
Web Appendix
A Extensions of the Simultaneous Action Game
A.1 General Linear Combination

We now consider a case where the group outcome is a linear combination of all agents’ revealed

preferences such that ā = αai + (1− α)aj , where 0 < α < 1. We can then write the utility as:

uα(xi, ai, aj) = −r(xi − ai)2 − (1− r)(xi − αai − (1− α)aj)
2 (A1)

Because j’s preference (xj) is her private information at the time of choosing the action, i’s expected

utility from choosing ai as EUα(xi, ai) =
∫
R uα(xi,ai,âj)g(xj)dxj∫

R g(xj)dxj
. By differentiating EU(xi, ai) and

setting it equal to zero at i’s equilibrium action ai = âi gives us:

∂EUα(xi, ai)

∂ai

∣∣∣∣
ai=âi

= 2r(xi− âi)+2(1−r)α
[
xi − αâi) + (1− α)

∫
R
âjg(xj)dxj

]
= 0. (A2)

We can then write the equilibrium action of i as:

âi =
r + (1− r)α
r + (1− r)α2

xi −
(1− r)α(1− α)

r + (1− r)α2

∫
R
âjg(xj)dxj (A3)

As in the main model, we can easily show that
∫
R âjg(xj)dxj = 0. Therefore, we have:

âi =
r + (1− r)α
r + (1− r)α2

xi (A4)

We can easily show that |âi| > xi and |αâi+(1−α)âj | > x̄. Thus, we see polarization in individual

agents’ actions as well as the group outcome.

A.2 Analysis of m-Player Game
A.2.1 Equilibrium of m-Player Game

To derive the Bayesian Nash equilibrium for am-player simultaneous game, we can write the utility

of a player i as:

u(xi, am,i, am,−i) = −r(xi − am,i)2 − (1− r)
(
xi −

am,i
m
−
∑m−1

j=1 am,j

m

)2

(A5)

To obtain i’s expected utility for any am,i in equilibrium, we can take the expectation of equation

(A5) over all the other m− 1 agents’ equilibrium actions:

EUm (xi, am,i) =

∫
R ...

∫
R
∫
R (u(xi, am,i, âm,−i)) g(x1)g(x2)...g(xm−1)dx1dx2...dxm−1∫
R ...

∫
R
∫
R g(x1)g(x2)...g(xm−1)dx1dx2...dxm−1

(A6)



Substituting for u(xi, am,i, am,−i) from equation (A5) and simplifying, we have:

EUm (xi, am,i) = −r(xi − am,i)2 (A7)

+
2(1− r)
m

(
xi −

am,i
m

) ∫R ... ∫R ∫R (∑m−1
j=1 am,j

)
g(x1)g(x2)...g(xm−1)dx1dx2...dxm−1∫

R ...
∫
R
∫
R g(x1)g(x2)...g(xm−1)dx1dx2...dxm−1

− (1− r)

(xi − am,i
m

)2
+

∫
R ...

∫
R
∫
R

(∑m−1
j=1 am,j

)2
g(x1)g(x2)...g(xm−1)dx1dx2...dxm−1

m2
∫
R ...

∫
R
∫
R g(x1)g(x2)...g(xm−1)dx1dx2...dxm−1


We know that

∫
R g(x)dx = 1. Also, from i’s perspective, all the other agents’ types are i.i.d from

the distribution g(x). So we can simplify equation (A7) to:

EUm (xi, am,i) = − r(xi − am,i)2 + 2(1− r)m− 1

m

(
xi −

am,i
m

)∫
R
am,jg(xj)dxj (A8)

− (1− r)

(xi − am,i
m

)2
+

∫
R
...

∫
R

∫
R

m−1∑
j=1

am,j

2

g(x1)g(x2)...g(xm−1)dx1dx2...dxm−1


Taking the F.O.C of Equation (A8) w.r.t am,i at âm,i gives us:

dEUm (xi, am,i)

dam,i

∣∣∣∣
am,i=âm,i

= 2r(xi−âm,i)−
(1− r)(m− 1)

m2

∫
R
âm,jg(xj)dxj+

1− r
m

(
xi −

âm,i
m

)
= 0

(A9)

This gives us âm,i as:

âm,i =

[
rm2 + (1− r)m

]
xi − (1− r)(m− 1)

∫
R âm,jg(xj)dxj

rm2 + (1− r) (A10)

Integrating âm,i w.r.t xi, we have:∫
R
âm,ig(xi)dxi =

[
rm2 + (1− r)m

] ∫
R xig(xi)dxi − (1− r)(m− 1)

∫
R âm,jg(xj)dxj

∫
R g(xi)dxi

rm2 + (1− r)
(A11)

Since
∫
R g(xi)dxi = 1 and

∫
R âm,ig(xi)dxi =

∫
R âm,jg(xj)dxj = E(am) this simplifies to

E(am) = E(x). Since E(x) = 0 in a symmetric distribution, we have:

âm,i =
rm2 + (1− r)m
rm2 + (1− r) xi (A12)

A.2.2 Comparative Statics in m-Player Game

We now derive the comparative statics regarding the extent of shading sm,i.

i



i) dsm,i
dr = (m− 1)−(1−r)(m

2−1)−[rm2+(1−r)]
[rm2+(1−r)]2 |xi|. This simplifies to dsm,i

dr = − (m−1)m2

[rm2+(1−r)]2 |xi|. We

know that m,m− 1 > 0, because by definition m ≥ 2. Also, it is clear that [rm2 + (1− r)]2 > 0

and that |xi| ≥ 0. It therefore follows that dsm,i
dr ≥ 0.

ii) dsm,i
d|xi| = (1−r)(m−1)

rm2+(1−r) . Since 0 < r < 1 and m ≥ 2, this value is always positive. So dsm,i
d|xi| > 0.

iii) dsm,i
dm = (1−r) 1−r(m−1)2

[rm2+(1−r)]2 . Ifm < 1√
r

+1, then 1−r(m−1)2 > 0; so in this range dsm,i
dm > 0.

Else if m > 1√
r

+ 1, then 1− r(m− 1)2 < 0; so in this range dsm,i
dm < 0.

A.3 Equilibrium for Sub-group Interactions

The expected utility of agent i from sub-group 1 and agent j in sub-group 2 are given in Equations

(6). The first-order condition for agent i is dEU i1
dai1

= 0 which can be calculated to be:

r(x1 − ai1) +
1− r
m

x1 −
ai1 +

n1∑
k1=1(6=i)

ak11 +

n2∑
k2=1

∫
R

ak22 dx2

m

 = 0 (A13)

As we are looking for a symmetric in actions with sub-group equilibrium, we can set ai1 =

ak1 = â1, and ak2 = â2, and simplify (A13) to:

x1(r +
1− r
m

)− â1(r +
n1(1− r)

m2
)− (1− r)n2

m2

∫
R
â2g(x2)dx2 = 0 (A14)

Thus the equilibrium action â1 for agents from sub-group 1 is:

â1 = x1

(
m(mr + (1− r))
m2r + n1(1− r)

)
− (1− r)n2
m2r + n1(1− r)

∫
R
â2g(x2)dx2 (A15)

Integrating the equilibrium action over the entire distribution of x1 we can get:∫
R
â1g(x1)dx1 = E(x1)

(
m(mr + (1− r))
m2r + n1(1− r)

)
− (1− r)n2
m2r + n1(1− r)

∫
R
â2g(x2)dx2 (A16)

By noting that E(x1) = 0 for a symmetric distribution, we have that
∫
R â1g(x1)dx1 =∫

R â2g(x2)dx2. Therefore the equilibrium â1 is â1 = x1

(
m(mr+(1−r))
m2r+n1(1−r)

)
. Using similar analysis

for sub-group 2 we can also derive â2 = x2

(
m(mr+(1−r))
m2r+n2(1−r)

)
.

A.4 Analysis of Constrained Choice Game

For am-player simultaneous choice where preferences are drawn fromU [−1, 1] and actions are cur-

tailed between [−1, 1], there exists a unique Perfect Bayesian equilibrium, where player i chooses
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action âc,i = min{ rm2+(1−r)m
rm2+(1−r) xi, 1} if xi ≥ 0, and âc,i = max{ rm2+(1−r)m

rm2+(1−r) xi,−1} if xi < 0.

We now present the detailed proof for the above statement. Let âc,i be i’s equilibrium

action, and let Ac,i be i’s optimal action. It therefore follows that âc,i = min{Ac,i, 1} if Ac,i ≥ 0

and âc,i = max{Ac,i,−1} if Ac,i < 0. Player i’s optimal action Ac,i can be derived using the same

steps those used in Web Appendix A.2.1. We therefore have:

Ac,i =

[
2rm2 + 2(1− r)m

]
xi − (m− 1)

∫ 1
−1 âc,jdxj

2rm2 + 2(1− r) (A17)

Note that Ac,i is monotonically increasing in xi. Hence, if at some point xi = q2 > 0, Ac,i = 1,

then for all xi > q2, Ac,i > 1, which implies that âc,i = 1. Similarly, if at some point xi = q1 < 0,

Ac,i = −1, then for all xi < q2, Ac,i < −1, which implies that âc,i = −1. Therefore, we can

express
∫ 1
−1 âc,idxi as follows:∫ 1

−1
âc,idxi =

∫ q1

−1
−1dxi +

∫ q2

q1

Ac,idxi +

∫ 1

q2

1dxi (A18)

Substituting for Ac,i from Equation (A17) and integrating, we have:∫ 1

−1
âc,idxi = −(1+q1)+

1

2

rm2 + (1− r)m
rm2 + (1− r)

(
q22 − q21

)
−(q2−q1)

m− 1

2rm2 + 2(1− r)

∫ 1

−1
âc,j+(1−q2)

(A19)

We also know that Ac,i is just equal to −1 at q1 and Ac,i is just equal to 1 at q2. So, we have:

−1 =

[
2rm2 + 2(1− r)m

]
q1 − (m− 1)

∫ 1
−1 âc,jdxj

2rm2 + 2(1− r) (A20)

1 =

[
2rm2 + 2(1− r)m

]
q2 − (m− 1)

∫ 1
−1 âc,jdxj

2rm2 + 2(1− r) (A21)

Next, we multiply Equation (A20) with q1 and Equation (A21) with q2 and subtract the latter from

the former. This gives us:

(q2 − q1)
m− 1

2rm2 + 2(1− r)

∫ 1

−1
âc,jdxj = (q22 − q21)

2rm2 + 2(1− r)m
2rm2 + 2(1− r) − (q1 + q2) (A22)

Next, we substitute the L.H.S of Equation (A22) in Equation (A19) and obtain:∫ 1

−1
âc,idxi = −1

2

rm2 + (1− r)m
rm2 + (1− r)

(
q22 − q21

)
(A23)

Adding Equation (A20) to Equation (A21) gives us:

(q1 + q2)
rm2 + (1− r)m
rm2 + (1− r) =

(m− 1)

rm2 + (1− r)

∫ 1

−1
âc,jdxj (A24)
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Substituting the L.H.S into Equation (A23) gives us:∫ 1

−1
âc,idxi = −q2 − q1

2

(m− 1)

rm2 + (1− r)

∫ 1

−1
âc,jdxj (A25)

If q2 − q1 = 0, then we directly have:
∫ 1
−1 âc,jdxj = 0. Else if q2 − q1 6= 0, it still follows that∫ 1

−1 âc,idxi =
∫ 1
−1 âc,jdxj = 0. Hence the optimal response of agent i is:

Ac,i =
rm2 + (1− r)m
rm2 + (1− r) xi (A26)

It is clear that rm2+(1−r)m
rm2+(1−r) > 0. So the equilibrium response of agent i is given by âc,i =

min{ rm2+(1−r)m
rm2+(1−r) xi, 1} if xi ≥ 0 and âc,i = max{ rm2+(1−r)m

rm2+(1−r) xi,−1} if xi < 0.

A.5 Asymmetric Distribution

We now consider a game where the distribution of types, g(x), is asymmetric, i.e., E(x) 6= 0. To

solve for the equilibrium in this case, we start with the general equation considered in Equation (4):

âi =
2(1 + r)

1 + 3r
xi −

(1− r)
(1 + 3r)

∫
R
âjg(xj)dxj

As usual, integrating i’s equilibrium action âi over the entire range of xi gives us:∫
R
âig(xi)dxi =

2(1 + r)

1 + 3r

∫
R
xig(xi)dxi −

(1− r)
(1 + 3r)

∫
R
âjg(xj)dxj

∫
R
g(xi)dxi (A27)

Unlike the symmetric distribution case, here we know that E(xi) =
∫
R xig(xi)dxi 6= 0. But we

can re-arrange the terms to write
∫
R âig(xi)dxi as follows:∫

R
âig(xi)dxi = E(xi) (A28)

We can now substitute the above equivalence in Equation (4) to derive the ai as follows:

âi =
2(1 + r)

1 + 3r
xi −

(1− r)
1 + 3r

E(xi) (A29)

A.6 Partial Knowledge
A.6.1 Same-side Leaning Agents

First, we consider the case where both agents i and j lean on the same side. Without loss of

generality, let both agents be drawn from R+. Then, we have:

âi =
2(1 + r)

1 + 3r
xi −

(1− r)
(1 + 3r)

∫
R+

âjg(xj)dxj (A30)
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Integrating i’s equilibrium action âi over the entire range of xi gives us:∫
R+

âig(xi)dxi =
2(1 + r)

1 + 3r

∫
R+

xig(xi)dxi −
(1− r)
(1 + 3r)

∫
R+

âjg(xj)dxj

∫
R+

g(xi)dxi (A31)

Since we know that xi ∈ R+,
∫
R+
g(xi)dxi = 1. This gives us:∫

R+

âig(xi)dxi =

∫
R+

xig(xi)dxi (A32)

Substituting the above equivalence into Equation (A33), we have:

âi =
2(1 + r)

1 + 3r
xi −

(1− r)
(1 + 3r)

∫
R+

xjg(xj)dxj (A33)

A.6.2 Opposite Leaning Agents

Next, we consider the case where i knows that j is on the opposite side (and vice-versa). Without

loss of generality, let i be drawn from R+ and j be drawn from R−. Then, we have:

âi =
2(1 + r)

1 + 3r
xi −

(1− r)
(1 + 3r)

∫
R−

âjg(xj)dxj (A34)

Integrating i’s equilibrium action âi over the entire range of xi gives us:∫
R+

âig(xi)dxi =
2(1 + r)

1 + 3r

∫
R+

xig(xi)dxi −
(1− r)
(1 + 3r)

∫
R−

âjg(xj)dxj

∫
R+

g(xi)dxi (A35)

Since we know that xi ∈ R+,
∫
R+
g(xi)dxi = 1. This gives us:∫

R+

âig(xi)dxi =
2(1 + r)

1 + 3r

∫
R+

xig(xi)dxi −
(1− r)
(1 + 3r)

∫
R−

âjg(xj)dxj (A36)

Similarly, for j, we can write:∫
R−

âjg(xj)dxj =
2(1 + r)

1 + 3r

∫
R−

xjg(xj)dxj −
(1− r)
(1 + 3r)

∫
R+

âig(xi)dxi (A37)

Because the distribution g(x) is symmetric, we know that
∫
R+
xig(xi) = −

∫
R−

xjg(xj). Therefore,

adding up Equations (A36) and (A37), we have:∫
R+

âig(xi)dxi = −
∫
R−

âjg(xj)dxj (A38)

We can thus write
∫
R−

âjg(xj)dxj as follows:∫
R−

âjg(xj)dxj =
(1 + r)

2r

∫
R−

xjg(xj)dxj (A39)

Substituting this in Equation (A34), we have:

âi =
2(1 + r)

1 + 3r
xi −

(1− r)(1 + r)

2r(1 + 3r)

∫
R−

xjg(xj)dxj (A40)
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A.7 Game with Disclosure

Consider a two-stage game such that in Stage 1, agents have the opportunity to simultaneously

reveal their type (which is verifiable). Then in Stage 2, the players simultaneously choose an action.

There are four possible equilibria of this game: (D,D), (ND, ND), (D, ND), and (ND, ND), where D

stands for Disclosure and ND stands for Non-Disclosure. The (ND, ND) equilibrium is equivalent

to the baseline game considered in the main analysis, where agents’ types are private information.

We first consider a (ND, ND) equilibrium and see whether agent i has the incentive to

deviate. Suppose that i deviates are reveals her type and j plays the equilibrium strategy of not

disclosing her type xj . Then we can derive the optimal actions of j in this case as:

âj =
2(1 + r)

1 + 3r
xj −

(1− r)
(1 + 3r)

âi (A41)

Note that there is no integral over ai since j does not have uncertainty on i’s type anymore. Next,

we can derive ai as:

âi =
2(1 + r)

1 + 3r
xi −

(1− r)
(1 + 3r)

∫
R
âjg(xj)dxj (A42)

Substituting aj from Equation (A41) into the above equation, we have:

âi =
1 + 3r

4r
xi (A43)

Now we can write the expected utility of i when she plays the equilibrium strategy as:

EUND,ND(xi, ai) = −r(1− r)
2

(1 + 3r)2
x2i −

(1− r)4r2
(1 + 3r)2

x2i −
(1− r)(1 + r)2

(1 + 3r)2

∫
R
x2jg(xj)dxj . (A44)

Similarly, we can write the expected utility of i when she deviates as:

EUD,ND(xi, ai) = −(1− r)2
16r

x2i −
(1− r)

4
x2i −

(1− r)(1 + r)2

(1 + 3r)2

∫
R
x2jg(xj)dxj . (A45)

Comparing Equations (A44) and (A45), we can see that EUND,ND(xi, ai) > EUD,ND(xi, ai) if:

−r(1− r)
2

(1 + 3r)2
x2i −

(1− r)4r2
(1 + 3r)2

x2i >
(1− r)2

16r
x2i −

(1− r)
4

x2i

⇒ − r(1− r)
(1 + 3r)2

− 4r2

(1 + 3r)2
> −(1− r)

16r
− 1

4

⇒ − r

(1 + 3r)
> −1 + 3r

16r

⇒ −16r2 + (1 + 3r)2 > 0

⇒ (1 + 7r)(1− r) > 0 (A46)
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The above inequality is always true. Hence, we know that agent i has no incentive to deviate from

the (ND, ND) equilibrium. Based on the same inequality, we also know that both (D, ND) and (ND,

D) cannot be equilibrium outcomes since the agent who is disclosing her type will always benefit

from deviating and choosing to not disclose her type.

A.8 Alternative Preferences

We first consider the case where agents care about choosing an action that is close to the mean

preferences of the group. That is, suppose that the agent’s utility can be expressed as:

u1(xi, ai, aj) = −r(xi − ai)2 − (1− r)(xi − x̄)2 (A47)

Taking the expectation, i’s expected utility from choosing ai in this setting can be written as

EU1(xi, ai) =
∫
R u1(xi,ai,âj)g(xj)dxj∫

R g(xj)dxj
. By differentiating EU1(xi, ai) and setting it equal to zero

at i’s equilibrium action ai = âi gives us:

∂EU1(xi, ai)

∂ai

∣∣∣∣
ai=âi

= 2r(xi − âi)− 2(1− r)
[
âi −

xi
2
− 1

2

∫
R
xjg(xj)dxj

]
= 0 (A48)

This in turn simplifies to:

âi =
(1 + r)

2
xi (A49)

Next, consider the second alternative preference structure, where agents care about choosing

an action that is close to the group’s decision (ā). We can write agent i’s utility in this case as:

u2(xi, ai, aj) = −r(xi − ai)2 − (1− r)(ai − ā)2 (A50)

Taking the expectation, i’s expected utility from choosing ai in this setting can be written as

EU2(xi, ai) =
∫
R u2(xi,ai,âj)g(xj)dxj∫

R g(xj)dxj
. By differentiating EU2(xi, ai) and setting it equal to zero

at i’s action âi, we have:

∂EU2(xi, ai)

∂ai

∣∣∣∣
ai=âi

= 2r(xi − âi)−
(1− r)

2

[
âi −

∫
R
âjg(xj)dxj

]
= 0 (A51)

Re-arranging the terms, we have:

âi =
4r

(1 + 3r)
xi +

(1− r)
(1 + 3r)

∫
R
âjg(xj)dxj (A52)

Taking the integral of the above equation with respect to the distribution of xi, we have:∫
R
âig(xi)dxi =

4r

(1 + 3r)

∫
R
xig(xi)dxi +

(1− r)
(1 + 3r)

∫
R
âjg(xj)dxj (A53)
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Since
∫
R xig(xi)dxi = 0, we have

∫
R âig(xi)dxi = 0. This gives us the equilibrium action of i as:

âi =
4r

(1 + 3r)
xi (A54)

B Equilibrium of the Exogenous Sequential Game
Let i and j be the first and second players, respectively. The second player j’s equilibrium action

has already been derived in the main text (see section ??), and is equal to:

âx2,j =
2(1 + r)

1 + 3r
xj −

(1− r)
1 + 3r

ax1,i (A55)

So we now derive the first player’s optimal action âx1,i. In equilibrium, i’s utility from choosing

action ax1,i is given by:

u (xi, ax1,i, âx2,j) = −r(xi − ax1,i)2 − (1− r) (xi − āx)2 (A56)

where āx =
ax1,i+âx2,j

2 . We know that when i chooses ax1,i, in response, j chooses âx2,j =

2(1+r)
1+3r xj −

(1−r)
1+3r ax1,i. This in turn gives us āx as:

āx =
(1 + r)xj + 2rax1,i

1 + 3r
(A57)

Substituting this value of āx into Equation (A56), we have:

u (xi, ax1,i, âx2,j) = −r(xi − ax1,i)2 − (1− r)
[(

xi −
2r

1 + 3r
ax1,i

)2

+

(
1 + r

1 + 3r
xj

)2
]

+ 2(1− r)
[(
xi −

2r

1 + 3r
ax1,i

)(
1 + r

1 + 3r
xj

)]
(A58)

Hence, the expected utility of agent i in from choosing action ax1,i in period 1 is:

EUx1 (xi, ax1,i) =

∫
R u (xi, ax1,i, âx2,j) g(xj)dxj∫

R g(xj)dxj
(A59)

We can simplify the above as follows:

EUx1 (xi, ax1,i) = − r(xi − ax1,i)2 + 2(1− r)
(
xi −

2r

1 + 3r
ax1,i

)(
1 + r

1 + 3r

)∫
R
xjg(xj)dxj

− (1− r)
[(

xi −
2r

1 + 3r
ax1,i

)2

+

(
1 + r

1 + 3r

)2 ∫
R
x2jg(xj)dxj

]
(A60)
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Computing the integrals in Equation (A60), we have:

EUx1 (xi, ax1,i) = −r (xi − ax1,i)2−(1−r)
[(

xi −
2r

1 + 3r
ax1,i

)2

+

(
1 + r

1 + 3r

)2 ∫
R
x2jg(xj)dxj

]
(A61)

Solving the first-order condition for agent i’s action gives us the equilibrium choice âx1,i:

âx1,i =
(1 + 3r)(3 + r)

(1 + 3r)2 + 4r(1− r)xi (A62)

Thus, given xi and xj , there exists a unique exogenous sequential choice equilibrium, where âx1,i =

(1+3r)(3+r)
(1+3r)2+4r(1−r)xi and âx2,j =

2(1+r)xj−(1−r)ax1,i
1+3r .

C Proof of Proposition 2
Recall that the mean of the equilibrium outcome for the exogenous sequential game can be expressed

as:

āx =
âx1,i + âx2,j

2
=

2rax1,i + (1 + r)xj
1 + 3r

=
2r(3 + r)

(1 + 3r)2 + 4r(1− r)xi +
1 + r

1 + 3r
xj (A63)

Next we show that 0 < k1(r), k2(r) < 1.

• k1(r) < 1 if (1+3r)(1−r)
(1+3r)2+4r(1−r) < 1⇒ (1+3r)(1−r) < (1+3r)2 +4r(1−r)⇒−4r(1+3r) <

4r(1− r), which is always true if 0 < r < 1. Hence k1(r) < 1.

• k2(r) < 1 if
(1+3r)[(1+3r)2+16r]

[(1+3r)2+4r(1−r)][2(1+r)+(1+3r)]
< 1, ⇒ 4r(1 + 3r)(3 + r) < 2(1 + 3r)2(1 +

r) + 4r(1 − r)(1 + r)⇒ −(1 + 3r)(1 − r)2 < 4r(1 − r)(1 + r), which is always true since

0 < r < 1.

Further, k1(r), k2(r), k3(r) > 0 since all the terms in their numerators and denominators are posi-

tive. Thus 0 < k1(r), k2(r), k3(r) < 1.

a) First, we compare āx with x̄. Without loss of generality, let xi ≥ 0.

• Polarization – |āx| > |x̄| and āxx̄ > 0.

• First, consider the case where xj > k1(r)xi. In this case, āxx̄ > 0 because both āx > 0 and

x̄ > 0. The condition |āx| > |x̄| therefore simplifies to āx > x̄. This can be expressed as:

2r(3 + r)

(1 + 3r)2 + 4r(1− r)xi +
1 + r

1 + 3r
xj >

1 + r

1 + 3r
xi +

1 + r

1 + 3r
xj

⇒ xj >
(1 + 3r)(1− r)

(1 + 3r)2 + 4r(1− r)xi (A64)

where the multiplier of xi is k1(r) = (1+3r)(1−r)
(1+3r)2+4r(1−r) . By definition,(A64) is satisfied.
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• Second, consider the case where −xi < xj ≤ k1(r)xi. Here, x̄ > 0. So the condition

|āx| > |x̄| simplifies to āx < x̄. From the previous case, we know that āx > x̄ if and only if

xj > k1(r)xi. This is not possible here since by definition xj ≤ k1(r)xi.

• Third, consider the case where xj = −xi. Here x̄ = 0. So, we cannot have āxx̄ > 0.

• Fourth, consider the case where xj < −xi. Here, x̄ < 0. Since we require āxx̄ to be greater

than zero, it follows that āx < 0. So the condition |āx| > |x̄| simplifies to āx < x̄ ⇒
xj < k1(r)xi, which is always true since by definition xj < −xi.

Hence, polarization occurs in the first and third cases, i.e., when xj > k1(r)xi or when xj <

−xi.

• Reverse Polarization – |āx| > |x̄| and āxx̄ ≤ 0.

• First, consider the case where xj > −k2(r)xi. Here both āx > 0 and x̄ > 0 since k2(r) < 1.

So it cannot be that āxx̄ ≤ 0. Therefore, this case is ruled out.

• Second, consider the case where −xi ≤ xj < −k2(r)xi. Here x̄ ≥ 0. So the condition

|āx| ≥ |x̄| simplifies to āx ≤ −x̄. This can be expressed as:

2r(3 + r)

(1 + 3r)2 + 4r(1− r)xi +
1 + r

1 + 3r
xj < −

1 + r

1 + 3r
xi −

1 + r

1 + 3r
xj

⇒ xj <
(1 + 3r)

[
(1 + 3r)2 + 16r

]
[(1 + 3r)2 + 4r(1− r)] [2(1 + r) + (1 + 3r)]

xi (A65)

where the multiplier of xi is labeled k2(r) =
(1+3r)[(1+3r)2+16r]

[(1+3r)2+4r(1−r)][2(1+r)+(1+3r)]
. Since by

definition xj < −k2(r)xi, condition (A65) is always satisfied.

• Third, consider the case where xj < −xi. Here x̄ < 0. So the condition |āx| ≥ |x̄| simplifies

to āx ≥ x̄, which we know is the same as xj ≥ k1(r)xi > 0. However, this is not possible

since by definition xj < −xi.

Hence, Reverse Polarization only occurs when −xi ≤ xj < −k2(r)xi.

• Moderation – |āx| ≤ |x̄|.

• First, consider the case where xj < −xi. Here, x̄ ≤ 0. So the condition |āx| ≤ |x̄| simplifies

to −x̄ ≤ āx ≤ x̄. If −x̄ ≤ āx, it then follows that xj ≥ k2(r)xi ≥ 0, which is impossible

since by definition xj < −xi.

• Second, consider the case where −xi ≤ xj < −k2(r)xi. Here, x̄ ≥ 0. So the condition

|āx| ≤ |x̄| simplifies to −x̄ ≤ āx ≤ x̄. We know that this condition can be expressed as
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−k2(r)xi ≤ xj ≤ k1(r)xi. This is not possible, since by definition xj < −k2(r)xi.

• Third, consider the case where −k2(r)xi ≤ xj ≤ k1(r)xi. Here, x̄ > 0. So the condition

|āx| ≤ |x̄| simplifies to x̄ ≤ āx ≤ −x̄. This in turn can be expressed as −k2(r)xi ≤ xj ≤
k1(r)xi, which we know is true by definition.

• Fourth, consider the case where xj > k1(r)xi. Here, x̄ > 0. So the condition |āx| ≤ |x̄|
simplifies to x̄ ≤ āx ≤ −x̄. This in turn can be expressed as −k2(r)xi ≤ xj ≤ k1(r)xi,

which cannot be true, since by definition xj > k1(r)xi.

Hence, moderation occurs only when −k2(r)xi ≤ xj ≤ k1(r)xi.

Proof of Proposition 3

1. First, we show that, for xj > 0, âx2,j ≥ âj if xi ≤ 0, and âx2,j < âj if xi > 0.

(a) Let xi ≤ 0

âx2,j − âj can be simplified to âx2,j − âj = − (1−r)
1+3r âx1,i. We know that âx1,i =

µx(r)xi ≤ 0 because µx(r) > 0, xi ≤ 0. It therefore follows that − (1−r)
1+3r âx1,i ≥ 0⇒

âx2,j ≥ âj .

(b) Let xi > 0

As before âx2,j − âj = − (1−r)
1+3r âx1,i. However, here âx1,i = µx(r)xi > 0 because

µx(r), xi > 0. Hence it follows that âx2,j − âj < 0⇒ âx2,j < âj .

2. Next, we show that |âx1,i| ≥ |âi| and d|âx1,i|
dr < 0.

To show that |âx1,i| ≥ |âi|, we need to show that µx(r) ≥ µ(r).

µx(r)− µ(r) =
(1 + 3r)(3 + r)

(1 + 3r)2 + 4r(1− r) −
2(1 + r)

1 + 3r

=
(1− r)3

(1 + 3r)[(1 + 3r)2 + 4r(1− r)] > 0 if r > 0 (A66)

Therefore, µx(r) ≥ µ(r)⇒ |âx1,i| ≥ |âi|.

The derivative of âx1,i w.r.t r can be calculated and simplified to dâx1,i
dr = − 4(5r2+6r+5)

[(1+3r)2+4r(1−r)]2xi.

Since r > 0, it follows that dâx1,i
dr < 0 �
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D Proof of Proposition 4
First, we show that 0 < k3(r) < 1. This is true if (1+3r)3+8r(1−r)(1+r)

2(1+r)[(1+3r)2+4r(1−r)] < 1 ⇒ (1 + 3r)3 <

2(1 + r)(1 + 3r)2,⇒ r < 1, which we know is always true. Further, k3(r) > 0 since all the terms

in their numerators and denominators are positive. Thus 0 < k3(r) < 1.

Next, we compare āx with ā. Without loss of generality, let xi ≥ 0.

• |āx| > |ā| and āxx̄ > 0.

• First, consider the case where xj ≥ −xi. Here, x̄ ≥ 0. So the condition |āx| > |ā| simplifies

to āx > ā⇒ 2r(3+r)
(1+3r)2+4r(1−r)xi >

1+r
1+3rxi, which is impossible since 0 < r < 1 and xi ≥ 0.

• Second, consider the case where −xj < xi. Here x̄ < 0. So the condition |āx| > |ā|
simplifies to āx < ā⇒, 2r(3+r)

(1+3r)2+4r(1−r)xi <
1+r
1+3rxi, which is always true for 0 < r < 1,

xi ≥ 0.

Hence, for −xj < xi, the mean outcome in the exogenous sequential game is more polarized

than that in the simultaneous game, and this polarization is in the same direction as x̄.

• |āx| > |ā| and āxx̄ ≤ 0.

• First, consider the case where xj < −xi. Then ā, x̄ < 0. So for āxx̄ ≤ 0 to be true, we

require āx ≤ 0, which is not possible since āx < x̄ < 0.

• Second, consider the case where −xi ≤ xj < −k3(r)xi. Here, x̄ ≥ 0 and the condition

|āx| > |ā| simplifies to āx > −ā. This can be expressed as:

2r(3 + r)

(1 + 3r)2 + 4r(1− r)xi < −
1 + r

1 + 3r
xi

⇒ xj <
(1 + 3r)3 + 8r(1− r)(1 + r)

2(1 + r) [(1 + 3r)2 + 4r(1− r)]xi (A67)

where the multiplier of xi is labeled k3(r) = (1+3r)3+8r(1−r)(1+r)
2(1+r)[(1+3r)2+4r(1−r)]xi. Since by definition,

xj < k3(r)xi, condition (A67) is always satisfied.

• Third, consider the case where xj ≥ k3(r)xi. Then, x̄ ≥ 0 and the |āx| > |ā| simplifies to

āx < −ā. However, from the second case, we know that this condition can only be satisfied

when xj < k3(r)xi, which cannot hold here, since by definition xj ≥ k3(r)xi.

Hence, for−xi ≤ xj < −k3(r)xi, the mean outcome in the exogenous sequential game is more

extreme than that in the simultaneous game, but in the direction opposite to that indicated by the
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mean preference x̄.

• |āx| ≤ |ā|.

• First, consider the case where xj ≥ −k3(r)xi. Here, āx, x̄, ā ≥ 0. So the condition |āx| ≤
|ā| simplifies to āx ≤ ā⇒, 2r(3+r)

(1+3r)2+4r(1−r)xi ≤ 1+r
1+3rxi, which is always true for 0 < r < 1,

xi ≥ 0.

• Second, consider the case where −xi ≤ xj < k3(r)xi. Here also x̄, ā ≥ 0. So the condition

|āx| ≤ |ā| simplifies to −ā ≤ āx ≤ ā. From the case before, we know that āx ≤ ā for

xi ≥ 0. However, to ensure that −ā ≤ āx, we need xj ≥ k3(r)xi, which cannot be true

since by definition −xi ≤ xj < k3(r)xi.

• Third, consider the case where xj < −xi. Here, x̄, ā < 0. So the condition |āx| ≤ |ā|
simplifies to ā ≤ āx ≤ −ā. The condition āx ≥ ā reduces to xj ≥ −k3(r)xi, which we

know is not possible since xj < −xi and 0 < k3(r) < 1.

Hence, for xj ≥ −k3(r)xi, the mean outcome in the exogenous sequential game is less extreme

(moderate) compared to that in the simultaneous game.

E Proof of Proposition 5
The expected utility of the first player i in equilibrium is given by (11). Substituting for âx1,i gives

us:

EUx1 (xi, âx1,i) = − r

(
xi −

(1 + 3r)(3 + r)

(1 + 3r)2 + 4r(1− r)xi
)2

− (1− r)
[(

xi −
2r(3 + r)

(1 + 3r)2 + 4r(1− r)xi
)2

+
(1 + r)2

3(1 + 3r)2

∫
R
x2jg(xj)dxj

]
(A68)

This in turn simplifies to:

EUx1 (xi, âx1,i) = − (1− r)(1 + r)2

(1 + 3r)2 + 4r(1− r)x
2
i −

(1− r)(1 + r)2

(1 + 3r)2

∫
R
x2jg(xj)dxj (A69)

Next, consider the a priori expected utility of player j, in equilibrium. It is obtained by

integrating the utility of the second player over the range of xi. That is, EUx2 (xj , âx2,j) =∫
R u (xj , âx2,j , âx1,i) g(xi)dxi. Substituting for âx2,j as 2(1+r)

1+3r xj −
(1−r)
1+3r ax1,i, we have:

EUx2 (xj , âx2,j) = − r

∫
R

(
xj −

2(1 + r)

1 + 3r
xj −

1− r
1 + 3r

âx1,i

)2

g(xi)dxi

− (1− r)
∫
R

(
xj −

1 + r

1 + 3r
xj −

2r

1 + 3r
âx1,i

)2

g(xi)dxi (A70)
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Substituting for âx1,i and integrating, we have:

EUx2 (xj , âx2,j) = −r(1− r)
1 + 3r

x2i −
r(1− r)(1 + 3r)(3 + r)2

[(1 + 3r)2 + 4r(1− r)]2
∫
R
x2g(x)dx (A71)

Next, we compare the difference in the expected utilities for a specific player i, where

Dx(xi) = EUx1 (xi, âx1,i) − EUx2 (xi, âx2,i). We can show that Dx(xi) ≤ 0 for all i if the

following two conditions are satisfied:

r(1− r)(1 + 3r)(3 + r)2

[(1 + 3r)2 + 4r(1− r)]2
> −(1− r)(1 + r)2

(1 + 3r)2
(A72)

and

−r(1− r)
1 + 3r

≥ − (1− r)(1 + r)2

(1 + 3r)2 + 4r(1− r) (A73)

First, consider the inequality (A72), which can be simplified to:

(1 + r)2
[
(1 + 3r)2 + 4r(1− r)

]2
> r(3 + r)2(1 + 3r)3 (A74)

This in turn simplifies to:

(1 + 3r)3
[
(1 + r)2(1 + 3r)− r(3 + r)2

]
+ (1 + r)2

[
16r2(1− r)2 + 8r(1− r)(1 + 3r)2

]
> 0

⇒ 16r2(1 + r)2(1− r)2 + (1 + 3r)2(1− r)
[
2r(1 + r)2 + (1 + 3r)(1− r)

]
> 0 (A75)

Since both the terms in the R.H.S of inequality (A75) are non-negative, the inequality is always true.

Therefore, (A72) is always true. Next, consider the inequality (A73), which can be expressed as:

(1− r)(1 + r)2

(1 + 3r)2 + 4r(1− r)x
2
i ≥

r(1− r)
1 + 3r

x2i (A76)

This is true if:

(1− r)
[
(1 + r)2(1 + 3r)− r[(1 + 3r)2 + 4r(1− r)]

]
x2i ≥ 0

⇒ (1− r)2
[
2r2 + 5r + 1

]
x2i ≥ 0 (A77)

We know that x2i ≥ 0 and that both (1 − r)2 and 2r2 + 5r + 1 are positive for 0 < r < 1. Hence

this inequality is always true too. Further, since both (A72) and (A73) are always true, it follows

that EUx2 (xi, âx2,i) > EUx1 (xi, âx1,i).

b) Now we prove the second part of the Proposition. Let xi > 0, then:

dDx(xi)

dxi
= 2xi(1− r)

[
r

1 + 3r
− (1 + r)2

(1 + 3r)2 + 4r(1− r)

]
(A78)
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Since we have already shown that (A73) is true, we know that (1−r)
[

r
1+3r −

(1+r)2

(1+3r)2+4r(1−r)

]
> 0.

It therefore follows that 2xi(1 − r)
[

r
1+3r −

(1+r)2

(1+3r)2+4r(1−r)

]
≤ 0. Hence, dDx(xi)

dxi
≤ 0. Similar

proof applies for xi < 0. �

F Proof of Proposition 6
The solutions for the optimal actions for periods 3 and 4 are analogous to that in the exogenous

sequential choice game and are outlined in the main text. Below, we derive the players’ optimal

action for the first two periods.

Period 2 – A player who has lost the auction makes no decisions in period 2. So we only consider

the actions of a player who won the auction in period 1. Suppose player j bids according to the

symmetric bidding function β(·), then player i belief upon winning is that player j must belong to

a some symmetric region W for her to have won the auction. In that case, i’s expected utility from

speaking first is:

EUn1 (xi, an1,i) = − r(xi − an1,i)2 − (1− r)
[(

xi −
2r

1 + 3r
an1,i

)2

+

(
1 + r

1 + 3r

)2
∫
W x2jg(xj)dxj∫
W g(xj)dxj

]

− 2
1 + r

1 + 3r

(
xi −

2r

1 + 3r
an1,i

) ∫
W xjg(xj)dxj∫
W g(xj)dxj

(A79)

The last term vanishes because W is symmetric around zero. So:

EUn1 (xi, an1,i) = −r(xi − an1,i)2 − (1− r)
[(

xi −
2r

1 + 3r
an1,i

)2

+

(
1 + r

1 + 3r

)2
∫
W x2jg(xj)dxj∫
W g(xj)dxj

]

= − (1− r)(1 + r)2

(1 + 3r)2 + 4r(1− r)x
2
i −

(1− r)(1 + r)2

(1 + 3r)2

∫
W x2jg(xj)dxj∫
W g(xj)dxj

(A80)

Similarly, simplifying i’s expected utility from speaking second gives us:

EUn2 (xi, an2,i) = −r(1− r)
(1 + 3r)

[
x2i +

(
(1 + 3r)(3 + r)

(1 + 3r)2 + 4r(1− r)

)2 ∫
W
g(xj)x

2
jdxj

]
(A81)

i prefers to speak second if:

EUn2 (xi, an2,i) > EUn1 (xi, an1,i) (A82)

LetA(r) = (1−r)(1+r)2
(1+3r)2+4r(1−r) ,B(r) = (1−r)(1+r)2

(1+3r)2
,C(r) = r(1−r)

(1+3r) , andD(r) = r(1−r)
(1+3r)

(
(1+3r)(3+r)

(1+3r)2+4r(1−r)

)2
.

It is trivial to show that the multiplier of x2i in EUn2 (xi, an2,i) is always greater than that in
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EUn1 (xi, an1,i) ⇒ A(r) > C(r). Similarly, we can show that the multiplier of
∫
W x2jg(xj)dxj

in EUn2 (xi, an2,i) is also greater than that in EUn1 (xi, an1,i) ⇒ B(r) > D(r). Therefore, in a

symmetric bidding equilibrium, for all xis, the expected value from speaking second is higher than

that from speaking first. Therefore, upon winning the auction, all types will choose to speak second.

Period 1 At the beginning of period 1, before placing her bid, player i knows that if she wins, she

will choose to go second and if player j wins, she will go first. Hence, her expected utility from

choosing a bid bi and then choosing the optimal action in the subsequent periods is

EU(xi, bi) =

∫
Li
u(xi, ân1,i, ân2,j)g(xj)dxj +

∫
Wi

[u(xi, ân1,j , ân2,i)− bi] g(xj)dxj∫
R g(xj)dxj

(A83)

where j ∈Wi for i to win the auction and j ∈ Li for her to lose the auction, if she chooses a bid bi.

This simplifies to:

2EU(xi, bi) = − A(r)x2i

∫
Li

g(xj)dxj −B(r)

∫
Li

x2jg(xj)dxj

− C(r)x2i

∫
Wi

g(xj)dxj −D(r)

∫
Wi

x2jg(xj)dxj −
∫
Wi

big(xj)dxj

= − 2x2i + [A(r)− C(r)]x2i

∫
Wi

g(xj)dxj + [B(r)−D(r)]

∫
Wi

x2jg(xj)dxj −
∫
Wi

big(xj)dxj(A84)

Now consider any two types x′ and x′′ and a bidding function β(·). In equilibrium, x′ can

do no better by playing x′′’s strategy β(x′′) over her own strategy β(x′) and vice-versa. That is:

EU(x′, β(x′)) ≥ EU(x′, β(x′′)) (A85)

EU(x′′, β(x′′)) ≥ EU(x′, β(x′′)) (A86)

Substituting the simplified expressions for the expected utilities into the above inequalities and

adding them up gives us:

[A(r)− C(r)] (x′2 − x′′2)
(∫

W1

g(xj)dxj −
∫
W2

g(xj)dxj

)
≥ 0 (A87)

We know that A(r)− C(r) > 0. So if x′2 > x′′2, then for the above inequality to hold, we require

that
∫
W1

g(xj)dxj−
∫
W2

g(xj)dxj ≥ 0⇒ the region over which a player wins upon bidding β(x′) is

greater than that over which she wins when she bids β(x′′). In other words, the equilibrium bidding

strategies are monotonically increasing in |x|. Further, following the technique as that outlined in
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Fudenberg and Tirole (1991) p. 217, we can show strict monotonicity, i.e., if |x′| > |x′′|, then

β(x′) > β(x′′).

Now that we have shown that the bidding strategies are monotonically increasing in |x|, for

the specific bid bi by player i (when the other player uses the bidding function β(·)), we re-write

Equation (A84) as:

EU(xi, bi) = −2x2i+2[A(r)−C(r)]x2i

∫ β−1(bi)

0
g(x)dx+2[B(r)−D(r)]

∫ β−1(bi)

0
x2g(x)dx−2

∫ β−1(bi)

0
big(x)dx

(A88)

Further, we specify the following expression for the derivatives:

d
[∫ β−1(bi)

0 F (x)
]

dbi
dx = F (V )

dV

dbi
(A89)

where V = β−1(bi). To obtain the equilibrium bidding function, we can calculate the F.O.C of

Equation (A88) as dEU(xi,bi)
dbi

∣∣∣
bi=b̂i

= 0. This simplifies to:

[A(r)− C(r)]x2i
g(β−1(b̂i))

β′(β−1(b̂i))
+ [B(r)−D(r)]

g(β−1(b̂i))
[
β−1(b̂i)

]2
β′(β−1(b̂i))

−
[
b̂i
g(β−1(b̂i))

β′(β−1(b̂i))
+

∫ β−1(b̂i)

0
g(x)dx]

]
= 0

In equilibrium b̂i = β(xi) and so β−1(b̂i) = xi. So the above equation simplifies to:

[A(r)− C(r) +B(r)−D(r)]x2i g(β−1(b̂i)) =
d
[
β(xi)

∫ xi
0 g(x)dx

]
dxi

(A90)

Integrating this from 0 to xi, we have:

β̂ = β(xi) = [A(r)− C(r) +B(r)−D(r)]

[∫ xi
0 x2g(x)dx∫ xi
0 g(x)dx

]
= f(r)

[∫ xi
0 x2g(x)dx∫ xi
0 g(x)dx

]
, (A91)

where f(r) = A(r)−C(r)+B(r)−D(r) is the multiplier of
[∫ xi

0 x2g(x)dx∫ xi
0 g(x)dx

]
. SinceA(r)−C(r) > 0

and B(r)−D(r) > 0, f(r) is positive, which recovers the assumption that the bidding function is

symmetric around zero. �
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G Social Welfare Derivations and Comparisons
G.1 Welfare Under First-Best Planner’s Choice

The social planner’s choice involve agents choosing their true preferences as their actions, i.e.,

ai = xi and aj = xj , and ā =
xi+xj

2 . Then:

WFB(xi, xj , ai, aj) = WFB(xi, xj)

= −r(xi − ai)2 − (1− r)(xi − ā)2 − r(xj − aj)2 − (1− r)(xj − ā)2

= −(1− r)(xi − xj)2
2

(A92)

Then the expected welfare is given by:

EWP =

∫
R
∫
RW1(xi, xj)g(xi)g(xj)dxidxj∫

R
∫
R g(xi)g(xj)dxidxj

= − (1− r)
2
∫
R
∫
R g(xi)g(xj)dxidxj

[∫
R

∫
R

(x2i + x2j − 2xixj)g(xi)g(xj)dxidxj

]
We know that

∫
R
∫
R g(xi)g(xj)dxidxj = 1 and

∫
R
∫
R xixjg(xi)g(xj)dxidxj = 0 because g(·) is a

symmetric distribution. Therefore, EW1 simplifes to:

EWFB =
−(1− r)

2

∫
R

∫
R

[
x2i + x2j

]
g(xi)g(xj)dxjdxj

= −(1− r)
∫
R
x2g(x)dx (A93)

G.2 Welfare in the Simultaneous Game

In the simultaneous game, the actions are ai = 2(1+r)
1+3r xi, aj = 2(1+r)

1+3r xj , and the mean action is

ā = (1+r)
1+3r (xi + xj). Substituting this in the welfare function we can obtain:

Ws(xi, xj , ai, aj) = Ws(xi, xj)

= −r(1− r)
2

(1 + 3r)2
(x2i + x2j )−

1− r
(1 + 3r)2

[2rxi − (1 + r)xj ]
2

− 1− r
(1 + 3r)2

[2rxj − (1 + r)xi]
2 (A94)

= −r(1− r)
2

(1 + 3r)2
(x2i + x2j )

− 1− r
(1 + 3r)2

[
4r2(x2i + x2j ) + (1 + r)2(x2i + x2j )− 8r(1 + r)xixj

]
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The expected welfare is then given by:

EWs =

∫
R
∫
RWs(xi, xj)g(xi)g(xj)dxidxj∫

R
∫
R g(xi)g(xj)dxidxj

As before,
∫
R
∫
R g(xi)g(xj)dxidxj = 1 and

∫
R
∫
R xixjg(xi)g(xj)dxidxj = 0. So:

EWs = − 2(1− r)
(1 + 3r)2

[r(1− r) + 4r2 + (1 + r)2]

∫
R
x2g(x)dx (A95)

G.3 Welfare in the Exogenous Sequential Choice Game

Without loss of generality, assume that i speaks first and j speaks second. Then, we have the

actions of the two agents as ai = (1+3r)(3+r)
(1+3r)2+4r(1−r)xi, aj = 2(1+r)

1+3r xj − 1−r
1+3rai, and the mean action

as ā = 2r(3+r)
(1+3r)2+4r(1−r)xi + 1+r

1+3rxj . Using these, we can further derive the following expressions:

xi − ai = − 2(1− r)(1 + r)

(1 + 3r)2 + 4r(1− r)xi

xj − aj = − 1− r
1 + 3r

[
xj −

(1 + 3r)(3 + r)

(1 + 3r)2 + 4r(1− r)xi
]

xi − ā =
(1 + 3r)(1 + r)

(1 + 3r)2 + 4r(1− r)xi −
1 + r

1 + 3r
xj

xj − ā =
2r

1 + 3r
xj −

2r(3 + r)

(1 + 3r)2 + 4r(1− r)xi

Substituting the above terms in the welfare equation, we have:

Wx(xi, xj , ai, aj) = Wx(xi, xj)

= − 4r(1− r)2(1 + r)2

((1 + 3r)2 + 4r(1− r))2x
2
i − (1− r)

[
(1 + 3r)(1 + r)

(1 + 3r)2 + 4r(1− r)xi −
1 + r

1 + 3r
xj

]2
−r(1− r)

2

(1 + 3r)2

[
xj −

(1 + 3r)(3 + r)

(1 + 3r)2 + 4r(1− r)xi
]2

−(1− r)
[

2r

1 + 3r
xj −

2r(3 + r)

(1 + 3r)2 + 4r(1− r)xi
]

(A96)

As before, the expected welfare is given by:

EWx =

∫
R
∫
RW3(xi, xj)g(xi)g(xj)dxidxj∫

R
∫
R g(xi)g(xj)dxidxj
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As before, this implies that the integrals of the xixj terms are canceled out. Further, and
∫
R
∫
R g(xi)g(xj)dxidxj =

1.

EWx = − 4r(1− r)2(1 + r)2

[(1 + 3r)2 + 4r(1− r)]2
∫
R

∫
R
x2i g(xi)g(xj)dxidxj

− r(1− r)2
(1 + 3r)2

∫
R

∫
R

[
x2j +

(1 + 3r)2(3 + r)2

[(1 + 3r)2 + 4r(1− r)]2
x2i

]
g(xi)g(xj)dxidxj

− (1− r)
∫
R

∫
R

[
(1 + 3r)2(1 + r)2 + 4r2(3 + r)2

[(1 + 3r)2 + 4r(1− r)]2
x2i +

(1 + r)2 + 4r2

(1 + 3r)2
x2j

]
g(xi)g(xj)dxidxj

This simplifies to:

EWx = −(1− r)
[
(1 + r)2 + 4r2 + r(1− r)

]
3(1 + 3r)2

∫
R
x2g(x)dx

−
[

(1− r)
[
4r(1− r)(1 + r)2 + 4r2(3 + r)2 + (1 + 3r)2(1 + r)2 + r(1− r)(3 + r)2

]
3 [(1 + 3r)2 + 4r(1− r)]2

]∫
R
x2g(x)dx(A97)

G.4 Welfare in the Endogenous Sequential Choice Game

As before, assume that i speaks first and j speaks second. Recall that the players’ actions here are

the same as that in the exogenous sequential choice game. However, we know that |xi| < |xj |. So

while the welfare equation remains the same, the integrations regions are different. Thus, we have:

Wn(xi, xj , ai, aj) = Wn(xi, xj)

= − 4r(1− r)2(1 + r)2

((1 + 3r)2 + 4r(1− r))2x
2
i − (1− r)

[
(1 + 3r)(1 + r)

(1 + 3r)2 + 4r(1− r)xi −
1 + r

1 + 3r
xj

]2
−r(1− r)

2

(1 + 3r)2

[
xj −

(1 + 3r)(3 + r)

(1 + 3r)2 + 4r(1− r)xi
]2

−(1− r)
[

2r

1 + 3r
xj −

2r(3 + r)

(1 + 3r)2 + 4r(1− r)xi
]

(A98)

and the expected welfare is:

EWn =

∫∫
R1∪R2

W4(xi, xj)g(xi)g(xj)dxidxj∫∫
R1∪R2

g(xi)g(xj)dxidxj
(A99)

where the two regions R1 and R2 are defined as follows:

R1 ≡ xi ∈ [0,∞] , xj ∈ [xi,∞] ∪ [−∞,−xi]

R2 ≡ xi ∈ [−∞, 0] , xj ∈ [−xi,∞] ∪ [−∞, xi]
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As before, we can show that the integral of the xixj terms overR1∪R2 is zero. So we now consider

the integrals of the x2j and x2i terms. Since inference on j’s type is conditional on i, we first integrate

over j’s type. Because of the symmetry of the distrbution, it is easy to show that:∫∫
R1∪R2

x2i g(xi)g(xj)dxidxj = 4

∫ ∞
0

x2g(x)(1−G(x))dx (A100)

∫∫
R1∪R2

g(xi)g(xj)dxidxj = 4

∫ ∞
0

g(x)(1−G(x))dx (A101)

Substituting these expressions back in the expected welfare function, we have:

EWn =

(
−(1− r)

[
(1 + r)2 + 4r2 + r(1− r)

]
(1 + 3r)2

− (1− r)
[
4r(1− r)(1 + r)2 + 4r2(3 + r)2 + (1 + 3r)2(1 + r)2 + r(1− r)(3 + r)2

]
3 [(1 + 3r)2 + 4r(1− r)]2

)

·
(∫∞

0 x2g(x)(1−G(x))dx∫∞
0 x2g(x)(1−G(x))dx

)
(A102)
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