hyper-parameters. Note that in all the cases, we use the same high-level
validation procedure described in §C.2.
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Data Evaluation Metric Behavioral Contextual Full
Full Sample AUC 0.7910 0.7014 0.8230
Top Ads/Apps AUC 0.8082 0.7192 0.8410
Filtered Sample AUC 0.8073 0.7410 0.8410
Full Sample 0/1 Improvement (%) 0.63% 0.00% 4.74%
Top Ads/Apps 0/1 Improvement (%) 1.07% 0.00% 8.23%
Filtered Sample 0/1 Improvement (%) 1.34% 0.00% 8.47%
Full Sample MSE Improvement (%) 3.41% 0.55% 8.59%
Top Ads/Apps MSE Improvement (%) 4.86% 0.67% 13.33%
Filtered Sample MSE Improvement (%) 4.89% 0.67% 12.93%
Full Sample True Positives (#) 905 0 5934
Full Sample True Negatives (#) 9533282 9533605 9531972
Full Sample False Positives (#) 323 0 1633
Full Sample False Negatives (#) 91325 92230 86296
Top Ads/Apps True Positives (#) 757 0 5621
Top Ads/Apps True Negatives (#) 6057514 6057744 6056235
Top Ads/Apps False Positives (#) 230 0 1509
Top Ads/Apps False Negatives (#) 50010 50767 45146
Filtered Sample True Positives (#) 517 0 2928
Filtered Sample True Negatives (#) 4424624 4424738 4424343
Filtered Sample False Positives (#) 114 0 395
Filtered Sample False Negatives (#) 29379 29896 26968
Full Sample RIG 12.14% 5.25% 17.95%
Top Ads/Apps RIG 14.82% 5.98% 22.85%
Filtered Sample RIG 14.74% 6.77% 22.45%

Table A2: Model performance for the two samples (full and top ads/apps) when evaluated on the
alternative metrics.

• Least squares does not use any hyper-parameters and hence does not require validation. In
this case, we simply train the model on the full training and validation data to infer the model
parameters, and report the model’s performance on the test data.

• For LASSO, the validation procedure is straightforward. The only hyper-parameter to set is the
L1 regularization parameter, λ. We search over 100 values of λ and pick the one which gives us
the best performance on the validation set (λ = 6.3× 10−4). We then use this parameter and
train the model on the entire training and validation set and test the performance on the test set.

• For CART, we use the package rpart in R, which implements a single tree proposed by (Breiman
et al., 1984). We use recursive partitioning algorithm with a complexity parameter (ctree)
as the only hyper-parameter that we need to select through validation. The main role of
this parameter is to avoid over-fitting and save computing time by pruning splits that are
not worthwhile. As such, any split that does not improve the fit by a factor of complexity
parameter is not attempted. We search for the optimal complexity parameter over the grid ctree ∈
{0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001}, and based on the validation
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Method RIG over Baseline
Least Squares 7.72%
LASSO 7.92%
Logistic Regression 11.17%
Regression Tree 15.03%
Random Forest 15.75%
XGBoost 17.95%

Table A3: RIG of different learning methods for the test data.

procedure, we derive the optimal complexity parameter as 5−5. That is, the model adds another
additional split only when the R-squared increments by at least 5−5.

• For Random Forest, we use the package sklearn in Python. There are three hyper-parameters
in this case – (1) ntree, the number of trees over which we build our ensemble forest, (2) χs,
the column sub-sampling parameter, which indicates the percentage of features that should be
randomly considered in each round when looking for the best split, and (3) nmin, the minimum
number of samples required to split an internal node. We search for the optimal set of hyper-
parameters over the following grid:

• ntree ∈ {100, 500, 1000}
• χs ∈ {0.33, 0.5, 0.75}
• nmin ∈ {100, 500, 1000}

Based on our validation procedure, we find the optimal set of hyper-parameters to be: {ntree =

1000, χs = 0.33, nmin = 500}.

E.3 Robustness Checks on Feature Generation

We also ran the following robustness checks on the feature generation framework.

• We start by considering different ways of aggregating over the history. One possibility is to
use ηie = ri for all the features, i.e., update all the features in real-time. We find no difference
in terms of the prediction accuracy when we adopt this approach, though it increases the
computational costs significantly. Therefore, we stick to our current approach where we use a
combination of global and real-time features.

• Next, we examine the model’s performance under an alternative definition of long- and short-
term history for features that are updated in real-time. The idea is to fix the length of history,
instead of fixing ηib for each impression. In other words, instead of aggregating over [l, ri] and
[s, ri] where l and s are fixed, we aggregate over [li, ri] and [si, ri] where li and si are no more
fixed, but the length of [li, ri] and [si, ri] are fixed. For example, li for impression i on October
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28 is the same time on September 30, while li for impression i on October 30 is the same time
on October 2. Under this new approach, we find a slight decrease in the performance: the RIG

drops to 17.69% improvement over the baseline.

• We also consider a model with dummy variables for the top apps in our feature set (similar to
what we now do for top ads). Again, we find no discernible differences in the results without
app dummies: the RIG is 17.97% over the baseline. This may be due to the fact that our feature
generation framework captures the fixed effects of apps well.

Overall, we find that our feature set works well and any additional features or more complex feature
generation mechanisms do not provide any significant benefits in RIG.

E.4 Sampling and Data Adequacy

We conduct our analyses using a relatively large sample consisting of 727,354 users in the train,
validation, and test data-sets. This corresponds to 17,856,610 impressions in the training and
validation data, and 9,625,835 impressions in the test data. We now examine the adequacy the rate
the adequacy of our sample by calculating the RIG for different (lower) sample sizes. That is, we
quantify how much our model gains by using more data, and at what point the marginal value of
additional data is minimal.

To calculate the RIG for a given sample size of Nu, we do the following: 1) We take ten random
samples of Nu users, and generate two data sets – the training data and the test data. 2) For each
sample, we train the model using the training data and then test the model’s performance on the test
data.5 3) We then calculate the mean and standard deviation of the RIG for each sample. We perform
this exercise for nine sample sizes starting with Nu = 1000 and going up till Nu = 600, 000. The
results from this exercise are shown in Table A4. We also report the average sample size of train
and test data respectively as N train and N test.

In principle, we can perform the above exercise for each sample size with only one sample
instead of ten. However, such an approach is likely to be error-prone, especially at smaller sample
sizes, since there is heterogeneity among users and each sample is random. So we may randomly
find a smaller sample to have a higher RIG than a larger sample in one particular instance. To avoid
making incorrect inferences due to the particularities of one specific sample and to minimize the
noise in our results, we employ the bootstrap procedure described above.

Table A4 suggests that after about 100,000 users, increasing the sample size improves the

5We use the hyper-parameters obtained from the validation exercise that we performed in the main model for training.
This is likely to help the performance of the models trained on smaller samples because if we were to tune the model
using smaller data, the estimated hyper-parameters are likely to be worse. Thus, the gains reported here more favorable
than what we would obtain if we also validated/tuned the model using the smaller data samples.
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User Sample Size (Nu) N train N test
RIG over Baseline CTR

Coefficient Std. error
1,000 24,500 13,274 13.76% 3.17%
5,000 124,521 66,820 14.25% 1.76%
10,000 249,749 139,123 15.26% 1.48%
20,000 486,007 266,497 16.14% 0.40%
50,000 1,220,394 663,569 16.84% 0.28%

100,000 2,436,037 1,332,894 17.27% 0.23%
200,000 4,875,586 2,654,110 17.58% 0.20%
400,000 9,749,402 5,327,471 17.84% 0.18%
600,000 14,699,589 7,928,275 17.91% 0.15%

Table A4: RIG for different sample sizes. N train and N test are respectively the average size of train
and test data after sampling users.

prediction only slightly. However, increasing sample sizes also increase the training time and
computational costs. Given the cost-benefit trade-off, our sample of 727,354 users is more than
sufficient for our purposes.

E.5 Other Validation Techniques

The validation procedure outlined in Web Appendix §C.2 is the first-best validation procedure in data-
rich situations such as ours. Nevertheless, we examine two other commonly used techniques:

• Hold-out validation – very similar to our current approach, except that at Step 3, instead of
training the final model on the combination of training and validation data, we simply use the
best model (using the optimalW∗) trained based on the training data (from Step 2) as the final
model. Thus, we do not use the validation data to train the final model. This can lead to some
information loss (especially from the recent impressions). We find that the model performance
on the test set drops when we use hold-out validation: our RIG is 17.21% which is lower than
that of our validation procedure.

• k-fold cross-validation – we find no improvement in the performance of the model selected by
5-fold cross-validation (RIG is 17.33%). Please see Footnote 7 in (Yoganarasimhan, 2020) and
(Hastie et al., 2001) for a detailed discussion on the pros and cons of k-fold cross validation.

F Detailed Analysis of the Example Presented in Figure 8 in the Main Text
In an important paper, Levin and Milgrom (2010) argue that sharing too much targeting information
with advertisers can thin auction markets which in turn would soften competition and make the
platform worse. We now present a simple example to highlight this idea. Consider a platform with
two advertisers (a(1) and a(2)) competing for the impressions of two users (u(1) and u(2)). Assume
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No Data Disclosure Full Data Disclosure
(or No Targeting) (or Perfect Targeting)

For both impressions:
Bids:
Advertiser a(1): b(1)1 = b

(1)
2 = 0.3

Advertiser a(2): b(2)1 = b
(2)
2 = 0.2

Outcome:
Advertiser a(1) wins both impressions and pays 0.2 per
impression

Platform’s expected revenue:
R = 2× 0.2 = 0.4

Advertiser’s expected surplus:
W (1) = 2× (0.3− 0.2) = 0.2
W (2) = 0

Total expected surplus:
S = 0.6

For User u(1)’s impression:
Bids:
Advertiser a(1): b(1)1 = 0.5, Advertiser a(2): b(2)1 = 0.1
Outcome:
Advertiser a(1) wins u(1)’s impression and pays 0.1

For User u(2)’s impression:
Bids:
Advertiser a(1): b(1)2 = 0.1, Advertiser a(2): b(2)2 = 0.3
Outcome:
Advertiser a(2) wins u(2)’s impression and pays 0.1

Platform’s expected revenue:
R = 0.1 + 0.1 = 0.2

Advertiser’s expected surplus:
W (1) = 0.5− 0.1 = 0.4
W (2) = 0.3− 0.1 = 0.2

Total expected surplus:
S = 0.8

Table A5: Example depicting two regimes: 1) No data disclosure and 2) Full disclosure.

that the platform uses second price auctions with Cost per Impression (CPI) pricing, where the
highest bidder wins the impression and pays the bid of the second-highest bidder. These auctions
have the useful property of truthful bidding (Vickrey, 1961). Let the advertisers be symmetric
in their valuation of a click (normalized to 1 hereafter). Further, let the match values between
advertisers and users be as shown in Equation (A.21). Match values can be interpreted as the eCTR
of an impression for the advertiser-user pair. Notice that advertiser a(1) has a better match with user
u(1) and advertiser a(2) with user u(2).

u(1) u(2) ū



a(1) 0.5 0.1 0.3

eCTR = −→
a(2) 0.1 0.3 0.2

(A.21)

We can formally show that, for a given targeting strategy, both CPI and Cost per Click (CPC
mechanisms generate the same revenues for the platform and advertisers. So we focus on the CPI
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case throughout the text and refer readers to Appendix H for the CPC example and analysis.
Consider the advertiser’s bidding strategy and outcomes under two regimes – 1) No data

disclosure by the platform, and 2) Full disclosure of match values by the platform. The results from
these two regimes are laid out in Table A5 and discussed below:

• No data disclosure – Here advertisers only know their aggregate match value for both users. So
a(1) and a(2)’s expected match values for the two users are 0.3 and 0.2. In a second price auction,
advertisers bid their expected valuations. So a(1) wins both impressions and pays the next
highest bid, b(2)1 = b

(2)
2 = 0.2, for each impression. Therefore, platform’s revenue is R = 0.4,

advertisers’ surplus is W (1) = 0.2 and W (2) = 0, and the total surplus is S = 0.6.

• Full data disclosure – Since advertisers now have information on their match for each impression,
they submit targeted bids that reflect their valuations as shown in Table A5. Therefore, the
advertiser who values the impression more wins it. However, because of the asymmetry in
advertisers’ valuation over impressions, the competition over each impression is softer. This
ensures higher advertiser revenues, with W (1) = 0.4 and W (2) = 0.2. However, the platform’s
revenue is now lower, at R = 0.2. Thus, even though ads are matched more efficiently and the
total surplus generated is higher, the platform extracts less revenue.

This example illustrates the platform’s trade-off between value creation and value appropriation,
and highlights the platform’s incentives to withhold targeting information from advertisers.

G Proofs

G.1 Proof of Proposition 1

We first prove the proposition for the general case of two sets of bundles I(1) and I(2), where I(1) is
at least as granular as I(2). Under a given targeting regime, risk-neutral advertisers’ valuation for
an impression in a bundle is their aggregate valuation for that bundle, as they cannot distinguish
between different impressions within a bundle. Thus, all impressions within a bundle have the same
expected valuation for an advertiser. As such, for any i ∈ Ij , incentive compatibility constraint in
the second-price auction induce advertiser a to places the bid bia = 1

|Ij |
∑

k∈Ij vka.

According to Definition 4 in the main text of the paper, for any I
(2)
k ∈ I(2), there exist

I
(1)
j1
, . . . , I

(1)
jl

such that
⋃l
s=1 I

(1)
js

= I
(2)
k . We can write:

max
a

∑
i∈I(2)k

via ≤
l∑

s=1

max
a

∑
i∈I(1)js

via (A.22)

where the LHS is the surplus generated from the impressions in bundle I(2)k for targeting regime
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I(2), and RHS is the surplus generated from the same impressions for targeting regime I(1). Since
inequality (A.22) holds for any I(2)k ∈ I(2), we can show that S(1) ≥ S(2), i.e., the surplus is
increasing with more granular targeting.

However, platform revenues can go either way. If the second-highest valuation is exactly
the same as the highest valuation for all impressions, the revenue and surplus are identical, i.e.,
R(1) ≥ R(2). On the other hand, consider a case where, for any given impression, one advertiser
has a high valuation and the rest of advertisers have the same (lower) valuation. In this case, the
second-highest valuation is the minimum valuation for each impression. Thus, we can write (A.22)
with min function instead of max and change the sign of inequality. This gives us R(1) ≤ R(2).
Therefore, the platform revenues can be non-monotonic with more granular targeting.

Finally, it is worth noting that this result can be applied to any efficient auction in light of
revenue-equivalence theorem.

G.2 Proof of Proposition 2

To write the FOC, we first need to specify advertisers’ expected utility function. If ad a gets a click
in impression i, the utility he extracts from this impression is v(c)a − CPCia. As such, ad a’s utility
from impression i is (

v(c)a − CPCia

)
1(ai = a)1(yi,a = 1),

where 1(ai = a) indicates whether ad a is shown in impression i and 1(yi,a = 1) is an indicator for
whether this impression is clicked. Clearly, ad a only extracts utility when his ad is being shown
and clicked in an impression. We further assume that 1(ai = a) is independent of CPCia with
respect Ga. Now, we define the expected utility function EUa as the expectation over impressions as
follows:

EUa(ba;Ga) = EGa
[(
v(c)a − CPCia

)
1(ai = a)1(yi = 1)

]
=
(
v(c)a − ca(ba)

)
πa(ba)µa

=
(
v(c)a − ca(ba)

) baqa
baqa +Q−a

µa

(A.23)

where µa = EGa [1(yi = 1)] is the average probability of click that ad a expects to receive. The
second line of Equation (A.23) is resulted because of the independence of 1(ai = a) and CPCia
with respect Ga.

Now, to write the FOC, we need to take the first derivative of the expected utility function for ad

xxix



a. We can write:

∂EUa(ba;Ga)
∂ba

=
(
v(c)a π′a(ba)− ca(ba)π′a(ba)− c′a(ba)πa(ba)

)
µa (A.24)

Now, to satisfy the FOC, we need to have ∂EUa(b∗a;Ga)
∂b∗a

= 0, where b∗a is the equilibrium bid. Using
Equation (A.24), we can write the FOC as follows:

v(c)a = ca(b
∗
a) +

c′a(b
∗
a)πa(b

∗
a)

π′a(b
∗
a)

= ca(b
∗
a) +

c′a(b
∗
a)b
∗
a

1− πa(b∗a)
,

(A.25)

where the second line is because we have πa(ba)
π′a(ba)

= ba
1−πa(ba) which is easy to show:

πa(ba)

π′a(ba)
=

baqa
baqa+Q−a

qaQ−a

(baqa+Q−a)2

=
ba(baqa +Q−a)

Q−a
=

ba
1− πa(ba)

(A.26)

Now, to complete the proof, we need to show that the second-order condition (SOC) is also satisfied.
We start by writing a useful property in the relationship between the first and second derivative of
the allocation function:

π′a(ba)

π′′a(ba)
=

qaQ−a

(baqa+Q−a)2

−2q2aQ−a

(baqa+Q−a)3

=
(baqa +Q−a)

2qa
= − ba

2πa(ba)
(A.27)
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We can now write the second derivative of the expected utility function as follows:

∂2EUa(b
∗
a;Ga)

∂b∗a
2

= µa
((
v(c)a − ca(b∗a)

)
π′′a(b∗a)− c′a(b∗a)π′a(b∗a)− c′a(b∗a)π′a(b∗a)− c′′a(b∗a)πa(b∗a)

)
= µa

(
c′a(b

∗
a)πa(b

∗
a)

π′a(b
∗
a)

π′′a(b∗a)− 2c′a(b
∗
a)π
′
a(b
∗
a)− c′′a(b∗a)πa(b∗a)

)
= µa

(
c′a(b

∗
a)πa(b

∗
a)

(
π′′a(b∗a)

π′a(b
∗
a)
− 2

π′a(b
∗
a)

πa(b∗a)

)
− c′′a(b∗a)πa(b∗a)

)
= µa

(
c′a(b

∗
a)πa(b

∗
a)

(
2πa(b

∗
a)

b∗a
− 2

1− πa(b∗a)
b∗a

)
− c′′a(b∗a)πa(b∗a)

)
= µa

(
− 2

b∗a
c′a(b

∗
a)πa(b

∗
a)− c′′a(b∗a)πa(b∗a)

)
= µaπa(b

∗
a)

(
− 2

b∗a
c′a(b

∗
a)− c′′a(b∗a)

)
(A.28)

In the equation above, we know that both µa and πa(b∗a) are positive, so it is sufficient to show that
− 2
b∗a
c′a(b

∗
a)− c′′a(b∗a) ≤ 0, which is resulted from the assumption in Proposition 2 in the main text of

the paper. Thus, the SOC is satisfied and this completes the proof.

H Analysis of Cost-per-Click Payment Mechanism
We now present an analysis of targeting under the Cost-per-Click (CPC) mechanism, where an
advertiser’s bid indicates the maximum price he is willing to pay per click. In this case, having
a more accurate estimation of match values for impressions does not change advertisers’ bidding
behavior because they do not pay per impression. Theoretically, if advertisers have infinite budget,
they should bid their valuation for click, even if they know they have higher CTR for some
impressions.

However, the ad-network has an incentive to make more efficient matches in order to generate
more clicks since clicks are their main source of revenue. For example, if there is an advertiser
with a very high bid but very low CTR, the ad-network cannot make money by selling the slot
to this advertisers. Let via and mia respectively denote the valuation for click and the match
value for advertiser a for impression i. The maximum revenue that platform could get is then
maxa viamia. Thus, defining bia as advertiser a’s bid on impression i, the platform should sell the
ad slot to argmaxa biamia and charge her the minimum bid with which she still wins. It generates
the expected revenue of the second-highest biamia. (In fact, this is how Google’s sponsored search
auctions work.)
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No Targeting Perfect Targeting
For both impressions:
Bids:
Advertiser 1: b11 = b21 = 1
Advertiser 2: b12 = b22 = 1
Match values:
Advertiser 1: m11 = m21 = 0.3
Advertiser 2: m12 = m22 = 0.2
Outcomes:
Advertiser 1 wins both impressions and pays
0.2×1
0.3 = 0.66 per click

Platform’s expected revenue:
R = 0.66× (0.5 + 0.1) = 0.4

Advertiser’s expected surplus:
W1 = (1− 0.66)× (0.5 + 0.1) = 0.2
W2 = 0

Total expected surplus:
S = 0.6

For User 1’s impression:
Bids:
Advertiser 1: b11 = 1, Advertiser 2: b12 = 1
Match values:
Advertiser 1: m11 = 0.5, Advertiser 2: m12 = 0.1
Outcome:
Advertiser 1 wins User 1’s impression and pays
1×0.1
0.5 = 0.2 per click

For User 2’s impression:
Bids:
Advertiser 1: b11 = 1, Advertiser 2: b12 = 1
Match values:
Advertiser 1: m11 = 0.1, Advertiser 2: m12 = 0.3
Outcome:
Advertiser 2 wins User 2’s impression and pays
1×0.1
0.3 = 0.33 per click

Platform’s expected revenue:
R = 0.2× 0.5 + 0.33× 0.3 = 0.2

Advertiser’s expected surplus:
W1 = (1− 0.2)× 0.5 = 0.4
W2 = (1− 0.33)× 0.3 = 0.2

Total expected surplus:
S = 0.8

Table A6: Example depicting no targeting and perfect targeting under CPC pricing mechanism.

Table A6 shows how the example in §6.1 in the main text of the paper generalizes to the CPC
case. Although CPC and CPI have different properties, we can easily prove that their revenue is the
same under different levels of targeting. This stems from the fact that under second-price auction,
bidders bid their valuation. Thus, the platform’s expected revenue from impression i under both
mechanisms is the second highest viamia, as long as the match-values (or targeting strategies) are
the same under both mechanisms. Conceptually, there exists a one-to-one mapping between CPC
and CPI mechanisms if and only if there is a one-to-one mapping between the targeting regime and
resulting match-value matrix. In the CPI mechanism, mia enters the advertisers’ bidding strategy,
i.e., the targeting decision is made by the advertisers. The ad-network’s decision consists of whether
to share targeting information with advertisers or not. In contrast, under the CPC mechanism, the
ad-network directly decides the extent of targeting to engage in and the advertisers always bid their
valuation.
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Our empirical results suggest that under the CPI mechanism, ad-networks may have incentive
to limit behavioral targeting. In the CPC context, this translates to the following result: the ad-
network has an incentive to not use behavioral information for targeting, as compared to contextual
information. In both cases, the platform has an incentive to protect users’ privacy by ensuring
that behavioral information is not used for targeting purposes. In sum, the empirical estimates of
platform’s revenue, advertisers’ revenues, and the implications for user-privacy are similar in both
settings.

I Robustness Checks for Analysis of Revenue-Efficiency Trade-off

I.1 Alternative Methods for Estimation of Click Valuations

As discussed in §6.3.2 in the main text of the paper, we make three simplifications to derive Equation
(15) in the main text of the paper.

1. Simplification 1: Advertisers’ probability of winning an impression is approximately zero,
i.e., πa(ba) ≈ 0, for all a.

2. Simplification 2: Advertisers’ cost-per-click is approximately their bid, i.e., ca(ba) ≈ ba, for
all a.

3. Simplification 3: The first-order condition shown in Equation (14) in the main text of the
paper is satisfied for all advertisers, including reserve price bidders.

If one or more of these simplifications fail in our data, our estimates of click valuations may
be biased. This, in turn, can affect our main qualitative findings. Therefore, we now present six
alternative methods to estimate click valuations that progressively relax these simplifications and
show that our main findings are robust to these simplifications.

Table A7 gives an overview of the set of simplifications that each alternative method relaxes.
We now describe each of these methods in detail.

1. Alternative Method 1 (AM1): In this method, we relax Simplification 1, but retain Simplifi-
cations 2 and 3.

Specifically, instead of assuming that πa(ba) ≈ 0, we estimate the advertiser’s expected
probability of ad allocation directly from the data as:

π̂a(b
∗
a) =

∑NF

i=1 1(ai = a)∑NF

i=1 ei,a
. (A.29)
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Simplification Main AM1 AM2 AM3 AM4 AM5 AM6
Zero winning probability (πa ≈ 0) X × × × × × ×
Pay-your-bid cost function (ca(ba) ≈ ba) X X × × × × ×
First-order condition satisfied for reserve price bidders X X X X × × ×
Parametric cost function X X X X X X ×

Table A7: Table of simplifications imposed by each estimation method

This is the total number of impressions showing ad a divided by the total number of impres-
sions ad a bid on (i.e., participated in the auction for). This is a consistent estimator of the
proportion of impressions that ad a will win in the platform.

Since we still assume that advertisers pay their own bid per click (Simplification 2), we have
ca(ba) = ba. This gives us the click value estimates as:

v̂(AM1)
a = b∗a +

b∗a
1− π̂a(b∗a)

, (A.30)

2. Alternative Method 2 (AM2): In this method, we relax both Simplifications 1 and 2. Like
AM1, here also we estimate the probability of winning (proportion of impressions allocated)
from the data using Equation (A.29). In addition, we no longer assume that advertisers pay
their bid. Instead, we model their payment upon winning as a linear function of their bid such
that ca(ba) = γaba. Then, using Equation (14) from the main text of the paper, we can write:

v̂(AM2)
a = ĉa(b

∗
a) +

ĉa(b
∗
a)

1− π̂a(b∗a)
(A.31)

This is because if ca(ba) is linear, we have ca(ba) = c′a(ba)ba. Hence, we only need to estimate
ĉa(b

∗
a), which is the average cost-per-click for ad a.

3. Alternative Method 3 (AM3): This method is similar to AM2. The main difference is that,
here we model the cost function more flexibly by allowing it to be a quadratic function of bids.
We can characterize our cost function as ca(ba) = γaba + γb2a. Note that the coefficient for ba
is ad specific, but the one for b2a is the same for all ads. The is because we cannot identify
advertiser-specific curvature since advertisers do not change their bids.

We can estimate this quadratic cost function from the data using the following regression
model:

CPCi = γaba + γb2a + εi, (A.32)
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where CPCi is the actual cost-per-click for impression i.

Once we have the estimates, γ̂a and γ̂, we can estimate click valuations using Equation (14)
from the main text of the paper as follows:

v̂(AM3)
a = ĉa(b

∗
a) +

b∗a(γ̂a + 2γ̂b∗a)

1− π̂a(b∗a)
= ĉa(b

∗
a) +

ĉa(b
∗
a)

1− π̂a(b∗a)
+

γ̂b∗a
1− π̂a(b∗a)

(A.33)

Equation (A.33) is very similar to Equation (A.31), except for the last term γ̂b∗a
1−π̂a(b∗a)

, which
is added to incorporate the curvature in the relationship between bid and cost-per-click. Of
course, if the relationship is linear, (A.33) will be identical Equation (A.31).

While both AM2 and AM3 allow the cost-per-click to differ from the actual bid, they
formulate an advertiser’s cost-per-click only as a function of their own bids, and not that of
its competitors. Given Proposition 2, our click valuation estimates are valid to the extent that
our parametric cost functions estimate c′a(b

∗
a) well. Nevertheless, in AM6, we estimate the

advertisers’ cost function without imposing any functional form assumptions, and allow it to
depend on other advertisers’ bids as inputs.

4. Alternative Method 4 (AM4): In this method, we relax all three simplifications. We build
on AM3 and incorporate the fact that there is a reserve price r0 for all impressions (i.e.,
advertisers need to bid higher than or equal to this amount).

In the presence of a reserve price, equilibrium bids may not satisfy the first-order condi-
tion since they may be right-censored. That is, there could have been bids lower than r0
without the reserve price. For reserve-price bidders, we know that the participation con-
straint v(c)a ≥ r0 is satisfied. On the other hand, we know that b∗a ≤ r0 which implies that
v
(c)
a ≤ r0

(
1 + 1

1−πa(ba)

)
. Thus, for reserve bidders, we have vca ∈ [r0, r0(1 + 1

1−πa(ba))]. As
such, if such valuations come from a uniform distribution in this range, our estimates will be:

v̂(AM4)
a =

r0
(

1 + 1
2(1−π̂a(b∗a)

)
if a is a reserve bidder

v̂
(AM3)
a otherwise

, (A.34)

where the estimated click valuations for a reserve bidder a is the mean of uniform distribution
U
(
r0, r0

(
1 + 1

1−π̂a(b∗a)

))
.

5. Alternative Method 5 (AM5): In this method, we follow all the steps in AM4, but draw a
value from distribution U(r0, r0(1 + 1

1−π̂a(b∗a)
)) for any ad a who bids the reserve price. As
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such, our estimates will be:

v̂(AM5)
a =

x ∼ U(r0, r0(1 + 1
1−π̂a(b∗a)

)) if a is a reserve bidder

v̂
(AM3)
a otherwise

(A.35)

6. Alternative Method 6 (AM6): Here, we implement the the non-parametric estimator pro-
posed by Rafieian (2020) for quasi-proportional auctions. This is a structural approach to
estimate click valuations that relaxes all the simplifications made earlier and incorporates the
full structure of the setting. The main difference between his approach and the alternative
methods AM1–AM5 is in the operationalization of the cost function. Unlike the earlier
methods, which parameterized the cost function, he employs a fully non-parametric method
for modeling the cost distribution. As such, advertisers’ expected cost function is obtained by
taking the expectation over the distribution of auctions they participate in. We refer readers to
Rafieian (2020) for more details.

Results from Alternative Methods for Click Value Estimation
We first illustrate the empirical CDFs of all these alternative methods as well as the main method
used in the paper. As we can see from Figure A.5, the estimated value distributions are not very
different. This is mostly due to the fact that Simplification 1 is mostly valid (i.e., there are many
bidders and no one has disproportionately high chance of winning), which in turn, makes the
approximation method used in Equation (15) in the main text quite reasonable.

Next, we use the click value estimates from each of these alternative methods to estimate the
market outcomes – total surplus, platform revenues, and advertisers’ surplus. The results are shown
in Table A8. While these estimates are quantitatively different from those presented in Table 5
in the main text of the paper, notice that our main qualitative results remain the same: we find a
monotonic relationship between total surplus and the granularity of targeting, but platform revenues
are maximized when the platform limits the targeting level to the contextual targeting. In particular,
we expect that results from AM6 to be the most accurate since it is the most assumption-free method,
and even here the main qualitative finding holds.

Further, we find that the results from AM1 are the closest to the results in the main text (Table 5
in the main text of the paper). This is because AM1 still uses the approximation that CPCa ≈ ba.
On the other hand, the results from AM2 to AM6 are very close quantitatively. This is because they
all relax Simplification 2 and estimate the cost function from the data. As a result, the magnitude of
total surplus and platform revenues is smaller (because advertisers in a quasi-proportional auction
submit higher bids when they know they are not exactly charged their submitted bids). However,
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Figure A.5: Empirical CDF of estimated value distributions using alternative methods

the main qualitative findings remains the same under all these methods, since the main source for
these findings is the heterogeneity in match valuations induced by more granular targeting.

I.2 Adding Noise to Match Valuations

As discussed in §6.3.3 in the main text of the paper, our assumption that advertisers can obtain match
values estimated in our machine learning framework may not be realistic. As such, we consider
various scenarios here to reflect cases in which advertisers can only obtain a noisy version of our
estimates.

I.2.1 Identically Distributed Noise Across Ads

First, we consider the case that an identically distributed noise is added to any element in the match
value matrix. We operationalize this noise as follows:

m̂
(ν)
i,a = m̂i,aεi,a, (A.36)
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Targeting Total Surplus Platform Revenue Advertisers’ Surplus

A. Alternative Method 1 (AM1)
No Targeting 8.54 8.36 0.18
Contextual Targeting 9.09 8.49 0.60
Behavioral Targeting 9.32 8.47 0.85
Full Targeting 9.60 8.48 1.12

B. Alternative Method 2 (AM2)
No Targeting 7.96 7.93 0.03
Contextual Targeting 8.62 8.09 0.53
Behavioral Targeting 8.83 8.05 0.78
Full Targeting 9.09 8.05 1.04

C. Alternative Method 3 (AM3)
No Targeting 7.91 7.89 0.02
Contextual Targeting 8.61 8.07 0.53
Behavioral Targeting 8.81 8.04 0.77
Full Targeting 9.08 8.04 1.04

E. Alternative Method 4 (AM4)
No Targeting 8.02 7.91 0.11
Contextual Targeting 8.61 8.08 0.53
Behavioral Targeting 8.82 8.03 0.79
Full Targeting 9.08 8.04 1.04

D. Alternative Method 5 (AM5)
No Targeting 8.02 7.91 0.11
Contextual Targeting 8.61 8.08 0.53
Behavioral Targeting 8.82 8.03 0.79
Full Targeting 9.08 8.03 1.05

F. Alternative Method 6 (AM6)
No Targeting 8.03 7.91 0.12
Contextual Targeting 8.61 8.08 0.53
Behavioral Targeting 8.82 8.03 0.78
Full Targeting 9.08 8.04 1.04

Table A8: Platform revenues, advertisers’ surplus, and total surplus for different levels of targeting
using different methods to estimate click valuations. The numbers are reported in terms of the
average monetary unit per impression.

where εi,a ∼ U(1− ν, 1 + ν). As such, advertisers obtain estimates ν × 100 percent lower or higher
than the estimate from our ML framework. For any noise distribution, we make the entire matrix and
follow the procedure presented in §6.3.4 in the main text of the paper to estimate the average surplus,
revenue, and advertisers’ surplus. The results are shown in Table A9. We find that noise-adding
can increase the revenue under full targeting by distorting efficiency. This is in line with Athey and
Nekipelov (2010) who find that the platform’s optimal decision is to use imperfect CTR estimates
in a cost-per-click setting. Interestingly, we find that full and contextual targeting yield almost the
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Targeting Noise (ν) Total Surplus Platform Revenue Advertisers’ Surplus
No Targeting 0.05 8.36 8.30 0.06
Contextual Targeting 0.05 8.99 8.44 0.55
Behavioral Targeting 0.05 9.18 8.35 0.82
Full Targeting 0.05 9.43 8.35 1.08
No Targeting 0.1 8.36 8.30 0.06
Contextual Targeting 0.1 8.99 8.44 0.55
Behavioral Targeting 0.1 9.17 8.36 0.82
Full Targeting 0.1 9.37 8.35 1.02
No Targeting 0.15 8.36 8.30 0.06
Contextual Targeting 0.15 8.99 8.44 0.55
Behavioral Targeting 0.15 9.16 8.36 0.80
Full Targeting 0.15 9.29 8.35 0.93
No Targeting 0.2 8.36 8.30 0.06
Contextual Targeting 0.2 8.99 8.44 0.55
Behavioral Targeting 0.2 9.14 8.36 0.78
Full Targeting 0.2 9.20 8.37 0.82
No Targeting 0.25 8.36 8.30 0.06
Contextual Targeting 0.25 8.99 8.44 0.55
Behavioral Targeting 0.25 9.13 8.37 0.76
Full Targeting 0.25 9.10 8.41 0.70
No Targeting 0.3 8.36 8.30 0.06
Contextual Targeting 0.3 8.99 8.44 0.54
Behavioral Targeting 0.3 9.12 8.38 0.74
Full Targeting 0.3 9.01 8.47 0.54

Table A9: Platform revenues, advertisers’ surplus, and total surplus for different levels of targeting
when adding an identically distributed noise to match values. The numbers are reported in terms of
the average monetary unit per impression.

same results when ν = 0.3. Thus, we can interpret contextual targeting as a noise-adding strategy.

I.2.2 Differentially Distributed Noise Across Ads

Here we consider a more realistic case wherein ads with more impressions (more data) have better
estimates (less noisy). Similar to the case with identical noise, we we operationalize the differential
noise as follows for any ad a:

m̂
(νa)
i,a = m̂i,aεi,a, (A.37)

where εi,a ∼ U(1− νa, 1 + νa). As such, the noise is different for each ad. Since the error rate is
proportional to the square root of number of observations, we write:

νa =
ν√
Na

,
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where Na is the number of impressions ad a has in our Filtered sample. Now, for any ν, we can
make the entire match value matrix and estimate the market outcomes. The results are shown in
Table A10. Again, we find that the platform benefits when advertisers have imperfect estimates of
their match valuations. Comparing the results in Table A9 and A10, we find that the total surplus
declines faster with a differentially distributed noise: when the platform’s revenue is the same
under full and contextual targeting, the total surplus is higher under contextual targeting. Given the
absence of privacy costs under contextual targeting, our results in both tables indicate that platforms
benefit most when allowing only contextual targeting.

Targeting Noise (ν) Total Surplus Platform Revenue Advertisers’ Surplus
No Targeting 10 8.36 8.30 0.06
Contextual Targeting 10 8.99 8.44 0.55
Behavioral Targeting 10 9.18 8.35 0.82
Full Targeting 10 9.42 8.34 1.08
No Targeting 20 8.36 8.30 0.06
Contextual Targeting 20 8.99 8.44 0.55
Behavioral Targeting 20 9.17 8.35 0.82
Full Targeting 20 9.35 8.32 1.03
No Targeting 30 8.36 8.30 0.06
Contextual Targeting 30 8.99 8.44 0.55
Behavioral Targeting 30 9.16 8.35 0.80
Full Targeting 30 9.24 8.31 0.93
No Targeting 40 8.36 8.30 0.06
Contextual Targeting 40 8.99 8.44 0.55
Behavioral Targeting 40 9.14 8.35 0.79
Full Targeting 40 9.12 8.32 0.80
No Targeting 50 8.36 8.30 0.06
Contextual Targeting 50 8.99 8.44 0.55
Behavioral Targeting 50 9.12 8.35 0.77
Full Targeting 50 8.99 8.35 0.65
No Targeting 60 8.36 8.30 0.06
Contextual Targeting 60 8.99 8.44 0.55
Behavioral Targeting 60 9.10 8.35 0.75
Full Targeting 60 8.93 8.36 0.57
No Targeting 70 8.36 8.30 0.06
Contextual Targeting 70 8.99 8.43 0.56
Behavioral Targeting 70 9.09 8.34 0.75
Full Targeting 70 8.86 8.39 0.47
No Targeting 80 8.36 8.30 0.06
Contextual Targeting 80 8.99 8.43 0.55
Behavioral Targeting 80 9.07 8.34 0.73
Full Targeting 80 8.80 8.44 0.36

Table A10: Platform revenues, advertisers’ surplus, and total surplus for different levels of targeting
when adding an differentially distributed noise to match values. The numbers are reported in terms
of the average monetary unit per impression.

xl



References
S. Athey and D. Nekipelov. A structural model of sponsored search advertising auctions. In Sixth Ad Auctions

Workshop, volume 15, 2010.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Regression Trees. CRC press,

1984.

T. Chen and C. Guestrin. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22Nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 785–794. ACM,

2016.

J. Friedman, T. Hastie, R. Tibshirani, et al. Additive Logistic Regression: A Statistical View of Boosting

(with Discussion and a Rejoinder by the Authors). The Annals of Statistics, 28(2):337–407, 2000.

J. H. Friedman. Stochastic Gradient Boosting. Computational Statistics & Data Analysis, 38(4):367–378,

2002.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. NY Springer, 2001.

D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant. Applied Logistic Regression, volume 398. John Wiley

& Sons, 2013.

G. A. Johnson, R. A. Lewis, and D. Reiley. Location, Location, Location: Repetition and Proximity Increase

Advertising Effectiveness. Available at SSRN 2268215, 2016.

J. Levin and P. Milgrom. Online Advertising: Heterogeneity and Conflation in Market Design. The American

Economic Review, 100(2):603–607, 2010.

H. Li and P. Kannan. Attributing Conversions in a Multichannel Online Marketing Environment: An

Empirical Model and a Field Experiment. Journal of Marketing Research, 51(1):40–56, 2014.

D. F. McCaffrey, B. A. Griffin, D. Almirall, M. E. Slaughter, R. Ramchand, and L. F. Burgette. A tutorial

on propensity score estimation for multiple treatments using generalized boosted models. Statistics in

medicine, 32(19):3388–3414, 2013.

H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov,

D. Golovin, et al. Ad Click Prediction: A View from the Trenches. In Proceedings of the 19th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1222–1230. ACM,

2013.

R. Pieters, E. Rosbergen, and M. Wedel. Visual Attention to Repeated Print Advertising: A Test of Scanpath

Theory. Journal of Marketing Research, pages 424–438, 1999.

O. Rafieian. Revenue-optimal dynamic auctions for adaptive ad sequencing. 2020.

O. Rafieian and H. Yoganarasimhan. How does variety of previous ads influence consumer’s ad response?

Technical report, Working paper, 2020.

N. S. Sahni. Effect of temporal spacing between advertising exposures: Evidence from online field experi-

ments. Quantitative Marketing and Economics, 13(3):203–247, 2015.

E. H. Simpson. Measurement of Diversity. Nature, 1949.

xli



W. Vickrey. Counterspeculation, Auctions, and Competitive Sealed Tenders. The Journal of finance, 16(1):

8–37, 1961.

J. Yi, Y. Chen, J. Li, S. Sett, and T. W. Yan. Predictive Model Performance: Offline and Online Evaluations.

In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 1294–1302. ACM, 2013.

H. Yoganarasimhan. Search personalization using machine learning. Management Science, 66(3):1045–1070,

2020.

T. Zhang, B. Yu, et al. Boosting with Early Stopping: Convergence and Consistency. The Annals of Statistics,

33(4):1538–1579, 2005.


