Web Appendix

A Extensions of the Simultaneous Action Game
A.1 General Linear Combination

We now consider a case where the group outcome is a linear combination of all agents’ revealed

preferences such that @ = aa; + (1 — a)a;, where 0 < a < 1. We can then write the utility as:
o (i, aiy a5) = —r(zi — a;)? — (1 =) (2 — ag; — (1 — @)a;)? (A1)

Because j’s preference () is her private information at the time of choosing the action, i’s expected

utility from choosing a; as EU, (z;, a;) = Ju ua(}ci’;(i‘fj)li@j)dxj . By differentiating EU (z;, a;) and
R J J

setting it equal to zero at i’s equilibrium action a; = a; gives us:
8E Ua (1‘2‘, ai)
8&,‘

— 9r(zi— i) +2(L—r)a [az @)+ (1—a) /R ajg(xj)dxj} ~ 0. (A2)

a;=a;
We can then write the equilibrium action of 7 as:

e T U [,

As in the main model, we can easily show that fR a;g(xj)dx; = 0. Therefore, we have:

s — :j((ll__:))o??xi (Ad)
We can easily show that |a;| > z; and |ad; + (1 —a)a;| > z. Thus, we see polarization in individual
agents’ actions as well as the group outcome.

A.2 Analysis of m-Player Game

A.2.1 Equilibrium of m-Player Game

To derive the Bayesian Nash equilibrium for a m-player simultaneous game, we can write the utility

of a player 7 as:

a Zm—l G 2
i ji=1 dm,j
w(Ti, G iy G, —i) = —7(T — amg)* — (1 =) (xz - == ) (A5)
m m
To obtain i’s expected utility for any a, ; in equilibrium, we can take the expectation of equation
(A5) over all the other m — 1 agents’ equilibrium actions:

fR fR fR (u(zi, Am,iy, Gm,—i)) 9(x1)g(x2)...9(Xm—1)dx1dzs...dTH—1
Jz - Jr Jr 9(x1)g(22)...9(xm—1)dz1dzs...dTs 1

EUy (25, am;) = (A6)



Substituting for u(z;, am,i, am —;) from equation (AS) and simplifying, we have:

EUn (i, am,i) = —7(2; — am,)* (A7)

L 2(1—r) ( ami> Jr Ik fR( -1 arnu) 9(z1)g(@2)...9(xm—1)dz1dzs..d2m—1
T — —
m ! Je - Jr ng 21)9(22)...9(xm—1)dz1dxs...d2Hm_1
2

)| (o me? S Ji o (27 am,]) 9(1)9(2).-g (1) dz1dzs... A 1

— —-r T;— — +
' om m? [o .. [ g 9(x1)g(x2)...g(@m—1)dz1drs...d2m 1
We know that [, g(x)dxz = 1. Also, from i’s perspective, all the other agents’ types are i.i.d from

the distribution g(z). So we can simplify equation (A7) to:

-1 m,?
EUn (zi,amg) = — (2 — am;)” +2(1—7“)m (3? ¢ ’)/am,jg(%)dxj (A8)
R

- (1-r) ( T — / / / Z am,j | 9(x1)g(x2)...9(xm—1)dz1dws...dTHm—1
Taking the F.O.C of Equation (A8) w.r.t ay, ; at am ; gives us:

dE m \47;, Umg ~ 1- -1 ~ 1- Ami
U (%4 Gmy) ZQT(xi_am,i)_—( r)(;n )/am,jg(xj)dfﬂfr d <$z - a) =0
R m

dam’i am,i:&m,i m m
(A9)
This gives us am ; as:
. [rm2 +(1- T)m] z;—(1—r)(m-1) fR m,j9(z;)dz;
s = > (A10)
rm? 4+ (1 —r)
Integrating a, ; w.r.t r;, we have:
. _ [rm2 + (1 — r)m] fR zig(z;)dx; — (1 —7r)(m —1) fR am,jg(x;)dz; ng )dx;
m,ig(zi)dz; = 5
R rm? 4+ (1 —r)

(A11)
Since [, g(x;)dz; = 1 and [p amig(zi)de; = [ amjg(z;)dz; = E(ay) this simplifies to

E(ay,) = E(z). Since E(x) = 0 in a symmetric distribution, we have:

rm? + (1 —7r)m
G — , Al2
O, rm? 4+ (1 —r) i (Al2)

A.2.2 Comparative Statics in m-Player Game

We now derive the comparative statics regarding the extent of shading s, ;.



d m —(1— 21 +(1— dsm,i __ 1
j) Lomi — (g — 1) =L T)([Tm2+)(1 [’:;3 =) | ;| This simplifies to e [m(ZZJr l)mr)]Q\:cZ\ We

know that m,m — 1 > 0, because by definition m > 2. Also, it is clear that [rm? 4+ (1 —r)]2 > 0

and that |z;| > 0. It therefore follows that ds“” > 0.

dsm; _ (1—r)(m—1)
dlz;] = rm2+(1-r) "

doms _ 1—r(m—1)2 e dsm,i
i) =t = (1—T)W. Ifm < W—I—l,then 1—r(m—1) > 0; so in this range “3=* > 0.

Else if m > % + 1, then 1 — r(m — 1)? < 0; so in this range dj?f < 0.

Since 0 < r < 1 and m > 2, this value is always positive. So ds‘;“l > 0.

A.3 Equilibrium for Sub-group Interactions

The expected utility of agent ¢ from sub-group 1 and agent j in sub-group 2 are given in Equations

(6). The first-order condition for agent 7 is dBU} _ = 0 which can be calculated to be:

da?
ni
ai + Z '+ Z/ *dxo
(1 —al) + 1-r T — ’“:1(#) 27l R =0 (A13)

m

As we are looking for a symmetric in actions with sub-group equilibrium, we can set a} =

= a1, and af = G2, and simplify (A13) to:

1—7r ni(l1—r)

) —ai(r+ (1=rjnz

m2

x1(r +

) —
Thus the equilibrium action a; for agents from sub-group 1 is:

(mlmr+ (=) (A=)
I )

m?r +mni(1—r) m2r +n1(1—r)

. /aw@gMazo (A14)
m R

&1 = / dgg(&?z)d&?z (A]S)
R

Integrating the equilibrium action over the entire distribution of 21 we can get:

/Rﬁug(m)dxl = E(z1) (m(mr + (- 7’))> . (d=r)ne

m2r +ni(1—r) m2r +ny(1—r)

/ dgg(l'Q)dJ}Q (A16)
R

By noting that E(z1) = 0 for a symmetric distribution, we have that fR a1g9(z1)dxr; =
m(mr+(1—r))
m2r+ni(1—r)

m(m?“-l—(l—r))) '

m2r+ng(1—r)

fR a2g(x2)dxs. Therefore the equilibrium a4 is a1 = 1 ( ) . Using similar analysis

for sub-group 2 we can also derive s = x2 (
A.4 Analysis of Constrained Choice Game

For a m-player simultaneous choice where preferences are drawn from U[—1, 1] and actions are cur-

tailed between [—1, 1], there exists a unique Perfect Bayesian equilibrium, where player i chooses

11



rm2+(1—r)m

action a.; = min{ (=)

We now present the detailed proof for the above statement. Let a.; be ¢’s equilibrium
action, and let A.; be i’s optimal action. It therefore follows that a.; = min{Ac;, 1} if Ac; > 0
and a.; = max{Ac;, —1}if Ac; < 0. Player i’s optimal action A, ; can be derived using the same
steps those used in Web Appendix A.2.1. We therefore have:

[2rm® +2(1 —r)m] x; — (m — 1) f_ll ac jdx;

2rm2 +2(1 —r) (AI7)

Ac,i =

Note that A, ; is monotonically increasing in x;. Hence, if at some point z; = g2 > 0, Ac; = 1,
then for all x; > g2, Ac; > 1, which implies that a.; = 1. Similarly, if at some point z; = ¢; < 0,
Ac; = —1, then for all z; < g2, Ac; < —1, which implies that a.; = —1. Therefore, we can

1 .
express [~ acidwx; as follows:

1 q1 q2 1
/ e idx; = / —1dz; + / Acidx; + / 1dx; (A18)
-1 -1 q1 q2

Substituting for A ; from Equation (A17) and integrating, we have:

! Lrm?+(1—r)m m—1 !
Qeide; = —(1 5 5 — a7 ) —(q2— /Ac‘ 1-
/_1 o ( +q1)+2 rm2+ (1 —r) (2 — a1)~(@ q1)27“m2 +2(1—7) )4 e+ (1=02)
(A19)

We also know that A ; is just equal to —1 at ¢; and A is just equal to 1 at g2. So, we have:

-1 = [2rm? +2(1 —r)m] g1 — (m = 1) [ dcyda; (A20)
2rm? +2(1 —r)

2rm? +2(1 —r)m —(m-—1 1dc'd£L"
1 - [ ( ) ]Q2 ( )f_1 ] (A21)
2rm? +2(1 —r)

Next, we multiply Equation (A20) with ¢; and Equation (A21) with g2 and subtract the latter from
the former. This gives us:

2rm? +2(1 —r)m
2rm? 4+ 2(1 —r)

—(n+a) (A2

( ol / " eday — (62— )
- e — (a2
q2 — q1 2rm2 + 2(1 — ’I“) . c,j AL d2 — q;

Next, we substitute the L.H.S of Equation (A22) in Equation (A19) and obtain:

1 2
. lrm*+(1—r)m , 5 o
Ay = —= — A23
/1 CLC7rL I, 2 r 2 (1 T) (q2 ql) ( )

Adding Equation (A20) to Equation (A21) gives us:

rm? + (1 —r)m (m—1) !
- e jda; A24
(a1+a2) rm? 4+ (1—r) rm? + (1 —r) /1 e O (A24)
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Substituting the L.H.S into Equation (A23) gives us:

1 1
. @—-—q (m—1) .
/ day = B / e (A25)

If g2 — q1 = 0, then we directly have: f_ll acjdx; = 0. Else if g2 — ¢1 # 0, it still follows that

[, dcida; = [ ac jdz; = 0. Hence the optimal response of agent  is:

rm? + (1 —7r)m
AC,i = 2
rm? + (1 —r)

T (A26)

rm2+(1—r)m

It is clear that 24 (1=

> 0. So the equilibrium response of agent 7 is given by a.; =

. 2 — . A 2 — .
mm{%xi, 1} if2; > 0 and Gc; = max{%xi, —1}ifz; < 0.

A.5 Asymmetric Distribution

We now consider a game where the distribution of types, g(x), is asymmetric, i.e., E(z) # 0. To

solve for the equilibrium in this case, we start with the general equation considered in Equation (4):

. 2(1+7) (1—r) /A
@i = 14 3r i (1+3r) Rajg(xj)da:j

As usual, integrating i’s equilibrium action a; over the entire range of x; gives us:

walzde = 2T [ — LT[ s N
[ aiatayan =220 [ agtede gk [ aggteds; [ a@ptn a2

Unlike the symmetric distribution case, here we know that E(2;) = [ zig(2;)dz; # 0. But we

can re-arrange the terms to write fR a;g(x;)dz; as follows:
/ dlg(xz)d:cz = E(w,) (A28)
R

We can now substitute the above equivalence in Equation (4) to derive the a; as follows:

) 2(1+7) (1—7)
i = P — E(x; A2
“ 1+37“x 14 3r (i) (A29)

A.6 Partial Knowledge
A.6.1 Same-side Leaning Agents
First, we consider the case where both agents ¢ and 7 lean on the same side. Without loss of

generality, let both agents be drawn from R . Then, we have:

o =210, -7 / a;9(x;)da; (A30)
Ry

L+3r 7" (1+43r)

v



Integrating 7’s equilibrium action a; over the entire range of z; gives us:

. 2(1+r) (1—r) X
a;g(z;)dx; = / x;g(x;)dz; — / a-g(m)dm/ g(x;)dz; (A31)
A+Zl T3 Sy, T (43 Sy, T e T
Since we know that z; € R, fR+ g(x;)dx; = 1. This gives us:
[ aseids = [ sigladz, (A32)
Ry Ry
Substituting the above equivalence into Equation (A33), we have:
. 2(147r) (1—r)
R L . Ndas A33
. 1+3r (1+3r) /IRJr 7395, (A33)

A.6.2 Opposite Leaning Agents

Next, we consider the case where ¢ knows that j is on the opposite side (and vice-versa). Without

loss of generality, let ¢ be drawn from R and j be drawn from R_. Then, we have:

o200+ (I-1) S
ST e T (1+3r) /R a;9(z;)dz; (A34)

Integrating 7’s equilibrium action a; over the entire range of x; gives us:

ol \dp = 2ETT) g - ) [ s
/R+ azg($z)d$z = 1+ 3r /R+ ng(xz)dxz (1—1—3’!") /R ajg(xj)dxj /R+ g(xz)dxz (A35)

Since we know that z; € R, fR+ g(z;)dz; = 1. This gives us:

o oo dys — 2T T) SR Gk N GRS
/R+ azg(xz)dxz = 11 3r /R+ ng(xz)dxz (1 +37‘) /]R a]g(xj)dwj (A36)

Similarly, for j, we can write:

X 2(1+7r) (1—7’)/ X
) N, = . N, — ) N A37
/ a]g(xj) Lj 1+3r /]R x]g(x]) £Lj 1+ 3r) R, a;g(w;)dw; ( )
Because the distribution g(z) is symmetric, we know that fR+ zig(x;) = — [p_ xjg(x;). Therefore,
adding up Equations (A36) and (A37), we have:
R+ -
We can thus write [, a;g(z;)dz; as follows:
R 147
/ a;g(xj)dxr; = ( 5 ) /R xjg(x;)de; (A39)

Substituting this in Equation (A34), we have:

Co(len) (=m0 [
@i = 1+ 3r T 2r(1 4 3r) /ijg(:nj)dxj (A40)

v



A.7 Game with Disclosure

Consider a two-stage game such that in Stage 1, agents have the opportunity to simultaneously
reveal their type (which is verifiable). Then in Stage 2, the players simultaneously choose an action.
There are four possible equilibria of this game: (D,D), (ND, ND), (D, ND), and (ND, ND), where D
stands for Disclosure and ND stands for Non-Disclosure. The (ND, ND) equilibrium is equivalent
to the baseline game considered in the main analysis, where agents’ types are private information.

We first consider a (ND, ND) equilibrium and see whether agent ¢ has the incentive to
deviate. Suppose that ¢ deviates are reveals her type and j plays the equilibrium strategy of not
disclosing her type x;. Then we can derive the optimal actions of j in this case as:

R 2(1+41r) (1—7r)
- . i A4l
4 1+ 3r i (1+37‘)a ( )

Note that there is no integral over a; since j does not have uncertainty on ¢’s type anymore. Next,

we can derive a; as:

L 2(1+7) (1—7‘)/A
R — . N Ad2
= T (L) J, ) (A42)
Substituting a; from Equation (A41) into the above equation, we have:
143
POl (A43)
4r

Now we can write the expected utility of ¢ when she plays the equilibrium strategy as:

1—7)? 1 —7r)4r? 1-7)(1 2
7& + 3:;2%2 - ((1 4—7455)7“)7”2 o ( (1T4)r(3rJ)r2r) /Rx?g(xj)dxj' (A%

EUnp,nD(%ia;) = —

Similarly, we can write the expected utility of < when she deviates as:

o =P, (A=r) o, A=r)(4r)? 2 g
EUp np(xi,a;) = — Tor % T %i T 13 /ijg(x])d:pj. (A45)

Comparing Equations (A44) and (A45), we can see that EUnp np(zi,a;) > EUp np(xi, ;) if:
7"(1—"”)2 2 (1 —r)4r? 2 (1—7“)2 s (1—=1) 5
—

(1+3r) (1+3r)2"" 16r 4
1- 4r? 1— 1
Lo r(l—r) T S (1-r 1
(14+3r)2  (1+43r)? 167 4
r 1+43r

>
(14 3r) 167
= —16r°4+(14+3r)2>0

= (1+7)(1—-7r)>0 (A46)

vi



The above inequality is always true. Hence, we know that agent ¢ has no incentive to deviate from
the (ND, ND) equilibrium. Based on the same inequality, we also know that both (D, ND) and (ND,
D) cannot be equilibrium outcomes since the agent who is disclosing her type will always benefit

from deviating and choosing to not disclose her type.

A.8 Alternative Preferences

We first consider the case where agents care about choosing an action that is close to the mean

preferences of the group. That is, suppose that the agent’s utility can be expressed as:
w1 (24, a,a5) = —r(x; — ai)2 —(1=r)(z; — 5)2 (A47)

Taking the expectation, ¢’s expected utility from choosing a; in this setting can be written as

u1(x;,ai,05)g(x;)dx;
EU\(z;,a;) = Jr 1(ng(xjj))(igx(j]> ;

at 7’s equilibrium action a; = a; gives us:

. By differentiating EU;(x;, a;) and setting it equal to zero

OFEU; (x;, a; ;1
OEU (xi, ai) =2r(z;—a;) —2(1—r) [&i - / xjg(mj)dxj} =0 (A48)
aai a;=a; 2 2 R
This in turn simplifies to:
1
g = ‘2”)3;,- (A49)

Next, consider the second alternative preference structure, where agents care about choosing

an action that is close to the group’s decision (a). We can write agent ¢’s utility in this case as:
2 _\2
u (x4, ai,a5) = —r(x; —a;))° — (1 —r)(a; — a) (A50)

Taking the expectation, 7’s expected utility from choosing a; in this setting can be written as

uz(xi,aq,a5)g(x;)dx;
EUs(x;,a;) = L2 Q(ng(xjj))dgm(j]) ’

at 7’s action a;, we have:
(‘3EU2 (%i, CLZ')
8@1‘

. By differentiating EUs(x;,a;) and setting it equal to zero

= 27’(.%'2' — dz) — (1 ; T) I:&Z — / &jg(xj)dxj} =0 (AS])
R

a;=a;
Re-arranging the terms, we have:

4r A (1—7)
(+30)" " (1+3r)

~

a; =

/R ajg(z;)dz; (A52)

Taking the integral of the above equation with respect to the distribution of x;, we have:

[ astaitn = s [ maeodnor Gk [agpin, sy

Vil



Since [p zig(x;)da; = 0, we have [ a;9(x;)da; = 0. This gives us the equilibrium action of i as:

4r
4 = ) A54
Tt (AS4)

B Equilibrium of the Exogenous Sequential Game

Let ¢ and 7 be the first and second players, respectively. The second player j’s equilibrium action

has already been derived in the main text (see section ??), and is equal to:

R 2(1+r) (1—r)
ax2,j = Tj— ;
20T ey YT 113

(A55)

So we now derive the first player’s optimal action a1 ;. In equilibrium, ¢’s utility from choosing

action ay1 ; is given by:

w (2, ax14, x2,5) = —1(x; — ax1,)? — (1 —7) (v; — i) (A56)

_ ax1.i+0x2.
where a, = %

204r) . (1—r

) )
1+3r Li — 133, Oxl-

. We know that when i chooses a1 ;, in response, j chooses dx2; =

This in turn gives us ay as:

_ (I4+7r)zj + 2rax;

x = A57
14 3r ( )

Substituting this value of @y into Equation (A56), we have:

. 9 2r 2 1+7r 2
U (fUi,&xLz',axz,j) = —r(z; — axl,i) — (I=r)|{zi— maxl,i + T+ 3r$j

2r 1+T

Hence, the expected utility of agent 4 in from choosing action ay; ; in period 1 is:

Jru (s ax1 i, Gx2 5) g(x)da;
fR g(xj)dxj

EUy (zi,ax14) = (A59)

We can simplify the above as follows:

EU (.TZ', axl,i) = - T($Z’ — axl’i)Q + 2(1 — 1“) <331 1 T 3 > < ) xjg(xj)dxj

2r 2 1+7
- (1= i~ T Oxl,i A
(1—r) [(x T3 3:° L) <1+3r) /Rx g(x de] (A60)

viil




Computing the integrals in Equation (A60), we have:

9 2r 2 T+7\? 9
EUx (%5, ax14) = —7 (25 — ax1,3)"—(1=7) | | 25 — T 5y 0ok +17 T ijg(:rj)dwj
(A61)

Solving the first-order condition for agent 4’s action gives us the equilibrium choice ay1 ;:

N (1+3r)(3+1) '
e = (143r)24+4r(1—1) i (462)

Thus, given x; and x;, there exists a unique exogenous sequential choice equilibrium, where ay ; =

(1437)(3+7) ) A~ 2(4n)zi—(1-r)axi g
332 ar (1= i and ax2 j = 1+3r :

C Proof of Proposition 2

Recall that the mean of the equilibrium outcome for the exogenous sequential game can be expressed
as:

_ CALXLZ‘ + (AZXQJ‘ 27’0,)(1’1' + (1 + T)xj 2T(3 + 7’) 147
ax = = - P Z; + m]
2 1+ 3r (14+3r)2+4r(1—r) 1+ 3r

Next we show that 0 < kq(r), ka(r) < 1.

(A63)

o Ei(r) < 1if qgomiritsy < 1= (143r)(1—r) < (143r)2 +4r(1—r) = —4r(1+3r) <

4r(1 — r), which is always true if 0 < r < 1. Hence k1 (r) < 1.

(1+437)[(1437)2+16r]
[(14+3r)2+4r(1—r)]2(1+r)+(1+31)]

r)+4r(1 —r)(1+7) = —(1 4 3r)(1 —r)? < 4r(1 — r)(1 + r), which is always true since

o ko(r) < 1if <1,=4r(1+3r)3+r) < 2(1 +3r)%(1 +

0<r<l.
Further, k1(r), k2(r), ks(r) > 0 since all the terms in their numerators and denominators are posi-
tive. Thus 0 < k1 (r), ka(r), ks(r) < 1.
a) First, we compare ay with z. Without loss of generality, let z; > 0.
e Polarization — |ay| > |Z| and axz > 0.
e First, consider the case where z; > K1 (r)ax;. In this case, axx > 0 because both ay > 0 and
Z > 0. The condition |ay| > |Z| therefore simplifies to ax > &. This can be expressed as:

2r(3+r) 1+ 1+ 1+
32t ar(l—r) 1139 " T3 T3
(1+3r)(1—1)
L+3r2+4r(1—1)"

= T >

(A64)
where the multiplier of x; is k1 (r) = S 1€ ) B By definition,(A64) is satisfied.

(143r)2+4r(1—r)

1X



e Second, consider the case where —z; < z; < ki(r)x;. Here, Z > 0. So the condition
|ax| > |Z| simplifies to ax < Z. From the previous case, we know that a, > 7 if and only if
xj > kq(r)xz;. This is not possible here since by definition z; < ki (r)z;.
e Third, consider the case where x; = —x;. Here ¥ = 0. So, we cannot have a,x > 0.
e Fourth, consider the case where x; < —x;. Here, T < 0. Since we require ax to be greater
than zero, it follows that a, < 0. So the condition |ax| > |Z| simplifies to ay < T =
xj < ki(r)z;, which is always true since by definition z; < —x;.
Hence, polarization occurs in the first and third cases, i.e., when x; > k;(r)x; or when z; <
—Zi.
e Reverse Polarization — |ax| > |Z| and axz < 0.
e First, consider the case where x; > —ko()x;. Here both a, > 0and z > 0 since ko(r) < 1.
So it cannot be that a,x < 0. Therefore, this case is ruled out.
e Second, consider the case where —z; < z; < —ko(r)z;. Here > 0. So the condition
|ax| > |Z| simplifies to ax < —Z. This can be expressed as:

2r(3+4r) 147 147 1+r

A3 arl—r " T33 7 S T3 130
(14 3r) [(1+3r)? + 16r]

[(1+3r)2 +4r(1 —7r)][2(1 +7) + (1 + 3r)]

_ (1+3r)[(143r)2+167]
T [(A43r)2+4r(1—7)][2(1+r)+(1+37)] "

definition z; < —ka(r)x;, condition (A65) is always satisfied.

x; +

= z; <

i (A65)

where the multiplier of z; is labeled ko(7) Since by

e Third, consider the case where z; < —x;. Here Z < 0. So the condition |ay| > |Z| simplifies
to ay > , which we know is the same as x; > ki (r)xz; > 0. However, this is not possible
since by definition z; < —x;.

Hence, Reverse Polarization only occurs when —z; < z; < —ko(7)x;.
e Moderation — |ay| < |Z].

e First, consider the case where z; < —z;. Here, Z < 0. So the condition |ax| < |Z| simplifies
to —% < ax < Z. If =% < a, it then follows that z; > ko(r)x; > 0, which is impossible
since by definition x; < —;.

e Second, consider the case where —x; < x; < —kg(r)x;. Here, z > 0. So the condition

lax| < |Z| simplifies to —Z < ay < Z. We know that this condition can be expressed as
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—ka(r)z; < xj < ki(r)x;. This is not possible, since by definition z; < —ka(r)z;.

e Third, consider the case where —ka(7)x; < z; < ki(r)z;. Here, > 0. So the condition
lax| < |z| simplifies to Z < ax < —2z. This in turn can be expressed as —ka(r)z; < x; <
k1 (r)x;, which we know is true by definition.

e Fourth, consider the case where x; > ki(r)x;. Here, Z > 0. So the condition |ax| < |Z|
simplifies to £ < ay < —. This in turn can be expressed as —ka(r)z; < z; < ki(r)x;,
which cannot be true, since by definition z; > ki (r)z;

Hence, moderation occurs only when —ka(r)z; < x; < ki(r)x;

Proof of Proposition 3

1. First, we show that, for x; > 0, ax2 ; > a; if x; <0, and axe ; < a; if x; > 0.

(a) Letxz; <0

dx2,j — aj; can be simplified to ax2; — a; = (11+372 ax14. We know that ayi,; =

(

g (r)x; < 0 because p(r) > 0, x; < 0. It therefore follows that — 3)axl i>0=

dXQ’j Z dj.
(b) Letz; >0

N N 1—7) 4 N
As before ayo j — a; = _(1+3T7') ax1,;. However, here ayy; = o (r)z; > 0 because

iz (1), x; > 0. Hence it follows that Gy j — G < 0= ax2j < @j.

d‘axl z|

2. Next, we show that |ax; ;| > |G;| and < 0.

To show that |ax1 ;| > |a;|, we need to show that jux(r) > u(r).

(1+3r)(3+7) 2(1+ 1)

i(r) =) = A =) 143

- (1 =) 0ifr >0 A66
= At aaiop 2> (A%6)

Therefore, ix(r) > p(r) = |axii| > |ail.

S A . . daxii _  4(5r2+6r+5) ‘
The derivative of ax; ; w.r.t  can be calculated and simplified to =3 = (32t ar (1) T;.

daxlz <0 D

Since r > 0, it follows that
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D Proof of Proposition 4

(14-37)34-8r(1—r)(147)
ST+ [(1+3r) 2+ dr(1—7)]

2(1 4 7)(1 +3r)2, = r < 1, which we know is always true. Further, k3(r) > 0 since all the terms

First, we show that 0 < k3(r) < 1. This is true if < 1= (1+3r)3

in their numerators and denominators are positive. Thus 0 < k3(r) < 1.
Next, we compare ay with a. Without loss of generality, let x; > 0.
e |ax| > |a| and axz > 0.

e First, consider the case where ; > —x;. Here, Z > 0. So the condition |ay| > |a| simplifies

(1+312n7)n2(i—51:%17r) x; > ;. which is impossible since 0 < 7 < 1 and z; > 0.

toax > a= it3r

e Second, consider the case where —z; < x;. Here £ < 0. So the condition |ayx| > |a]

2r(3+r)
> (143r)2+4r(1—7r

1+r

simplifies to a, < a = yTi < 1737 Tis which is always true for 0 < r < 1,

ZT; Z 0.
Hence, for —z; < x;, the mean outcome in the exogenous sequential game is more polarized
than that in the simultaneous game, and this polarization is in the same direction as .
o |ayx| > |a| and axz < 0.
e First, consider the case where x; < —z;. Then a,z < 0. So for a,z < 0 to be true, we
require ax < 0, which is not possible since ax < z < 0.
e Second, consider the case where —z; < z; < —ks(r)x;. Here, Z > 0 and the condition

|ax| > |a| simplifies to ax > —a. This can be expressed as:

2r(3+4r) 1+7r

(1+3r)?2+4r(1 - r)xi STy
+3r)3 +8r(1 —r)(1 +7)

210+ 7) [(1+3r)2 +4r(1 —r)]

= z; < (( T; (A67)

(1+37)3+8r(1—7) (1+r)
2(1+47)[(1+3r)2+4r(1—7)]

xj < k3(r)xz;, condition (A67) is always satisfied.

where the multiplier of z; is labeled k3(r) = x;. Since by definition,
e Third, consider the case where x; > k3(r)z;. Then, Z > 0 and the |ax| > |a| simplifies to
ayx < —a. However, from the second case, we know that this condition can only be satisfied
when x; < k3(r)x;, which cannot hold here, since by definition x; > k3(r)x;
Hence, for —z; < x; < —ks3(r)z;, the mean outcome in the exogenous sequential game is more

extreme than that in the simultaneous game, but in the direction opposite to that indicated by the
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mean preference Z.
o |ay| < al.

e First, consider the case where x; > —k3(r)x;. Here, ax, Z,a > 0. So the condition |ay| <

2r(3+r) ) 1+r
14+3r)2+4r(1—r) T < 1+3r

|a| simplifies to ay < a =, ( x;, which is always true for 0 < r < 1,
ZT; Z 0.

e Second, consider the case where —xz; < z; < ks (r)z;. Here also &, a > 0. So the condition
lax| < |a| simplifies to —a < ayx < a. From the case before, we know that ay < a for
x; > 0. However, to ensure that —a < ay, we need x; > k3(r)z;, which cannot be true
since by definition —z; < x; < k3(r)x;.

e Third, consider the case where z; < —x;. Here, Z,a < 0. So the condition |ay| < |a]
simplifies to @ < ay < —a. The condition ay > a reduces to z; > —k3(r)z;, which we
know is not possible since z; < —z; and 0 < k3(r) < 1.

Hence, for x; > —ks3(r)z;, the mean outcome in the exogenous sequential game is less extreme

(moderate) compared to that in the simultaneous game.
E Proof of Proposition 5

The expected utility of the first player ¢ in equilibrium is given by (11). Substituting for ay; ; gives

us:

(143r)(3+7) ,>2
143r)2+4r(1 — T):cz

2r(3 4 ) 2 ()
- [(x ICEEREE T r)xi> e /ijzg(lem})

This in turn simplifies to:

EUx (zi,ax15) = — 7 <55z 1

. 1—7r)(1+r)? 1—7r)(1+r)?
BV (@1, 10) = = 1 J(r 3T)g>i 47“(?— - W /R w2g(xj)dn;  (AGY)

Next, consider the a priori expected utility of player j, in equilibrium. It is obtained by

integrating the utility of the second player over the range of x;. That is, EUxs (z},dx2j) =

Jg w (2, dx2,j, Gx1,i) g(x;)da;. Substituting for Gyo ; as 21(12:) T — (11;?;) ax1,i, we have:
) 21+ 1—r \?
EUg (xj,ax25) = — 1"/R <£L'j — 1(+ 3T):Bj ks 3rax1,i> g(x;)da;

147 2r 2
- (1-r) A A e g(zi)dz;  (A70)
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Substituting for a1 ; and integrating, we have:

T - T T —Tr T T 2
Bl (2), ) = = 1(1+ 3r) 7 = [((i + 3151 iir2§3_+r>])2 /mﬁg(zﬂ)dx (ATD

Next, we compare the difference in the expected utilities for a specific player ¢, where
Dy(z;) = EUxi (xi,ax1,) — EUxa (x4, Gx2,i). We can show that Dy(z;) < 0 for all ¢ if the
following two conditions are satisfied:

FL=r) (3B +r? (=41

— A72
[(1+3r)2 +4r(1 —1))? (14 3r)2 (A72)
and
r(l—r) (1—7)(1+7)?
— > — A73
143r = (143r)2+4r(1—1) (AT3)
First, consider the inequality (A72), which can be simplified to:
(1472 [(1+3r)% +4r(1 — )] > r(3 4 r)2(1 + 3r)? (A74)

This in turn simplifies to:
(1+3r)* [1+7)2(1+3r) —rB+7)?] + (L+7)? [16r*(1 —7r)> +8r(1 —r)(1 +3r)*] >0
= 16r*(1+r)*(L—7r)*+ (1 +3r)?1—r) [2r(L+7)*+ (1 +3r)(L—7)] >0 (A75)

Since both the terms in the R.H.S of inequality (A75) are non-negative, the inequality is always true.

Therefore, (A72) is always true. Next, consider the inequality (A73), which can be expressed as:

(1—7)(1+7)? 2 (l—r)
(143r)24+4r(1—1) zi 2 1+ 3 (AT76)
This is true if:
(1—r) [(1 + r)2(1 +3r) —r[(1+ 37“)2 +4r(1 — r)]] x? >0
= (1-r)?[2r +5r+1]27 >0 (A77)

We know that x? > 0 and that both (1 — )2 and 272 + 5r + 1 are positive for 0 < r < 1. Hence
this inequality is always true too. Further, since both (A72) and (A73) are always true, it follows
that EUxs (i, Gx24) > EUxt (24, ax1.:).

b) Now we prove the second part of the Proposition. Let x; > 0, then:

dDy(x;) r (1+7)2
ST opi(1— _
dz; zi(l=r) 1+3r (143r)24+4r(1—1)

(A78)
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r__ (14r)?
1+3r  (143r)2+4r(1-r)

It therefore follows that 2z;(1 — r) [ L~ 1 75)12121)7?(1—7“)} < 0. Hence, %gi) < 0. Similar

> 0.

Since we have already shown that (A73) is true, we know that (1—7) {

proof applies for z; < 0. (|
F Proof of Proposition 6

The solutions for the optimal actions for periods 3 and 4 are analogous to that in the exogenous
sequential choice game and are outlined in the main text. Below, we derive the players’ optimal

action for the first two periods.

Period 2 — A player who has lost the auction makes no decisions in period 2. So we only consider
the actions of a player who won the auction in period 1. Suppose player j bids according to the
symmetric bidding function /3(-), then player ¢ belief upon winning is that player j must belong to

a some symmetric region W for her to have won the auction. In that case, i’s expected utility from

speaking first is:
2r 2140\ Jwalg(ag)da;
EU. . ) — L N2 (1 — L . J
nt (i, am1 ;) r(@i = an)” = (1-7) [(‘T 1 +3ra““> " <1 +3r) v 9(x5)dz;
B Qi T — r ani i fW l’]g(dfj) Lj (A79)
1+ 3r L+3r ) [y g(xy)de;

The last term vanishes because W is symmetric around zero. So:

o 2 1+ \? [y z59(z))dz;
EUn (i, am1i) = —r(@ — an1i)® — (1 — i — ——=—Qnl; .
(@i, i) rlai = am)” = (1=7) [(x 1+3r" 1’> * (1—1—37“) Sy 9(zj)dz;

_ (1—r)(1+r)? (L= 7)1 +r) fwzjg(z;)da;
T (1 +3r)24+4r(1— 7“)%12  (143r)2 S 9(xj)dz; (AS0)

Similarly, simplifying i’s expected utility from speaking second gives us:

r(l—7) | , (1+3r)(3+7) 2/ )
EUns (i, 0n2,i) = — 72— | %i asda; A81
2 (i i) =~ gy | +<(1+3r)2+4r(1—r)  daeides) (AR
1 prefers to speak second if:
EUn2 (xiaarﬁ,i) > EUnl (xiaanl,i) (A82)

1—r)(1+47)2 1—7)(147)2 r(l—r r(l—r 14+3r)(3+r 2
Let A(r) = (1—1(-37")2)—5-47"(2—7“)’B(r) = (1—?—(37")2) C(r) = (1(+3r§’andD(7’) - <f+3r§ ((1—1(—37’)2-?—(417”(1)—7“)) :

It is trivial to show that the multiplier of xf in EUps (2, an2,) is always greater than that in
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EUn1 (@, an1,:) = A(r) > C(r). Similarly, we can show that the multiplier of [}, :U?g(azj)d:cj
in EUys (4, an2,;) is also greater than that in EUy; (4, an1,;) = B(r) > D(r). Therefore, in a
symmetric bidding equilibrium, for all x;s, the expected value from speaking second is higher than

that from speaking first. Therefore, upon winning the auction, all types will choose to speak second.

Period 1 At the beginning of period 1, before placing her bid, player ¢ knows that if she wins, she
will choose to go second and if player j wins, she will go first. Hence, her expected utility from
choosing a bid b; and then choosing the optimal action in the subsequent periods is

o (@i, Gn1gs nz ) g (@) das + [y (@i an g, anz,e) — b g(x5)dw;
- Jr 9(z;)dx;

where j € W; for i to win the auction and j € L; for her to lose the auction, if she chooses a bid b;.

This simplifies to:
2EU (x4,b;) = — A(r)a:?/ g(xj)dxj—B(r)/ x?g(xj)dxj
— C(r)xf/ g(a:j)dxj—D(T)/ a:]zg(xj)dxj—/ big(xj)dx;
Wi w. W,

2 2

= 2 [A0) - CONa? | gla)dn; + B0) - D)) [ adgla)e -

W; W; w;

Now consider any two types 2’ and 2 and a bidding function 3(-). In equilibrium, 2’ can

do no better by playing z”"’s strategy 5(z”") over her own strategy 3(z’) and vice-versa. That is:

EU(, B(z')) > EU(2', B(")) (A85)

EU(z",B(z")) > EU(2', B(z")) (A86)

Substituting the simplified expressions for the expected utilities into the above inequalities and
adding them up gives us:

[A(r) — C(r)] (2 — 27 ( /Wl glay)de; — [

g(xj)dxj> >0 (A87)
W2

We know that A(r) — C(r) > 0. So if /2 > 2'"2, then for the above inequality to hold, we require
that le g(xj)dx; —fW2 g(z;)dz; > 0= the region over which a player wins upon bidding 3(z') is
greater than that over which she wins when she bids 3(z”). In other words, the equilibrium bidding

strategies are monotonically increasing in |z|. Further, following the technique as that outlined in
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Fudenberg and Tirole (1991) p. 217, we can show strict monotonicity, i.e., if |z/| > |z”|, then
B(a’) > B(a").

Now that we have shown that the bidding strategies are monotonically increasing in |z, for
the specific bid b; by player i (when the other player uses the bidding function 3(-)), we re-write
Equation (A84) as:

1 (bi)

B B (bs) B (bs)
EU(zi,b;) = —2x?+2[A(r)—C’(r)]x?/0 g(w)dx—i—Q[B(r)—D(r)]/O xQQ(x)dx—Q/o big(x)dz

(A88)
Further, we specify the following expression for the derivatives:
U e do = ()Y A89

where V' = B71(b;). To obtain the equilibrium bidding function, we can calculate the F.O.C of

Equation (A88) as —a,

b 0. This simplifies to:

A(r) —C(r xzig(ﬁ_l(i)}')) r)— D(r
[A(r) = C(r)] B (51(0) +[B(r) — D(r)]

In equilibrium b; = 3(;) and so 571 (b;) = ;. So the above equation simplifies to:

[Ar) =€)+ Blr) — Dir)) 2257 b)) = L = L
Integrating this from O to x;, we have:
s e A _ Ol A Dir o a?g(x)dx
Bl = 140) = Clr)+ 50) = D) [ B0
_ o 2?g(x)dw
= f(r) [Owig@) . }, (A91)

where f(r) = A(r)—C(r)+B(r)—D(r) is the multiplier of {%}. Since A(r)—C(r) >0
0
and B(r) — D(r) > 0, f(r) is positive, which recovers the assumption that the bidding function is

symmetric around zero. g
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G Social Welfare Derivations and Comparisons
G.1 Welfare Under First-Best Planner’s Choice

The social planner’s choice involve agents choosing their true preferences as their actions, i.e.,

a; =z;and a; = zj,and @ = WTJ”] Then:

Wrp(zi, 75,a;,a5) = Wrep(wi,z))
= —r(@i—a)’ —(1—r)(zi—a)?—r(z; —a;)* = (1—r)(z; —a)’

)2
_ (1,4)(‘”’2%) (A92)

Then the expected welfare is given by:

Jo Jo Wi, 25)g(w:) g () daida
Jr Jr 9(zi)g(z;)dzida;

_ (1—r) 22 1+ 22 — 2wV alz) oz dzida

N Qf]Rng(xi)g(wj)dmidxj |:/R/]R( it J 21 J)g( z)g( ])d d 4

We know that [, [p g(#)g(2j)da;da; = 1and [ [p xizjg(x)g(x;)da;da; = 0 because g(-) is a

EWp =

symmetric distribution. Therefore, EW; simplifes to:

EWrg = _(12_71)/]1%/]1%[%24—;1:?} g(xi)g(xj)dl‘j(Mj

= —(1—7“)/Rx2g(a:)dx (A93)

G.2 Welfare in the Simultaneous Game

In the simultaneous game, the actions are a; = 2&;? T, Qf = 2&2:) xj, and the mean action is
a= (11:?;) (x; 4+ x;). Substituting this in the welfare function we can obtain:

Wz, 25, ai,a5) = Wz, z5)

_ =) e ey Lo 2
= Ui (z7 +5) — 113 [2rz; — (1 + r)z;]
1—
e 2 - (e (A%4)
1— 2
= —M(w? +a?)
_(11_’__3:)2 [47’2(1’? + x?) +(1+ 7”)2(1*? + x?) —8r(1+ 7’)331‘333‘]
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The expected welfare is then given by:

EW, = fRfR 951,1’] g(l")g(xj)dxidxj
fRfR i)9(x;)dx;dz;

As before, [ [ 9(xi)g(zj)dridz; = 1and [ [ zizjg(xi)g(z;)dede; = 0. So:

2(1—r)

EW, —_—
(1+3r)?

(1= 1)+ 4r2 + (1 4+ 1) /R 22g(z)da (A95)

G.3 Welfare in the Exogenous Sequential Choice Game

Without loss of generality, assume that 7 speaks first and 7 speaks second. Then, we have the

(143r)(3+7) 2(1+r) 1—

actions of the two agents as a; = T3 ar (A= L @ = 437 5~ 1 +3 a;, and the mean action

2r(3+r)

asa = a2 rara=n¥i T fj;r x;. Using these, we can further derive the following expressions:

21 —r)(1+7)

i = _(1 +3r)2 +4r(1 —r)xi
1—r (14+3r)(3+7)
e — s — — i o
I 1+3r |77 (14+3r)2+4r(1—7)""
_ (14+3r)(1+7) 1+
T, —a = D) Ty — :Ej
(14+3r)2+4r(1—1) 1+ 3r
_ 2r 2r(3+r)
.Tj—CL =

1+3r  (A+3r2+dr(l—r)"

Substituting the above terms in the welfare equation, we have:

Wx(thjaai?aj) = WI(.YJZ,CU])
A=) 4r)? - _(1_T)[ (IL+3r)Q0+r) 147 2
(1+3r)2+4r(1—1r))2™" (14+3r)2+4r(1—7)"" 143077
Cr(1—r)? [x‘_ (1+3r)(3+7) xr
(1+3r)2 7 (1+3r)24+4r(1—r)"
2r 2r(3+r)
—=n L 3 T (32 +4r(1— r)”“] (A%6)

As before, the expected welfare is given by:

f]RfRW3 9%%')9( i)g(z;)dada;

EW, =
f]R ng i)9(zj)dw;dz;
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As before, this implies that the integrals of the z;x; terms are canceled out. Further, and [, [z g(x)g(z;)da;da; =

1.

EW,= - 4r(1 —7)%(1 +1r)? //ac g(xi)g(xj)dz;dz;
[(1+3r) +4r(1—7)]
rd—r)? (1+3r)2(3+1)° 2}
1+3T // |: 1+3’I”) +4T(1—T)]2 g( )g( ]) Ji

1+37’ 1+r) +47’2(3+7’)2 (1+r)2+47,2
B // [ (1+3r)2+4r(1 —r))? = (1+3r)2 xﬂ g(wi)g(xj)dzida;

This simplifies to:

EW, = — A=) [ +r)2+4r? +r(1—r)] / 2?g(r)dz
R

3(1 + 3r)?
(1—r7) [47“(1 —r)(1+ r)z + 47“2(3 + r)2 +(1+ 37“)2(1 + 7“)2 +r(1—-7r)(3+ 7“)2]
3[(143r)2 + 4r(1 —r)]?

/R % g (AR

G.4 Welfare in the Endogenous Sequential Choice Game

As before, assume that ¢ speaks first and j speaks second. Recall that the players’ actions here are
the same as that in the exogenous sequential choice game. However, we know that |z;| < |z;|. So

while the welfare equation remains the same, the integrations regions are different. Thus, we have:

Wiz, x5, a4,a5) = Why(xi, x))

A=) r)? 21— (1+3r)(1+7) o 1+rx
= (14+3r)24+4r(1—1))2"" (14312 +4r(1—1) A
_r(l—r)2 . (1+3r)(3+T1) N 2
L+3r)2 [0 (1432 +4r(1—17)""
2r 2r(3+r)
( r)[1+3rx3 (1+3r)2+4r(1—r)4 (A98)
and the expected welfare is:
EW, = RI1UR2 400
" ff g xz 33] d%zdxj ( )
RIUR2

where the two regions R1 and R2 are defined as follows:

Ry = z;€[0,00], ;€ [x5,00]U[—00,—x]

Ry = z;€[—00,0], ;€ [—z4 00 U[—00,
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As before, we can show that the integral of the x;x; terms over Rq U Ry is zero. So we now consider
the integrals of the x? and x? terms. Since inference on j’s type is conditional on ¢, we first integrate

over j’s type. Because of the symmetry of the distrbution, it is easy to show that:

// z2g(2i)g(z;)da;dr; = 4/00 22g(x)(1 — G(z))dz (A100)
RIUR2 0
[[ stepgtadzde; =14 [~ g@)1 - Glaas (A101)
RI1UR2 0

Substituting these expressions back in the expected welfare function, we have:

(1—7) [(A+7)2+ 42 +7(1—7)]
- (1+3r)?
(1—r) [47“(1 —7)(1+ T)2 + 47”2(3 + r)2 +(1+ 37,)2(1 T ,,,,)2 (1 =13+ 7’)2}
3[(143r)2+4r(1—r))?
( Jo" #?9(@)(1 - G(x))da
<f0°° 22g(z)(1 - G(a:))dx) (A102)
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