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Abstract

Dynamic discrete choice models are widely employed in marketing and economics
to answer substantive and policy questions in settings where individuals’ current choices
have future implications. However, the estimation of these models is computationally
intensive and/or infeasible in high-dimensional settings. Indeed, even specifying the
structure for how the utilities/state transitions enter the agent’s decision is challenging
in high-dimensional settings when we have no guiding theory. In this paper, we present
a semi-parametric formulation of dynamic discrete choice models that incorporates a
high-dimensional set of state variables, in addition to the standard variables used in a
parametric utility function. The high-dimensional variable can include all the variables
that are not the main variables of interest but may potentially affect people’s choices
and must be included in the estimation procedure, i.e., control variables. We present
a data-driven recursive partitioning algorithm that reduces the dimensionality of the
high-dimensional state space by taking the variation in choices and state transition into
account. Researchers can then use the discretized state space from the first-stage with
any estimator of their choice in the second-stage. Using Monte-Carlo simulations, we
show that our approach can both reduce estimation bias and make estimation feasible
in high-dimensional settings.

Keywords: Structural Models, Dynamic Discrete Choice Models, Machine Learning,
Recursive Partitioning
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1 Introduction
Dynamic discrete choice models are extensively used in marketing and economics to study problems
where agents make intertemporal trade-offs; see Aguirregabiria and Mira (2010); Aguirregabiria
(2021) for detailed surveys. They have been used in a variety of settings including demand
estimation for durable goods (Song and Chintagunta, 2003; Esteban and Shum, 2007; Gowrisankaran
and Rysman, 2012; Li, 2019), career decisions (Keane and Wolpin, 1997), demand estimation
for storable goods (Erdem et al., 2003; Hendel and Nevo, 2006), intertemporal substitution of
consumption (Hartmann, 2006), and search and optimal stopping problems (Kim et al., 2010;
Yoganarasimhan, 2013). Models in this class serve two primary purposes. First, they allow
researchers to estimate the underlying structural parameters associated with an agent’s utility
function within an institutional context. Second, they serve as tools to evaluate new (counterfactual)
policies, e.g., new pricing policies for durable goods (Nair, 2007), positioning and product strategies
by manufacturers and retailers (Hitsch, 2006; Ellickson et al., 2012; Melnikov, 2013), and consumer
welfare (Wang, 2015).

In these models, an agent’s decisions are dynamic, in the sense that the agent’s current decisions
affect their future utility stream through future states. As such, agents’ current decisions depend
on their expectations about the evolution of future states and their own future decisions in those
states. Thus, estimating the underlying primitives of an agent’s behavior in these settings requires
the researcher to incorporate both the current utility an agent receives from a decision as well as her
expected future stream of utilities conditional on this decision. Specifically, agents are assumed to
maximize expected intertemporal payoffs in each time period. Thus, a key aspect of the standard
solution concept is to calculate the value function, which is defined as the expected value of being
in a specific state. Formally, this is equal to the discounted sum of the expected utility stream that
an agent gets from making optimal choices starting with the current state. Typically, researchers
calculate the value function by solving a dynamic programming problem using the Bellman equation
(Smammut and Webb, 2010). This is usually done using recursion when the problem is regenerative,
or using backward induction when it is finite-horizon.

There are three main issues that make the specification and estimation of these models chal-
lenging. First, the well-known curse of dimensionality implies that it is exponentially costly to
numerically solve for the value function as the dimensionality of the state space increases. Thus,
researchers have historically faced a trade-off between including a larger number of state variables
(that can help improve the explanatory power of the model and give more realistic counterfactuals)
vs. keeping the problem computationally tractable; see §2 for detailed discussions. Second, even if
the researcher has access to a high-dimensional set of variables, there is often no guiding theory on
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if and how these variables enter the agent’s utility function and state transitions. Indeed, in many
cases, the researcher may not be interested in the effect of these extraneous variables per se, and
may simply wish to control for them to ensure that there is no omitted variable bias. Third, in
most settings, the researcher is working with finite or limited samples of data. The combination
of finite samples and high-dimensional state variables often implies that there may simply be no
observations in many parts of the state space. Thus, the researcher has to reduce the dimensionality
of the state space to ensure that there is sufficient data in all parts of the state space for inference.

To address these challenges, we propose a novel approach to model and control for high-
dimensional state variables in dynamic discrete choice models. We specify the dynamic discrete
choice model in terms of two sets of observable state variables – (1) X – a set of low dimensional
state variables for which the researcher has some theory, i.e., we know that X affects the utility
function/state transition (and may even know the functional form in which it does, though this is
not necessary). The structural parameters associated with these variables form the main estimands
of interest. (2) Q – a set of high-dimensional state variables that act as nuisance variables in our
estimation process, i.e., they may affect agents’ utility function and/or state transition, but we do not
know how if and how. For example, in the case of renewal decisions for a cloud subscription service
like DropBox or AdobeCloud, X could consist of prices and product features offered, which we
naturally expect to affect purchase decisions. And Q could consist of a large number of potential
factors that may or may not affect demand, e.g., macroeconomic variables such as inflation, detailed
data on consumers’ product usage patterns (e.g., amount of time spent on the service, regularity of
usage, diversity of features used), product descriptions on the product page, reviews and ratings
from prominent websites, prices and features of related product categories, etc.

We present an approach to reduce the dimensionality of Q using a data-driven discretization
approach based on recursive partitioning. We assume that there exists a lower dimensional parti-
tioning on Q ( Π∗ : Q → P , where P = {1, . . . , k}, i.e., k partitions) such that this partitioning
is a sufficient statistic for Q. We define this discretization of Q as perfect discretization, i.e., a
discretization where all the observations within a partition have similar decision and transition
probabilities (conditional on X and the unobservable error terms). We then recast the dynamic
discrete choice model from the high-dimensional Q-space to the lower-dimensional P-space, and
show the equivalence of these two models.

The main challenge now is that we need to learn the discretization P and estimate the structural
parameters of interest, simultaneously. A naive approach here would be to simply use the log-
likelihood of the data (as a function of the structural parameters) as the objective function for
the recursive partitioning algorithm and generate the splits. However, this approach is practically
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infeasible for three reasons. First, under this approach, for each potential split, at each step of
the partitioning algorithm, we need to solve the dynamic programming problem and estimate the
structural parameters. Then we would compare likelihoods across all possible splits and then
choose the split that maximizes the empirical likelihood of the data. This is prohibitively expensive
when Q is high-dimensional. Second, the likelihood function contains two sets of outcomes: (i)
choice probabilities and (ii) state transition probabilities. Therefore, any data-driven approach to
discretize the state space must account for both of these outcomes. This makes the splitting process
more complex than the standard CART/causal tree, where there is only one set of estimands to
be considered. Third, unlike a standard recursive partitioning algorithm, where we split on all the
state variables, here we only split on Q since Xs are known (or assumed) to influence outcomes by
definition. As such, we need an algorithm that only splits on a subset of state variables (Q), but
considers all the state variables ({X,Q}) to estimate the choice probabilities and state transitions.

We design a recursive partitioning method that addresses all three of these problems. To address
the first problem, we separate the discretization problem from the estimation procedure and suggest
an objective function that is fully non-parametric. Thus, we do not need to solve the dynamic
programming problem at each potential split; as a result, the evaluation of the objective function at
each potential split is computationally cheap. To address the second problem, we split our objective
function into two sub-objectives, whose relative importance can be learned from the data using
model selection/hyperparameter tuning. To address the third problem, we customize the splitting
procedure such that it only splits on Q and not X. Finally, once we have a discretization, we can
simply use the learned discretization (P̂) in addition to X as the set of state variables in conjunction
with any standard estimation method, e.g., Nested Fixed Point(NXFP), Two-step methods, MPEC.

Our dimensionality reduction method has several desirable properties that make it convenient to
use and applicable to many settings. First, notice that we separate the estimation and discretization
tasks and define a general discretization criterion that does not depend on the parametric assumptions
of the estimation step. This property makes the algorithm robust to the parametric assumption of
the estimation step. Furthermore, the discretization algorithm does not impose any limitation on
the estimation method one can use in the second stage, which has advantages. In general, with
high-dimensional state spaces, researchers often employ two-step methods that preclude the ability
to perform full counterfactuals. However, in this case, researchers can also use full-solution methods
such as nested fixed-point that allow for a full range of counterfactuals.1 Finally, our discretization
algorithm has all the desirable properties of standard recursive partitioning-based algorithms, such

1Our approach also works for finite horizon settings. In this case, we would simply use backward induction to evaluate
the value function on learned discretization (P̂ ) and the state variables X.

5



as linear time complexity in the dimensionality of Q, robustness to the scale of the Q variables and
to the presence of irrelevant variables in Q. Furthermore, the algorithm can be implemented in a
parallelized way, making its execution fast and scalable.

We present two sets of simulations to highlight the empirical performance of our approach.
In both simulation studies, we use a high-dimensional version of the standard Rust bus engine
problem as the setting. In the first, we allow for a 10-dimensional set of Q variables and consider
12 different scenarios for how Q affects state transitions and flow utilities, and how Q transitions
from one state to another. Across all the cases, we show that using our recursive partitioning
approach to first partition the state space can help with parameter recovery and bias reduction
compared to ignoring the high dimensional state variables. In the second set of simulations, we use
a similar setting but focus on the role of the hyperparameter that captures the relative importance of
choice probabilities and state transitions in designing partitions. We show that using state transition
information helps improve the quality of the partitioning, though the extent of improvement varies
with the informativeness of state transition data. Thus, we show that it is important to tune and learn
this hyperparameter in a data-driven fashion.

2 Related Literature
First, our paper relates to the literature on the estimation of dynamic discrete choice models in
high-dimensional settings. Many different methods have been proposed, including the two-step
estimator (Hotz and Miller, 1993), where the expected value function can be specified as an
analytical function of the Conditional Choice Probability (CCP) of certain decisions (under certain
assumptions). Arcidiacono and Ellickson (2011) show that estimation can be further simplified
in many settings by exploiting the “finite-dependence property”, by specifying the expected value
functions as a function of terminal or renewal decisions. Chernozhukov et al. (2022) build on
the two-step approach of Hotz and Miller (1993) and allow the researcher to estimate the CCPs
and flow utilities flexibly using non- or semi-parametric methods and correct for the bias from
the first-stage estimation in the second step. While these two-step methods can make estimation
feasible in high-dimensional settings, they nevertheless have a few limitations. First, the researcher
still needs to estimate non-parametric CCPs at different combinations of the state space, which is
not feasible to do accurately in really high-dimensional settings with finite data. Second, in order to
conduct counterfactual analysis, researchers usually need to solve the full model at least once using
NFXP, which may again not be feasible in very high-dimensional settings. Finally, CCP methods
do not provide insight into whether certain variables affect the flow utilities/state transitions, and
still require the researcher to make assumptions if/how these variables affect outcomes.

Other methods to simplify estimation in high-dimensional settings include state space reduction
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by relying on inclusive value sufficiency (Gowrisankaran and Rysman, 2012), or approximation
of the value function using parametric policy iteration (Benitez-Silva et al., 2000) or sieve value
function iteration (Arcidiacono et al., 2012). Typically, these methods work well when there exists
a set of basis functions that provide a good approximation of the value function (Rust, 2000; Powell,
2007). A more recent body of literature has tried to use the advances in machine learning and
methods such as neural networks to solve dynamic discrete choice problems. For example, Norets
(2012) uses an artificial neural network to estimate the value function, taking state variables and
parameters of interest as input. Su and Judd (2012) proposes yet another approach to solve the curse
of dimensionality problem in dynamic discrete choice modeling, called MPEC. They formulate
the dynamic discrete choice problem as a constrained maximization problem where the likelihood
function is the maximization objective, and the bellman equations are the constraints. Nevertheless,
the MPEC algorithm is still not applicable in high-dimensional settings without proper discretization
of the state space because it requires us to estimate the value function at each point in the state space.
Finally, all of these methods require the researcher to specify the functional form of the flow utility
function and do not necessarily help with variable selection and/or state-space reduction when we
have no a priori theory on which variables affect the problem and how.

Our algorithm adds to this literature by offering a method to break the curse of dimensionality
through data-driven discretization of the state space. We show that state-space discretization and
parameter estimation are two separate tasks. Researchers can thus use our recursive partitioning
algorithm to reduce the dimensionality of a high-dimensional state space Q to a one-dimensional
categorical variable P in the first stage, and then use P in addition to other independent variables X

for parameter estimation in the second stage. Note that in the second step, we can use any of the
existing estimation algorithms, e.g., NXFP, two-step.

Our paper also contributes to the literature on estimation using recursive partitioning. Breiman
et al. (1984) proposed the original Classification and Regression Trees (CART) algorithm, for
prediction using recursive partitioning. Ensemble methods such as random forests combine several
trees to produce better performance than a single tree (Breiman, 2001). While recursive partitioning
has traditionally been used for prediction tasks, recently, there has been interest in using it for causal
estimation of heterogeneous treatment effects using methods such as causal tress and Generalized
Random Forests (Athey and Imbens, 2016; Athey et al., 2019). Our algorithm adds to this literature
by proposing a novel use of recursive partitioning to estimate dynamic discrete choice models by
formulating a non-parametric objective function that incorporates both choice probabilities and
state transitions to reduce the dimensionality of the state-space.

Finally, our paper adds to the nascent but growing literature that combines structural models
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with machine learning. Jiang et al. (2020) develop a choice model for high-dimensional settings.
Singh et al. (2023) exploit the permutation invariance property to propose nonparametric estimators
to overcome the curse of dimensionality that is inherent in the non-parametric estimation of choice
functions. Wei and Jiang (2022) discuss how neural networks can be used for parameter estimation
in structural models. However, all these approaches study static choice models rather than dynamic
choice models, which is our focus.

3 Problem Definition
We consider the discrete choice problem from the perspective of a forward-looking single agent,
denoted by i ∈ {1 . . . N}. In every period t, the agent chooses between j = 1 . . . J . options. i’s
decision in period t is denoted by dit, and dit = j indicates that the agent i has chosen the option j
in period t. The agent’s decision is not only a function of her utility in her current state (sit) but
also the expectation of her utility in all her future states given the decision dit. We assume that the
agent’s state sit is composed of three sets of variables.

1. A set of observable low-dimensional state variables xit ∈ X.

2. A set of observable high-dimensional state variables qit ∈ Q.

3. Unobservable state variable εit, which is a J × 1 vector each associated with one of the
alternatives observed by the agent, but not by the researcher.

X represents state variables for which we have some a priori theory, i.e., we know the parametric
form in which they enter the utility function. The structural parameters associated with these
variables form the main estimands of interest. Q denotes state variables that act as nuisance
variables in our estimation exercise – they are not the main variables of interest, and we do not have
a theory for if and how they influence users’ decisions and state transitions. However, ignoring them
can potentially bias the estimates of interest. Note that it is also possible to simply assume that X is
null and simply put all the state variables in Q and learn how Q affects utilities and state transitions.

In each period t, agent i derives an instantaneous flow utility u(sit, dit), which is a function
of her decision dit and her state variables sit = {xit, qit, εit}. The per-period utility is additively
separable as follows:

u(sit, dit = j) = ū(xit, qit, dit = j; θ1) + εitj, (1)

where εitj is the error term associated with jth option at time t, ū(xit, qit, dit = j; θ1) is the
deterministic part of the utility from making decision j in state xit, qit, and θ1 is the set of structural
parameters associated with the deterministic part of utility. The state sit transitions into new, but
not necessarily different, values in each period following decision dit. We make three standard
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assumptions on the state transition process – first-order Markovian, conditional independence, and
IID error terms. These assumptions imply that: (i) {sit, dit} are sufficient statistics for sit+1, (ii)
error terms are independent over time, and (iii) errors in the current period affect states tomorrow
only through today’s decisions. Thus, we have:

Pr(xit+1, qit+1, εit+1|xit, qit, εit, dit) = Pr(εit+1) Pr(xit+1, qit+1|xit, qit, dit) (2)

We denote the state transition function Pr(xit+1, qit+1|xit, qit, dit) as g(xit+1, qit+1|xit, qit, dit; θ2),
where θ2 captures the parameters associated with state transition.2

Each period, the agent takes into account the current period payoff as well as how her decision
today will affect the future, with the per-period discount factor given by β. She then chooses dit to
sequentially maximize the expected discounted sum of payoffs E [

∑∞
τ=t β

τu(siτ , diτ )]. Our goal is
to estimate the set of structural parameters θ = {θ1, θ2} that rationalizes the observed decisions and
the states in the data, which are denoted by {(xi1, qi1, di1), . . . , (xit, qit, dit), . . . , (xiT , qiT , diT )} for
agents i ∈ {1, . . . , N} for T time periods.

3.1 Challenges

The standard solution is to use a maximum likelihood method and estimate the set of parameters
that maximizes the likelihood of observing the data. Given the first-order Markovian and condi-
tional independence assumptions, we can write the likelihood function and estimate the structural
parameters as follows:

L(θ) =
N∑
i=1

(
T∑
t=1

log p̂(dit|xit, qit;θ1) +
T∑
t=2

log ĝ(xit, qit|xit−1, qit−1, dit−1; θ2)

)
(3)

θ∗ = argmax
θ
L(θ)

where p̂(.) is the predicted choice probabilities.
However, there are three main challenges in estimating a model in this setting:

• Theory: First, the researcher may lack theory on how the high-dimensional variables q enter
the agents’ utility function. For instance, if we consider the example of high-dimensional usage
variables in a software subscription decision, we do not have much theoretical guidance on
which product usage variables affect users’ utility and how. As such, we cannot make parametric
assumptions on the effect of Q on decisions and state transitions, or hand-pick a subset of these

2Both the utility function and state transition can also be estimated non-parametrically. In that case, θ1 and θ2 would
simply denote the utility and state transition at a given combination of state variables.
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variables to include in our model.

• Data: Second, in a high-dimensional setting, we may not have sufficient data in all areas of the
state space to model the flow utility and the transitions to/from a given set of state variables.

• Estimation: Finally, estimation of a discrete choice dynamic model in a high dimensional
setting is often computationally infeasible and/or costly. Rust (1987)’s nested-fixed point
algorithm requires us to calculate the value function at each combination of the state variables at
each iteration of the estimation, which is infeasible in a large state space setting. While two-step
methods can overcome estimation challenges in large state spaces by avoiding value function
iteration, they nevertheless need non-parametric estimates of Conditional Choice Probabilities
(CCPs) at each combination of state variables (Hotz and Miller, 1993). This is not possible in a
very high-dimensional setting with finite data.

Thus, in a finite data high-dimensional setting where we lack guiding theory, it is not feasible to
specify a utility function over q and/or estimate a dynamic discrete choice model using conventional
methods. Therefore, we need a data-driven approach that reduces the dimensionality of Q in an
intelligent fashion.

3.2 Dimensionality Reduction using Discretization

Our solution is to recast the problem by mapping Q to a lower-dimensional space through data-
driven discretization such that Π : Q → P , where P = {1, . . . , k}. The goal is similar in spirit
to that of Classification and Regression Trees (CART) algorithm used for outcome prediction
(Breiman et al., 1984) and the Causal Tree algorithm for estimation of conditional average treatment
effects (Athey and Imbens, 2016). These algorithms discretize the covariate space to minimize
the heterogeneity of the statistic of interest within a partition. For example, the CART algorithm
discretizes the covariate space into disjoint partitions such that observations in the same partition
have similar outcome values/classes. Similarly, the Causal Tree algorithm discretizes the state
space such that observations within the same partition have similar treatment effects. While the
exact approaches from the static estimation of CART/causal tree cannot be directly translated
to dynamic discrete choice models, we build on the notion of “similarity within a partition” to
adapt the high-level intuition from these models to our setting. Therefore, our first step is to
outline the characteristics of a suitable discretization. In §3.2.1 we formally define the term perfect

discretization as a discretization where the observations within a partition behave similarly. Then in,
§3.2.2, we show how the estimation problem can be reformulated for a lower-dimensional space by
exploiting this definition.
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3.2.1 Properties of a Good Discretization

We now discuss some basic ideas that a good discretization should capture. First, some variables in
Q may be irrelevant to our estimation procedure, i.e., they have no effect on flow utilities or state
transitions. A good data-driven discretization should be able to neglect these variables and thus be
robust to irrelevant variables. Second, our discretization approach has to be entirely non-parametric
since we do not have any theory on how variables in Q affect agents’ utilities and state transitions.
Finally, the discretization should be generalizable, i.e., it should be valid outside the training data.
Formally, we define the term perfect discretization as follows:

Definition 1. A discretization Π∗ : Q→ P is perfect if all the points in the same partition have the
same choice probabilities and incoming and outgoing transition probabilities. That is, for any two
points q, q′ in a partition π ∈ P , we have:

∀x, x′ ∈ X, q′′ ∈ Q, j ∈ J :


Pr(j|x, q) = Pr(j|x, q′) (4a)

Pr(x′, q′′|x, q, j) = Pr(x′, q′′|x, q′, j) (4b)

Pr(x, q|x′, q′′, j) = Pr(x, q′|x′, q′′, j) (4c)

The first equality ensures that the decision probabilities are similar for data points within a given
partition π ∈ P . The second equality asserts the equality of transition probabilities from any two
points q, q′ within the same partition π ∈ P . Finally, the last equality implies that the transition
probabilities to any two points within a partition π are equal. Together, these three equalities imply
that all the observations within the same π ∈ P are similar from both modeling and estimation
perspective. Therefore, we do not need to model the heterogeneity within the partition π. Instead,
modeling agents’ behavior at the level of P is sufficient.

3.2.2 Formulation of DDC in a discretized space

We now use the definition of perfect discretization and translate the DDC estimation from the
Q-space to the P-space. Because observations within each partition in a perfect discretization
behave similarly, we can project the problem from the Q-space to the P-space. That is, Π∗ is a
sufficient statistic for the estimation of state transition and decision probabilities. We can therefore
write the probabilities of choices and state transitions in the P-space as follows:

∀x, x′ ∈ X, q′′ ∈ Q, j ∈ J :


Pr(j|x, q) = Pr(j|x,Π∗(q)) (5a)

Pr(x′, q′′|x, q, j) = Pr(x′, q′′|x,Π∗(q), j) (5b)

Pr(x, q|x′, q′′, j) =
Pr(x,Π∗(q)|x′, q′′, j)

N(x,Π∗(q))
(5c)
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where N(x,Π∗(q)) is the number of observations in state {x,Π∗(q)}.
These three equalities are the counterparts of the relationships shown in Equation (4) in the P-

space. According to the first equality in Equation (5), if the choice probabilities for the observations
within a partition π ∈ P are the same, then {X,P} is a sufficient statistic to capture the choice
probabilities. The same argument is true for outgoing state transitions. If the probabilities of
transition to other states from all points in a partition are similar, we can use the partition instead of
points to specify transition (as shown in the second relationship in Equation (5)). Finally, when the
probability of transition into all the points within a partition is similar, the probability of moving to
a specific point is equal to the probability of transitioning into the partition divided by the number
of observations within that partition. That is:

Pr(x,Π∗(q)|x′, q′, j) =
∑

q′′∈Π∗(q)

Pr(x, q′′|x′, q′, j)

= N(x,Π∗(q)) Pr(x, q|x′, q′, j),

which gives us the third relationship in Equation (5).
We now use the relationships in Equation (5) to reformulate the log-likelihood in Equation (3).

Given a perfect partitioning Π∗, the log-likelihood can be written as:

L(θ,Π∗) =
N∑
i=1

T∑
t=1

log p(dit|xit,Π∗(qit); θ1,Π
∗)

+
N∑
i=1

T∑
t=2

log
g(xit,Π

∗(qit)|xit−1,Π
∗(qit−1), dit−1; θ2,Π

∗)

N(xit,Π
∗(qit); Π

∗)
(6)

Note that the second term in the log-likelihood is obtained by combining the second and third terms
in Equation (5) as: Pr(x′, q′′|x, q, j) = Pr(x′, q′′|x,Π∗(q), j) = Pr(x′,Π∗(q′′)|x′,Π∗(q),j)

N(x,Π∗(q′′))
.

Next, we can formulate the utility function in the Π∗(q)-space as follows:

u(sit, dit) = ū(xit,Π
∗(qit), dit; θ1,Π

∗) + εitj (7)

Finally, we can also write the value function and the choice-specific value function in terms of the
discretized state space. Conceptually, once we have a perfect discretization Π∗, we can treat Π∗(q)

as a categorical variable in addition to X, and ignore q. As such, all the methods available for the
estimation of dynamic discrete choice models (e.g., nested fixed point, two-step estimators) are
directly applicable here, with {X, P̂} as the state space. Thus, all the consistency and efficiency
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properties of the estimator used would directly translate to this setting, i.e., are valid conditional on
the state variables, {X, P̂}.

4 Our Discretization Approach
We now present our discretization algorithm. We first explain the recursive partitioning method for
a general objective function in §4.1. Next, in §4.2, we present a recursive partitioning algorithm for
the dynamic discrete choice model outlined above and discuss its properties. Finally, in §4.3, we
discuss the practical aspects of the algorithm such as model selection and hyper-parameter tuning.

4.1 Discretization using Recursive Partitioning

Figure 1: An example of recursive partitioning for a classification task with two explanatory
variables and two outcome classes (denoted by orange and black dots).

Recursive partitioning is a meta-algorithm for partitioning a covariate space into disjoint parti-
tions to maximize an objective function. In each iteration, the algorithm uses an objective function
as the criterion for selecting the next split among all the potential candidate splits. A split divides
a partition into two along one of the variables in the covariate space. The following pseudo-code
presents a general recursive partitioning algorithm, where the goal is to maximize the objective
function F(Π).

• Inputs: Objective function F(Π) that takes a partitioning Π as input and outputs a score.

• Initialize Π0 as one partition equal to the full covariate space.

• Do the following until the stopping criterion is met, or F(Πr) = F(Πr−1)

– For every π ∈ Πr, every q ∈ Q, and every value v ∈ range(q) in π

∆(π, q, v) = F(Πr +{π, q, v})−F(Πr)

– {π′, q∗, v∗} = argmax{π,q,v}∆(π, q, v)
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– Πr+1 = Πr +{π′, q∗, v∗}

Figure 1 shows three iterations of recursive partitioning applied to a classification task. The
partitioning Π maps the two-dimensional covariate space into four different partitions.

4.2 Recursive Partitioning for Dynamic Discrete Choice Models

The ultimate goal of our discretization exercise is to estimate θ by maximizing the likelihood
function in Equation (6). To do so, we first need to find a perfect discretization, i.e., a discretization
that satisfies Equation (4). Thus, an intermediate goal is to find the partitioning Π∗. The key
question then becomes what should be the objective function for the recursive partitioning algorithm
that helps us achieve the two goals discussed above. A naive approach would be to simply use the
log-likelihood shown in Equation (6). However, this is problematic because of three reasons.

• First, this likelihood is a function of both Π∗ and θ. Thus, a naive implementation of the
recursive partitioning algorithm would require us to estimate the optimal θ in every iteration for
a given Πr. However, estimating θ is computationally expensive because we need to calculate
the discounted future utility (or expected value function) associated with a given choice to
estimate the primitives of agents’ utility functions fully. Doing this at every potential split in
each iteration of the algorithm is computationally expensive (and infeasible when the Q-space
is large).

• Second, the likelihood function contains two sets of outcomes: (i) choice probabilities and (ii)
state transition probabilities. Any data-driven approach to discretize the state space must account
for both of these outcomes. This makes the splitting process more complex than usual recursive
partitioning algorithms such as CART/causal tree, where there is only one set of estimands to be
considered.

• Third, unlike a standard recursive partitioning algorithm, where we split on all the state variables,
here we only split on Q since Xs are known (or assumed) to influence outcomes by definition.
As such, we need an algorithm that only splits on a subset of state variables (Q), but considers
all the state variables ({X,Q}) to estimate the choice probabilities and state transitions; see
Figure 2 for an example.

We design a recursive partitioning method that addresses all these three problems. To address
the first problem, we separate the discretization problem from estimation and suggest an objective
function that is fully non-parametric, i.e., is not dependent on θ. Thus, its calculation is computation-
ally cheap. To address the second problem, we split our objective function into two sub-objectives,
whose relative importance can be learned from the data using model selection. Finally, to address
the third problem, we customize the splitting procedure such that it only splits on Q and not X. We
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Figure 2: The dashed lines are candidate splits. Orange and black dots are observations associated
with decisions 1 and 2 respectively. Note that agents’ choices are a function of both X and q1.

discuss these ideas in detail below.

4.2.1 Nonparametric Objective Function

As we discussed in §3.2.2, we can estimate the primitives of agents’ utilities and state transitions
by maximizing the log-likelihood shown in Equation (6). This likelihood is a function of both
the primitive parameters (θ) and the discretization Π∗. Nevertheless, we do not need to solve the
maximization problem on both dimensions simultaneously. Conceptually, the discretization goal
is to separate Q into buckets such that observations within the same bucket behave similarly. A
key insight here is that we can achieve this objective without estimating θ, by simply using the
non-parametric estimates of choice probabilities and state transitions observed in the data. That
is, we can re-formulate the objective function from Equation (6) in non-parametric terms. Our
proposed objective function is thus a weighted sum of the nonparametric equivalents of the first and
second components of Equation (6) as shown below.

F(Π) = Fdc(Π) + λF tr(Π) (8)

where Π is a partitioning function, and Fdc(Π) and F tr(Π) are:

Fdc(Π) =
N∑
i=1

T∑
t=1

log
N(xit,Π(qit), dit; Π)

N(xit,Π(qit); Π)

=
∑
x∈X

∑
π∈Π

∑
j∈J

N(x, π, j; Π) log
N(x, π, j; Π)

N(x, π; Π)
(9)

15



F tr(Π) =
N∑
i=1

T∑
t=2

log
N(xit,Π(qit), xit−1,Π(qit−1), dit−1; Π)

N(xit−1,Π(qit−1), dit−1; Π)N(xit,Π(qit))

=
∑
x∈X

∑
π∈Π

∑
j∈J

∑
x′∈X

∑
π′∈Π

N(x, π, x′, π′, j; Π) log
N(x, π, x′, π′, j; Π)

N(x, π; Π)N(x′, π′, j; Π)
(10)

The function N(.) counts the number of observations for a given condition. For example, N(x, π, j)

is the number of observations where the agent chose decision j in state {x, π} and N(x, π, x′, π′, j)

is the number of observations that chose decision j in state {x′, π′}, and transitioned to {x, π}.
The weighting parameter λ is a multiplier that specifies the relative importance of the state

transition likelihood in comparison to decision likelihood in our algorithm. To make this parameter
more intuitive and generalizable across different datasets, we decompose it as follows:

λ = λadj × λrel, where λadj =
Fdc(Π0)

F tr(Π0)
. (11)

Here, Π0 is the full covariate space of Q as one partition (i.e., the baseline case that ignores Q). λrel
is a hyperparameter that captures the relative importance of state transition and decision likelihoods
in our objective function and should be learned from the data using cross-validation. For example,
λrel = 2 implies that the recursive partitioning algorithm values one percentage lift in F tr twice
as much a one percentage lift in Fdc when selecting the next split. The optimal λrel can vary with
the application. In settings where there is more information in the state transition, the optimal λrel
will be higher whereas a smaller λrel is better when the choice probabilities are more informative.
Therefore, it is important to choose the right value of λrel to prevent over-fitting and learn a good
discretization.

A couple of additional points of note regarding our proposed objective function. First, the first
lines in both Equations (9) and (10) are aggregating observations over individuals and time whereas
the second lines are aggregating over all possible decisions and state transitions weighted by their
occurrence. While the two representations are equivalent, we use the latter one in the rest of the pa-
per since it is more convenient. Second, the objective function in Equation (8) is the non-parametric
version the log-likelihood in Equation (6) (with the hyperparameter λ added in for data-driven opti-
mization). The terms N(xit,Π(qit),dit;Π)

N(xit,Π(qit);Π)
, and N(xit,Π(qit),xit−1,Π(qit−1),dit−1;Π)

N(xit−1,Π(qit−1),dit−1;Π)
are the non-parametric

counterparts of Pr(dit|xit,Π(qit); θ1,Π) and Pr(xit,Π(qit)|xit−1,Π(qit−1), dit−1; θ2,Π), respec-
tively. Therefore, maximizing F(Π) is equivalent to maximizing the original likelihood function.
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4.2.2 Algorithm Properties

We now establish two key properties of the recursive partitioning algorithm proposed here. First,
as shown in Web Appendix A.1, the non-parametric log-likelihood shown in Equation (6) is
non-decreasing at each iteration of the algorithm. Formally, we have:

L(θ∗r ,Πr) ≤ L(θ∗r+1,Πr+1)

where

 θ∗r = argmaxθ L(θ,Πr)

θ∗r+1 = argmaxθ L(θ,Πr+1)

Second, as shown in Web AppendixA.2, for λ > 0, the final discretization Π∗ = argmaxΠF(Π)

converges to a perfect discretization (under certain conditions). Together, these two properties
ensure that: (a) the algorithm will increase the likelihood at each step and converge, and (b) upon
convergence, it will achieve a perfect discretization. Of course, in practice, we may choose a λ
that does some bias-variance trade-off to avoid over-fitting and stop before we reach the perfect
discretization to ensure that the discretization generalizes outside the training data.

Further, our proposed algorithm shares the desirable properties of other recursive partitioning-
based algorithms. First, it has linear time complexity with respect to the dimensionality of Q (Sani
et al., 2018) – if the number of dimensions in Q doubles, the algorithm’s runtime at most doubles.
Second, the proposed algorithm is robust to the scale of the state variables and only depends on
the ordinality of the state variable. As such, any changes in the scale of variables in Q do not
change the estimated partition. Finally, since the algorithm splits on a variable only if it increases
the log-likelihood shown in Equation (8), it is robust to the presence of irrelevant state variables.
Together, these properties allow the researcher to include all potential observable variables that
might affect the agents’ decisions in Q without significantly increasing the compute cost. This is
valuable in the current data-abundant era, where firms have massive amounts of user-level data but
lack theoretical insight into the effect (if any) of these variables on users’ decisions. Indeed, one of
the advantages of the method is that it allows the researcher to make post-hoc inference or theory
discovery in a data-rich environment.

Nevertheless, like other recursive partitioning algorithms, our algorithm does not guarantee
consistency. This is because recursive partitioning algorithms are inherently unable to capture
certain data patterns and are greedy by design; see Assumption 2 in Web Appendix§A and Biau
et al. (2008) for further details. Thus, it is not feasible for us to provide a formal consistency proof
for the algorithm. Nevertheless, as we show in §5, the algorithm performs well in a wide range of
simulations.
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4.3 Hyperparameter Optimization and Model Selection

Like other machine learning approaches, our recursive partitioning algorithm also needs to address
the bias-variance trade-off. If we discretize Q into too many small partitions, the set of partitions
(and the corresponding estimates of choice and state transition probabilities) will not generalize
beyond the training data. Thus, we need a set of hyperparameters that constrain or penalize model
complexity. We can then tune these hyperparameters using a validation procedure.3

4.3.1 Set of Hyperparameters

We start with two hyperparameters that are commonly used in other recursive partitioning-based
models: minimum number of observations and minimum lift.4 The former stops the algorithm from
making very small partitions by ruling out splits (at any given iteration) that produce partitions with
observations fewer than the minimum number of observations. The latter prevents over-fitting by
stopping the partitioning process if the next split does not increase the objective function by the
minimum lift, which is defined as F(Πr+1)−F(Πr)

F(Πr)
. In addition to these two standard hyperparameters,

we also include another one: maximum number of partitions, which stops the recursive partitioning
after the algorithm has reached the maximum number of partitions. This hyper-parameter not only
controls over-fitting, but can also help with identification concerns because it allows the researchers
to restrict the number of partitions, and hence the number of estimands. Together, these three
hyperparameters ensure that the algorithm does not over-fit and produces a generalizable partition
that is valid out-of-sample.

In addition to these three hyper-parameters that constrain partitioning, we have another key
hyperparameter, λrel, that shapes the direction of partitioning. As discussed earlier, λrel captures
the relative importance of the two parts of the objective function when selecting the next split.
If λrel is set close to zero, the discretization procedure prioritizes splits that explain the choice
probabilities. As λrel increases, the recursive partitioning tends to choose splits that explain the
variation in the state transition. λrel can be either tuned using a validation procedure or set manually
by the researched based on their intuition or the requirements of the problem at hand. We present
some simulations on the importance of picking the right value of λrel in §5.3.

4.3.2 Score function

Let η denote the set of all hyperparameters. To pick the right η for a given application setting,
we need a measure of performance at a given η. Then, we can consider different values of η and

3See Hastie et al. (2009) for a detailed discussion of the pros-cons of different validation procedures.
4See the hyperparameters in Random Forest (Breiman, 2001), XGBoost (Chen and Guestrin, 2016), and Generalized
Random Forest (Athey et al., 2019).
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select the one that maximizes out-of-sample performance (on the validation data). The model’s
performance is measured by calculating our objective function on a validation set using the training
set’s estimated values. Formally, our score function for a given set of hyperparameters is:

score(η) =
1

1 + λrel

(∑
x∈X

∑
π∈Π∗

∑
j∈J

N val(x, π, j; Π∗) log
N trn(x, π, j; Π∗)

N trn(x, π; Π∗)
(12)

+λrelλ
val
adj

∑
x∈X

∑
π∈Π∗

∑
j∈J

∑
x′∈X

∑
π′∈Π∗

N val(x, π, x′, π′, j; Π∗) log
N trn(x, π, x′, π′, j; Π∗)

N trn(x, π; Π∗)N trn(x′, π′, j; Π∗)

)

where Π∗ = argmaxΠF(Π; η) and N trn(.) and N val(.) are counting functions within the training
and validation data, respectively. Notice that the main differences between Equations (8) and (12) is
that here the model is learned on the training data, but evaluated on the validation data. As such, the
weight terms (N(·)) and λadj are calculated on the validation dataset, while the probability terms
are based on the training set. In addition, one minor difference is that this score is normalized by

1
1+λrel

. Without this normalization, any hyperparameter optimization procedure will tend to select
larger λrel since a larger λrel leads to a higher score.

In the validation procedure, we select the hyperparameter values that have the highest score on
the validation dataset. Note that having a separate validation set is not necessary. We can also use
other hyper-parameter optimization techniques such as cross-validation (and this option is available
in the accompanying software package).

4.3.3 Zero Probability Outcomes in Training Data

A final implementation issue that we need to address is the presence of choices and state transitions
in the validation set that have not been seen in the training set.5 For example, suppose that we
have no observations where the agent chooses action j in state {x, π} in the training data, but there
exists such an observation in the validation data. Then, the score in Equation (12) becomes negative
infinity. This problem makes the hyperparameter optimization very sensitive to outliers.

To solve this problem, we turn to the Natural Language Processing (NLP) literature, which
also deals with high-dimensional data and has studied this problem extensively. Several smoothing
techniques have been proposed to resolve this issue in NLP models (Chen and Goodman, 1999).
One of the simplest smoothing methods that is used in practice and can be applied to our setting is
additive smoothing (Johnson, 1932), which assumes that we have seen all possible observations (i.e.,
choices and state-transitions) at least δ times, where usually 0 ≤ δ ≤ 1. This smoothing technique

5These kind of zero-probability occurrences are common in a finite sample setting as the dimensionality of the data
increases.
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removes the possibility of zero probabilities
A typical value for δ in the NLP literature is 1; however, the optimal value for δ depends on the

data-generating process. A low value for δ penalizes the model more heavily for potential outliers.
It also prevents the recursive partitioning step from creating small partitions, since it increases the
probability of having observations in the validation set that are not observed in the training set. On
the other hand, a high value for δ may help with reducing overfitting by adding more noise to the
data. In our simulations, we set δ to 10−5, which is a relatively small value. However, the researcher
can use a different number depending on their data and application setting.

4.4 Summary of Estimation Approach

In summary, the estimation approach consists of two steps. In the first step, we employ the recursive
partitioning algorithm described in §4.1–§4.3 to reduce the dimensionality of the high-dimensional
state variables Q to lower-dimensional P-space. In the second step, we use X and the estimated P̂
as the set of observed state variables and estimate the dynamic discrete choice model. Note that at
this stage, we can use any estimation procedure (including NXFP and two-step methods), and all
the properties of these estimators are valid conditional of X and P̂ .

5 Monte Carlo Experiments
We now present two simulation studies to illustrate the performance of our algorithm. We use
the canonical bus engine replacement problem introduced by Rust (1987) as the setting for our
experiments. Rust’s framework has been widely used as a benchmark to compare the performance
of newly proposed estimators/algorithms for single-agent dynamic discrete choice models (Hotz
et al., 1994; Aguirregabiria and Mira, 2002; Arcidiacono and Miller, 2011). We start by describing
the original bus engine replacement problem and our high-dimensional extension of it in §5.1. In
our first set of experiments in §5.2, we document the extent to which our algorithm is able to recover
parameters of interest and compare its performance to a benchmark case where the high-dimensional
state variables are ignored. In the second set of experiments in §5.3, we examine the importance of
optimizing the key hyperparameter, λrel.

5.1 Engine replacement problem

In Rust’s model, a single agent (Harold Zurcher) chooses whether to replace the engine of a bus or
continue maintaining it in each period. The maintenance cost is linearly increasing in the mileage
of the engine, while replacement constitutes a one-time lump-some cost. The intertemporal trade-
off is as follows – by replacing the bus engine, he pays a high replacement cost today and has
lower maintenance costs in the future. If he chooses to not replace the bus engine, he avoids the
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replacement cost but will continue to pay a higher maintenance cost in the future.
We start with the basic version of the model without the high-dimensional state variables. Here,

the per-period utility function of two choices is given by:

u(xit, dit = 0) = −cmxit + εi0t

u(xit, dit = 1) = −cr + εi1t,
(13)

where xit is the mileage of bus i at time t, cm is the per-mile maintenance cost, cr is the cost of
replacing the engine, and {εi0t, εi1t} are the error terms associated with the two choices. Next, we
assume that the mileage increases by one unit in each period 6. Formally:

if dit = 0, then xit+1 = xit + 1 if xit < 20, else xit+1 = xit

if dit = 1, then xit+1 = 1
(14)

The maximum mileage is capped at 20, i.e., after the mileage hits 19, it continues to stay there.
We now extend the problem to incorporate a set of high-dimensional state variables Q that can

affect the utility function and state transition. Q can include all the potential variables that can
affect utilities and state transitions. For example, the mileage accrued may vary depending on the
bus route, weather of the day, etc. Similarly, the replacement costs may vary by bus brands and/or
economic conditions. A priori, it can be hard to identify which of these state variables and their
combinations matter. Our method allows us to include all potential variables in the utility and state
transition, and identify the partitions that matter.

In our simulations, we expand the utility function and state transition to include Q as follows:

u(xit,Π
∗(qit), dit = 0) = cmxit + εi0t

u(xit,Π
∗(qit), dit = 1) = fdc(Π

∗(qit)) + εi1t
(15)

if dit = 0, then xit+1 = xit + ftr(Π
∗(qit)) if xit < 20, else xit+1 = xit

if dit = 1, then xit+1 = ftr(Π
∗(qit))

(16)

where qit is the high-dimensional state variable for bus i at time t, and fdc(Π∗(qit)) and ftr(Π∗(qit))
are functions that specify the effect of qit on the replacement cost and state transition, respectively.
Note that we use Π∗(qit) instead of qit since Π∗(qit) is a perfect discretization (and conveys the
same information) as qit. Finally, we set cm = −0.2 in both our simulation studies.7

6This choice is just for the sake of increasing simplicity. However, our framework can easily handle stochastic state
transitions as well.

7Note that the specific functional form is chosen for convenience, and the algorithm works even with fully non-parametric
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5.2 First simulation study

In the first set of experiments, our goal is to demonstrate the algorithm’s performance and document
the extent of bias when we do not account for Q.

5.2.1 Data generating process

In this simulation study, Q consists 10 variable: q1, . . . , q10, where qi ∈ {0, 1, . . . , 9}. However,
only the first two variables affect the data-generating process, and the rest of them are irrelevant. In
principle, our algorithm is robust to the inclusion of irrelevant state variables. Therefore, the extra
eight variables in Q allow us to examine if this is indeed the case in practice. In our simulations, q1

and q2 partition Q into four regions {π1, π2, π3, π4} such that all the observations within a partition
have the same choice and state transition probabilities. The partitions are given by:

Π∗(q) =



π1, if q1 < 5 and q2 < 5

π2, if q1 < 5 and q2 ≥ 5

π3, if q1 ≥ 5 and q2 < 5

π4, if q1 ≥ 5 and q2 ≥ 5

The mileage transitions are as described in Equation (16). We also need to define the state transition
in the Q space. Note that only the state transitions between πs matter, i.e., conditional on the
partition π, the exact q is not informative of utilities or state transitions random. We consider three
different state transition models in our simulations:

• No transition: The agent remains within the same partition in each period: Π∗(qit) = Π∗(qit+1).

• Random transition: Agents’ transitions in the Q-space are completely random. In each period,
an agent randomly transitions from one partition to another such that: Π∗(qit) ⊥ Π∗(qit+1).

• Sparse transition: After each period, the agent remains in the same partition with probability
0.5 and moves to the next partition with probability 0.5. We choose the order of partitions as
follows: π2 is after π1, π3 is after π2, π4 is after π3, and π1 is after π4.

Next, we consider two different options for ftr and fdc in Equations (15) and (16) each, as
follows:

ftr([π1, π2, π3, π4]) =

 [0, 1, 2, 3] in the dissimilar mileage transition case

[1, 1, 1, 1] in the similar mileage transition case
(17)

utilities within a partition and non-parametric state transitions across partitions.
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fdc([π1, π2, π3, π4]) =

 [−7,−6,−5,−4] in the dissimilar replacement costs case

[−5,−5,−5,−5] in the similar replacement costs case
(18)

Together, this gives us 3 × 2 × 2 = 12 possible scenarios for the data-generating process. For
example, one possible data-generating process could be {No transition, Similar mileage transition,
Dissimilar replacement cost}, where ftr([π1, π2, π3, π4]) = [1, 1, 1, 1] and fdc([π1, π2, π3, π4]) =

[−7,−6,−5,−4]. In this case, Q does not affect mileage transitions but only the flow utilities. On
the other hand, if the data-generating process is {Random transition, Dissimilar mileage transition,
Similar replacement cost}, then Q affects state transitions but not flow utilities. By considering all
such possible scenarios, we are able to explore how the algorithm performs as the data-generating
process changes.

We now simulate data and recover the structural parameters for each of these cases using the
approach outlined in §4.4. In the first step, we use our recursive partitioning procedure to generate
the partitioning (as described in §4). While doing so, we set the hyperparameters as follows:
minimum lift = 10−10, minimum number of observations = 1, and λrel = 1. Further, for each
case, we run the algorithm (and then perform the estimation) for four different values of maximum

partitions: 1, 2, 4, or 6. The single partition case is equivalent to ignoring the high-dimensional state
variable Q. Setting maximum partitions to 2 and 6 allows us to examine how our algorithm performs
when we allow for under-discretization and over-discretization, respectively. Then, once we have
a partition, we use the Nested Fixed Point algorithm by Rust (1987) to estimate the structural
parameters for each case.

5.2.2 Results

For each of the 12 data generation processes, we run 100 simulations. In each simulation, we
generate data for 400 buses for 100 time periods. For each simulated dataset, we first use our
recursive partitioning algorithm to discretize the high-dimensional state space Q and obtain P̂ .
While doing so, we consider four different versions of the recursive partitioning algorithm, where
each version allows for a different value of the number of partitions – {1, 2, 4, 6}. Then, as discussed
in §4.4, we simply treat the set of estimated partitions in Π̂∗(q), i.e., P̂ as an extra categorical
variable in addition to X at the estimation stage, and estimate the structural utility parameters.
The parameter estimates of cm from these simulations are presented in Table 1. Next, in Table 2,
we focus only on two versions of the recursive partitioning model – (1) where we allow for four
partitions of Q, and (2) one where we neglect Q, which is similar to treating all the data as being in
one partition, and present the replacement cost estimates.

As we can see from both tables, neglecting Q often leads to biased estimates; see column 5
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in Table 1 and the last column in Table 2. This is true even when qit does not directly affect the
flow utility and there is no serial correlation in q over time, e.g., Case 8 in Table 1. In this case, the
bias arises because Q affects the state transitions through ftr (which in turn affects the expected
future value function). Thus, when we neglect Q in the estimation procedure, it is captured in the
error term, which in turn violates the conditional independence assumption that εit+1 and xit+1 are
independent of εit. Further, the bias seems to be worse when Q affects both flow utility and state
transition, especially when Q itself has state dependence in how it transitions into the next period
(e.g., case 3). Also, as expected, in cases where Q does not affect the utility function or the state
transition (cases 10, 11, and 12 in both tables), neglecting Q does not bias the parameter estimates.
This is because Q is an irrelevant state variable in these cases.

Finally, columns 6 and 8 in Table 1 highlight the impact of under- and over-discretization.
As expected, over-discretization does not introduce any bias in the estimation procedure, since it
does not violate any estimation assumption. However, it does lead to marginally higher variance
(compared to column 7) since we estimate more parameters when we over-discretize. However,
under-discretization does lead to bias; though, by and large, the bias seems to be lower than
completely ignoring Q.

In sum, these simulations show that our recursive partitioning approach can help reduce the
dimensionality of the dynamic discrete choice problem and help with correcting for bias and
recovering true primitive parameters.

5.3 Second Simulation Study

We now conduct a series of numerical experiments to examine the importance of hyperparameter
tuning. Specifically, we focus on the choice of λrel, which is unique to our dynamic setting and
captures the relative importance of the choice probabilities and state transitions in designing the
partition. Recall that when λrel is large, the recursive partitioning algorithm puts a higher weight
on state transitions (compared to choice probabilities) and vice versa. Tuning this hyperparameter
should therefore allow us to weight the state transition data less when state transitions are noisy
and/or less informative compared to choice probabilities (since higher λrel in such cases would lead
the algorithm to pick up noise as a signal in its discretization).

In general, we expect the choice of λrel to be important when: (1) the dimensionality of Q is
high since it is much easier for the algorithm to find noisy patterns in such cases (because there
are a lot more variables for a potential split), and (2) when the number of observations is relatively
small, i.e., finite samples, because there may not be enough data in each possible partition to pick up
patterns accurately. In the rest of this section, we therefore explore the sensitivity of the partitioning
procedure to the choice of λrel for different data-generating processes and data sizes.
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5.3.1 Data generating process

The data-generating process in these simulations is similar to those in the previous study, with small
differences. We give a brief summary below and present details in Appendices §B and §B.

1. First, the dimensionality of Q is 30, but only the first 10 variables affect the data-generating
process, and the rest are irrelevant. We randomly discretize Q into 15 partitions using
the process explained in Web Appendix§B. We use this process to generate 100 different
discretizations, i.e., 100 cases each with a different discretization of Q.

2. We then allow the replacement cost in each partition in each case to be a function of the
partition in Π∗ as shown in Web Appendix§B.

Next, for each of the 100 discretizations, we vary the mileage transition model, the state
transition model in Q, and the amount of data available in two ways each, which gives us eight
different data-generating scenarios for each of the discretizations. These are discussed below.

3. We consider two cases for ftr: (i) ftr(π) = 1 for all 15 partitions (Similar mileage transi-
tion case), and (ii) ftr(π) is a random number from the set {0, 1, 2, 3} (Dissimilar mileage
transition case).

4. We consider two types of state transition models for Q:

• Random transition: Agents’ transitions in the Q-space are completely random. In each
period, an agent randomly transitions from one partition to another such that: Π∗(qit) ⊥
Π∗(qit+1).

• Sparse transition: After each period, the agent remains in the same partition with proba-
bility 1/3 and moves to one of the next two partitions with the same probability, and the
ordinality/ordering of partitions is randomly chosen in each simulation.

Variation across these two dimensions allows us to vary the amount of information available
in the state transition. For example, there is less information in the state transition in the case
where the transitions across partitions in Π∗ random and ftr(π) = 1.

5. We also vary the amount of data available for the analysis by considering two scenarios for
the number of observations: (i) 100 buses in 100 periods and (ii) 100 buses in 400 periods.

For all these scenarios, we examine the impact of different values of λrel by learning the partition
from the training data and evaluating it on a validation dataset (that is separately generated and is
the same size as the training data) using the score function (as shown in Equation (12)). Specifically,
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Case Number Transition Π∗(Q) Value of λrelNo. of in Π∗(Q) affects mileage
Periods space transition 0 0.2 0.5 1 2 5 100

Case 1

100

Sparse Yes -3722 -3481 -3274 -3121 -2977 -2864 -2766
Case 2 Sparse No -3762 -3536 -3407 -3323 -3245 -3200 -3228
Case 3 Random Yes -3743 -3762 -3730 -3768 -3831 -3913 -4062
Case 4 Random No -3698 -3781 -3867 -3959 -4063 -4192 -4373

Case 5

400

Sparse Yes -13287 -12969 -12606 -12239 -11864 -11519 -11217
Case 6 Sparse No -13815 -13650 -13469 -13264 -13059 -12909 -12987
Case 7 Random Yes -13518 -13620 -13693 -13770 -13863 -13974 -14187
Case 8 Random No -13613 -13921 -14231 -14542 -14856 -15177 -15556

Table 3: The calculated score for different values of λrel in different data-generating processes. A
bigger λrel is better when there is more information in the state transition data. Scores are averaged
over the 100 different partitioning schemes and shown for the validation data.

we consider the following values of λrel ∈ {0, 0.2, 0.5, 1, 2, 5, 100}. During this analysis, we fix all
the other hyper-parameters as follows: minimum number of observations = 1, minimum lift = 10−10,
and total number of partitions = 15 (which is the number of true partitions in the data). Fixing all
the other hyper-parameters allows us to focus on the role of λrel.

5.3.2 Results

In total, we run 100 (partitions) ×8 (scenarios)×7 (values for λrel) = 5600 simulations and report
the score on the validation data in Table 3. The bold numbers in each row denote the best average
score (on the validation data) across all the 100 partitions for a given scenario. We find that the
optimal value of λrel varies across data-generating processes. As expected, the optimal value for λrel
is the largest when the state transition is most informative (i.e. cases 1 and 5, where the transition in
Π∗(Q) is Sparse (as opposed to Random), and the partition affects the mileage transition). Similarly,
the optimal value λrel is small (or zero) in cases 4 and 8, where the transition in Π∗(Q) is Random
and Π∗(Q) does not affect mileage transition (thus not informative for finding the discretization).

In summary, these simulations demonstrate that using the state transition information in the
recursive partitioning algorithm helps improve the quality of the partitions, though the extent to
which this data helps varies with the data-generating process (and depends on the level of signal
available in the state transitions). Thus, it is important to tune λrel in a data-driven fashion to learn
how much to weigh state transition data (relative to choice data).

Please note that we provide two GitHub repos for the methods in the paper: (1) https://github.com/ebzgr/RePaD
– consists of a set of codes/package for implementing the approach on other datasets, and (2)
https://github.com/ebzgr/RePaD-Paper – contains all the codes for the simulation results from this
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section.

6 Extensions, Limitations, and Conclusion
The ideas presented in the paper can be generalized and applied to other settings. We now discuss
two natural ways to improve the performance of the method and extend it to other cases.

Cross-fitting: The idea of cross-fitting has been used in Double Machine Learning approaches
to avoid overfitting bias (Chernozhukov et al., 2018, 2022). Essentially, cross-fitting requires the
researcher to fit the first-stage models on one dataset and then perform the estimation on a different
dataset. In our setting, this can be done efficiently by splitting the data into two parts and using
split-1 to learn the partitioning and performing the estimation on split-2 (taking the partition from
split-1 as given), and vice versa. This separates the process of partitioning and estimation further,
thereby reducing potential bias from overfitting/regularization during the first-stage partitioning.

Dynamic Games: The method can be easily extended to dynamic games, e.g., entry models,
oligopolistic models of competition and investment (Bajari et al., 2007; Aguirregabiria et al.,
2021). In this case, in the recursive-partitioning algorithm, the state transition probabilities of an
entity/agent would be conditioned on both their own actions as well as the actions of the other
agents in the system. Then, once we have the partitioning, we can use a standard two-step estimator
with the estimated partitions as another state variable just as we did in the case of the single agent
model (with the appropriate assumptions on the uniqueness of the equilibrium observed in the data).

Limitations: Nevertheless, there are a series of limitations with our method, many of which
are shared by other tree-based approaches. First, if Q enters the state transitions and decisions
in a continuous fashion (instead of as partitions/categories), then no empirical partitioning will
ever be perfect. This would be similar to using CART to capture a regression model where the
explanatory variables enter regression in a continuous fashion, i.e., we can keep partitioning the
data further and further without reaching a perfect discretization. In practice, this is not a big
issue, since the regularization procedure will stop the partitioning when the gains from partitioning
are not sufficiently high to continue. However, in theory, there is likely to be some bias from
the fact that we have not correctly accounted for the true partitions and have under-discretized
Q. Second, even though CART and other recursive partitioning methods are extremely popular
for prediction and classification tasks and have many good properties, they lack some standard
consistency properties. In particular, it is well-known that some data patterns cannot be captured by
recursive partitioning even if the number of observations goes to infinity; see Web Appendix§A and
Biau et al. (2008) for details. Thus, there are no theoretical guarantees that this procedure will reach
the true underlying partition for certain types of data-generating processes. Finally, from a practical
perspective, we might not have enough observations to fully recover the accurate discretization
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when the dimensionality of Q is high, especially when we have a limited number of observations.
In practice, we can take a few steps to ensure that the partitioning algorithm is producing stable

and reasonable, and not unduly affected by these limitations. First, it is important to use hyper-
parameter optimization to ensure that the discretization generated by our algorithm is generalizable
to the data-generating process, not just the training sample. We can check the performance of
estimated parameters in both training and validation sets and use the extent of the difference as
a measure of the quality of our partitioning. Another suggestion is to check the sensitivity of
the discretization and estimated parameters to the number of observations. For example, we can
discretize Q and estimate the model with 80% of the data, and check how close the discretization
and estimated parameters are to the case where we use all the data. This could be a simple heuristic
to test the robustness of the results.

In sum, our proposed algorithm allows researchers to reduce the estimation bias associated with
ignoring relevant state variables, improve the fit of their models, and draw post-hoc inferences in a
high-dimensional setting without theoretical guidance, all at relatively low compute costs. Further,
because the recursive partitioning approach is modular, it does not require the user to develop or
learn new estimation procedures. Indeed, it can be easily combined with any estimation procedure
(e.g., nested fixed point, two-step) as a first-step approach. As such, we expect it to be easily
applicable to a wide variety of settings.
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Web Appendix
A Proof of Convergence
In this section, we provide proof that our proposed algorithm converges to a perfect discretization.
We start with a brief explanation of the structure of the proof.

The convergence proof consists of two steps. First, in §A.1 we prove that the likelihood
of observing data given partitioning Πr (at iteration r) and the optimal parameter value θ∗r =

argmaxθ L(θ,Πr) is increasing at each iteration of the algorithm. Therefore, each additional
iteration does not reduce the likelihood of observing the data, i.e., L(θ∗r ,Πr) ≤ L(θ∗r+1,Πr+1).
Then in §A.2, we prove that L(θ∗r ,Πr) = L(θ∗r+1,Πr+1) if and only if Πr is a perfect discretization,
proving that the proposed algorithm stops if and only if it reaches a perfect discretization. Before
proceeding, we provide some definitions, assumptions, and lemmas that are used in the proof.

Definition 2. We split the likelihood function into two parts: the decision part and the state transition
part, denoted by Ldc(θ,Π) and Lst(Π) respectively, such that L(θ,Π) = Ldc(θ,Π) + λLst(Π).
Note that the decision part of the likelihood is a function of the utility function parameters, θ.

Definition 3. Discretization Π is a parent of discretization Π′ if for every π′ ∈ Π′, there is a
partition π ∈ Π such that π′ is completely within π. In other words, discretization Π is a parent of
discretization Π′ if one can generate discretization Π′ by further splitting discretization Π.

Definition 4. The expected value function and expected choice-specific value function are defined
as follows:

V̄ (x, π; θ,Π) = log
∑
j∈J

exp v(x, π, j; θ,Π) (A1)

v(x, π, j; θ,Π) = ū(x, π, j; θ,Π) + β
∑
x′∈X

∑
π′∈Π

V̄ (x′, π′; θ,Π)g(x′, π′|x, π, j; θ,Π). (A2)

where β is the discount factor usually set by the researcher. Assuming that error terms are drawn
from Type 1 Extreme Value distribution, the predicted choice probabilities can be calculated as:

p̂(j|x, π; θ,Π) =
exp v(x, π, j; θ,Π)

exp V̄ (x, π; θ,Π)
. (A3)

Assumption 1. We assume a fully non-parametric form for the flow utility and state transition
function to avoid dependence on parametric functions for the proof and keep the analysis general,
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i.e., ū(x, π, d; θ,Π) and g(x, π|x′, π′, j; Π) are constant for each combination of states, {x, π}, and
decision d.

Assumption 2. There is no data pattern that is not discoverable with a single split.

Assumption 2 is common to all algorithms that are based on recursive partitioning. It has been
shown that some patterns cannot be captured by recursive partitioning, even when the number of
observations goes to infinity (Biau et al., 2008). A simple example of such patterns is presented in
Figure A1. Assume observations are uniformly distributed throughout the covariate space. Also,
assume that the flow utility in the crosshatched regions is l and it is h in the non-crosshatched
regions. Any split would result in two sub-partitions with a similar number of observations in
the crosshatched and non-crosshatched regions. The average utility would be equal to h+l

2
in the

resulting two sub-partitions. Since the split does not increase Ldc, the algorithm does not add it
to its discretization. Generally, recursive partitioning cannot capture variational patterns that are
symmetric in a way that any splits would lead to two sub-partition with a similar average statistic.

To overcome this shortcoming of recursive partitioning algorithms, we assume no data pattern
exists that a single split in a discretization cannot partially capture. Then because of the assumption
we can draw the following corollary.

Corollary 1. A discretization Π is either perfect, or there exists a split such that the decision
probabilities, average incoming transition probabilities, or outgoing transition probabilities on two
sub-partitions are not equal. Formally, if discretization Π is not perfect, there exists a split that
partitions πp ∈ Π into πl and πr such that for a {x, x′} ∈ X, π′ ∈ Π and j ∈ J at least one of the
following inequalities holds:

Pr(j|x, πl) 6= Pr(j|x, πr)

Pr(x′, π′|x, πl, j) 6= Pr(x′, π′|x, πr, j)
Pr(x, πl|x′, π′, j)

N(x, πl)
6= Pr(x, πr|x′, π′, j)

N(x, πr)

Finally, we need the following lemma for proving that the decision likelihood is increasing in
each iteration in §A.1.

Lemma 1. For any given vector a :
∑

i ai = 1, the solution to the following maximization problem

ii



Figure A1: An example of a pattern that cannot be captured by recursive partitioning. Observations
in the white and crosshatched region have different statistics. Any split, such as the black dashed
line, result in two sub-partitions that have similar average statistics.

is equal to a.

max
b

f(b) =
∑
i

ai ln bi

s.t.
∑
i

bi = 1

Proof. It is a constrained optimization problem that can be solved by maximizing the Lagrangian
function.

L(a, b, λ) =
∑
i

ai ln bi − λ(
∑
i

bi − 1)

∇L(b, λ) = 0

∂L
∂bi

=
ai
bi
− λ = 0⇒ ai = λbi ⇒

∑
ai = λ

∑
bi

∂L
∂λ

=
∑
i

bi − 1 = 0⇒
∑
i

bi = 1

⇒ λ = 1⇒ bi = ai
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A.1 Proof of Likelihood Increase

In this section, we prove that the likelihood function L(θ∗r ,Πr) increases at each iteration of our
recursive partitioning algorithm. Formally, we prove

L(θ∗r ,Πr) ≤ L(θ∗r+1,Πr+1) (A4)

where Πr and Πr+1 are the discretizations generated by the proposed recursive partitioning in
iterations r and r + 1 respectively, θ∗r = argmaxθ L(θ,Πr), and θ∗r+1 = argmaxθ L(θ,Πr+1).

Theorem 1. For any candidate additional split, noted by {k, q, z}, to a discretization Π, where k is
a partition in Π, q is a feature in Q, and z is a value within the range of possible values for q in k,
the following inequalities hold

∃ θ′ : Ldc(θ∗,Π) ≤ Ldc(θ′,Π′) (A5)

Lst(Π) ≤ Lst(Π′) (A6)

where Π′ = Π +{k, q, z} is the discretization after adding the candidate split, and θ∗ = argmaxθ L(θ,Π)

is the optimal parameters given discretization Π.

We prove Inequalities A5 and A6 separately. First, in Lemma 2, we create a new parameter set
θ′ for the discretization Π′ from θ∗ that satisfies a certain inequality. Next, we show that Inequality
A5 holds for the new parameter set θ′ and Π′. Finally, we prove that for any two partitions Π and
Π′ such that Π is the parent of Π′ the inequality A6 holds. Please note that discretization Π is the
parent of any discretization that is created by adding additional splits to Π.

Lemma 2. There is a flow utility coefficient set θ′ such that for any x ∈ X, q ∈ Q and j ∈ J, the
following equation holds

exp v(x,Π′(q), j; θ′,Π′) = exp v(x,Π(q), j; θ∗,Π)

+
[

Pr(j|x,Π′(q))− Pr(j|x,Π(q))
]

exp V̄ (x,Π(q); θ∗,Π) (A7)

Proof. Using the equality log(a+ b) = log(a) + log(1 + b/a), we write Equation (A7) as follows:

v(x,Π′(q), j; θ′,Π′) = v(x,Π(q), j; θ∗,Π) + log
(

1 +
Pr(j|x,Π′(q))− Pr(j|x,Π(q))

exp v(x,Π(q),j;θ∗,Π)

exp V̄ (x,Π(q);θ∗,Π)

)
= v(x,Π(q), j; θ∗,Π) + log

(
1 +

Pr(j|x,Π′(q))− Pr(j|x,Π(q))

p̂(j|x,Π(q); θ∗,Π)

)
(A8)
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Using the formulation of the choice-specific value function (Equation (A2)), we can write
Equation (A8) in terms of the flow utility and expected value functions as follows:

u(x,Π′(q), j; θ′,Π′) = u(x,Π(q), j; θ∗,Π)

+ β
∑
x′∈X

∑
π∈Π

V̄ (x′, π; θ∗,Π)g(x′, π|x,Π(q), j)

− β
∑
x′∈X

∑
π∈Π′

V̄ (x′, π; θ′,Π′)g(x′, π|x,Π′(q), j)

+ log
(

1 +
Pr(j|x,Π′(q))− Pr(j|x,Π(q))

p̂(j|x,Π(q); θ∗,Π)

)
(A9)

We assume a non-parametric functional form for the utility function; therefore, we can calculate a
set of new utility values for each observable state {x, π} based on the above equation that satisfies
Equation A7. However, the right-hand side of Equation (A9) uses θ′, which we are trying to
calculate. If we want to use Equation (A9), we need to prove that this equation has a unique answer.
Alternatively, we prove that if Equation A7 holds, the value functions in the new partitioning and
old partitioning are equal.

V̄ (x,Π′(q); θ′,Π′)

= log
∑
j∈J

exp v(x,Π′(q), j; θ′,Π′)

= log
∑
j∈J

(
exp v(x,Π(q), j; θ∗,Π) +

[
Pr(j|x,Π′(q))− Pr(j|x,Π(q))

]
V̄ (x,Π(q); θ∗,Π)

)
= log

(∑
j∈J

exp v(x,Π(q), j; θ∗,Π) + V̄ (x,Π(q); θ∗,Π)
∑
j∈J

[
Pr(j|x,Π′(q))− Pr(j|x,Π(q))

])
= log

∑
j∈J

exp v(x,Π(q), j; θ∗,Π)

= V̄ (x,Π(q); θ∗,Π) (A10)

where the equality from line 3rd to line 4th comes from
∑

j∈J

[
Pr(j|x,Π′(q))−Pr(j|x,Π(q))

]
= 0.
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We can now write Equation (A9) as:

u(x,Π′(q), j; θ′,Π′) = u(x,Π(q), j; θ∗,Π)

+ β
∑
x′∈X

∑
π∈Π

V̄ (x′, π; θ∗,Π)g(x′, π|x,Π(q), j)

− β
∑
x′∈X

∑
π∈Π′

V̄ (x′,Π(π); θ∗,Π)g(x′, π|x,Π′(q), j)

+ log
(

1 +
Pr(j|x,Π′(q))− Pr(j|x,Π(q))

p̂(j|x,Π(q); θ∗,Π)

)
(A11)

where Π(π) is the partition in Π that includes all π ∈ Π′. Equation A11 is not dependent on θ′,
and can be used to calculate a set of utility function values (θ′) for partitioning Π′. We can show
that if one substitute u(x,Π′(q), j; θ′,Π′) from Equation A11 into the left hand side of Equation
A7, then we should see that the Equation holds. Essentially, we are deriving a θ′ from the current
partition Π and θ∗ such that Equation A7 holds.

Proof of Inequality (A5). We show in Lemma 2 that there is a θ′ such that Equality A7 holds, and
for any x ∈ X and q ∈ Q we have V̄ (x,Π′(q); θ′,Π′) = V̄ (x,Π(q); θ∗,Π). Since V̄ (.; θ∗,Π)

is a fixed point solution to the standard contraction mapping problem for the Bellman equation,
V̄ (.; θ′,Π′) generated in Lemma 2 is a solution to the contraction mapping in Bellman equation as
well. Additionally, we have

Ldc(θ′,Π′) =
N∑
i=1

T∑
t=1

log p̂(dit|xit,Π′(qit); θ′,Π′)

=
N∑
i=1

T∑
t=1

log
exp v(xit,Π(qit), dit; θ

′,Π′)

exp V̄ (xit,Π(qit); θ′,Π
′)

=
N∑
i=1

T∑
t=1

log
exp v(xit,Π(qit), dit; θ

′,Π′)

exp V̄ (xit,Π(qit); θ∗,Π)

=
N∑
i=1

T∑
t=1

log
(exp v(xit,Π(qit), dit; θ

∗,Π)

exp V̄ (xit,Π(qit); θ∗,Π)
+ Pr(dit|xit,Π′(qit))− Pr(dit|xit,Π(qit))

)
(A12)

Please note the equality between line two and line three is derived from Equation (A10). Also,
we use Equation (A7) to go from three and line four. Using log(a + b) = log(a) + log(1 + b/a),
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we have the following

Ldc(θ′,Π′) =
N∑
i=1

T∑
t=1

log
(exp v(xit,Π(qit), dit; θ

∗,Π)

exp V̄ (xit,Π(qit); θ∗,Π)
+ Pr(dit|xit,Π′(qit))− Pr(dit|xit,Π(qit))

)
=

N∑
i=1

T∑
t=1

log
(exp v(xit,Π(qit), dit; θ

∗,Π)

exp V̄ (xit,Π(qit); θ∗,Π)

)
+

N∑
i=1

T∑
t=1

log
(

1 +
Pr(dit|xit,Π′(qit))− Pr(dit|xit,Π(qit))

exp v(xit,Π(qit),dit;θ∗,Π)

exp V̄ (xit,Π(qit);θ∗,Π)

)
= Ldc(θ∗,Π) +

N∑
i=1

T∑
t=1

log
(

1 +
Pr(dit|xit,Π′(qit))− Pr(dit|xit,Π(qit))

p̂(dit|xit,Π(qit); θ∗,Π)

)
⇒ Ldc(θ′,Π′)− Ldc(θ∗,Π) =

N∑
i=1

T∑
t=1

log
(

1 +
Pr(dit|xit,Π′(qit))− Pr(dit|xit,Π(qit))

p̂(dit|xit,Π(qit); θ∗,Π)

)
(A13)

We will show that the right-hand side of Equation A13 is positive; thus, proving that the likelihood
is increasing. Assuming NT →∞, and our predicted choice probabilities are consistent, concludes
p̂(dit|xit,Π(qit); θ

∗,Π) = Pr(dit|xit,Π(qit))
8. Replacing the predicted choice probability with its

counter-part conditional choice probability in Equation A13 yields

N∑
i=1

T∑
t=1

log
(

1 +
Pr(dit|xit,Π′(qit))− Pr(dit|xit,Π(qit))

p̂(dit|xit,Π(qit); θ∗,Π)

)
=

N∑
i=1

T∑
t=1

log
(

1 +
Pr(dit|xit,Π′(qit))− Pr(dit|xit,Π(qit))

Pr(dit|xit,Π(qit))

)
=

N∑
i=1

T∑
t=1

log
Pr(dit|xit,Π′(qit))
Pr(dit|xit,Π(qit))

(A14)

The value inside the summation in Equation (A14) is equal to zero for all the observations,
except for those where qit lands in the newly split partition. Let us call the partition before the split
πp ∈ Π, and the two resulting partitions {πl, πr} ∈ Π′. Also let N(x, π) denote the number of
observations where xit = x and Π′(qit) = π, and N(x, π, j) denote the number where in addition

8We can also conclude this equality since we assume a fully non-parametric form for utility function in Assumption 1.
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to the aforementioned conditions dit = j. We can write Equation (A14) as follows:

N∑
i=1

T∑
t=1

log
Pr(dit|xit,Π′(qit))
Pr(dit|xit,Π(qit))

=
∑
x∈X

∑
π∈{πl,πr}

∑
j∈J

N(x, π, j) log
(

Pr(j|x, π)− Pr(j|x, πp)
)

=
∑
x∈X

∑
π∈{πl,πr}

N(x, π)
∑
j∈J

(
Pr(j|x, π) log Pr(j|x, π)− Pr(j|x, π) log Pr(j|x, πp)

)
According to Lemma 1,

∑
j∈J Pr(j|x, π) log Pr(j|x, π) ≥

∑
j∈J Pr(j|x, π) log Pr(j|x, πp). This

inequality is strict if there is a j ∈ J such that Pr(j|x, π) 6= Pr(j|x, πp) for any x ∈ X and
π ∈ {πl, πr}. Thus, Equation (A14) is greater than or equal to zero, which proves the Inequality
(A5) in Theorem 1.

Proof of Inequality (A6). First, note that discretization Π is a parent of discretization Π′. Based on
the definition of parent, for every π ∈ Π, there is a set of partitions {πi} ∈ Π′ such that

⋃
i

πi = π.

Let us call {πi} the child set of π in Π′ and denote it by Π′(π). First we use the log sum inequality
(Cover and Thomas, 1991) to prove that for any {π, π′} ∈ Π, {x, x′} ∈ X , and j ∈ J the following
inequality holds:

∑
πi∈Π′(π)

∑
π′i∈Π′(π′)

N(x, πi, x
′, π′i, j) log

N(x, πi, x
′, π′i, j)

N(x, πi)N(x′, π′i, j)
≥ N(x, π, x′, π′, j) log

N(x, π, x′, π′, j)

N(x, π)N(x′, π′, j)

(A15)

We prove this inequality by applying the log sum inequality twice. First for a given πi ∈ Π′(π)

the following holds according to log sum inequality9.

∑
π′i∈Π′(π′)

N(x, πi, x
′, π′i, j) log

N(x, πi, x
′, π′i, j)

N(x′, π′i, j)
≥ N(x, πi, x

′, π′, j) log
N(x, πi, x

′, π′, j)

N(x′, π′, j)

(A16)

which by subtracting N(x, πi, x
′, π′, j) logN(x, πi) from both sides changes to

∑
π′i∈Π′(π′)

N(x, πi, x
′, π′i, j) log

N(x, πi, x
′, π′i, j)

N(x′, π′i, j)N(x, πi)
≥ N(x, πi, x

′, π′, j) log
N(x, πi, x

′, π′, j)

N(x′, π′, j)N(x, πi)
.

(A17)

9We have
∑
π′
i∈Π′(π′)N(x, πi, x

′, π′i, j) = N(x, πi, x
′, π′, j), and

∑
π′
i∈Π′(π′)N(x′, π′i, j) = N(x′, π′, j),
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Similarly, according to log sum inequality we have

∑
πi∈Π′(π)

N(x, πi, x
′, π′, j) log

N(x, πi, x
′, π′, j)

N(x, πi)
≥ N(x, π, x′, π′, j) log

N(x, π, x′, π′, j)

N(x, π)
(A18)

which by subtracting N(x, π, x′, π′, j) logN(x′, π′, j) from both sides changes to

∑
πi∈Π′(π)

N(x, πi, x
′, π′, j) log

N(x, πi, x
′, π′, j)

N(x, πi)N(x′, π′, j)
≥ N(x, π, x′, π′, j) log

N(x, π, x′, π′, j)

N(x, π)N(x′, π′, j)
.

(A19)

By merging inequalities A17 and A19 we have

∑
πi∈Π′(π)

∑
π′i∈Π′(π′)

N(x, πi, x
′, π′i, j) log

N(x, πi, x
′, π′i, j)

N(x, πi)N(x′, π′i, j)

≥
∑

πi∈Π′(π)

N(x, πi, x
′, π′, j) log

N(x, πi, x
′, π′, j)

N(x, πi)N(x′, π′, j)

≥ N(x, π, x′, π′, j) log
N(x, π, x′, π′, j)

N(x, π)N(x′, π′, j)

which concludes inequality A15. We can prove the lemma by summing this inequality over all
{π, π′} ∈ Π, {x, x′} ∈ X and j ∈ J.

We proved both inequalities in the theorem 1. Next we prove that the equality happens if and
only if our algorithm reaches a perfect discretization.

A.2 The proof of convergence to perfect discretization

In this section we prove that our proposed algorithm stops once it reaches a perfect discretization.

Theorem 2. The recursive partitioning algorithm discussed in §4 stops once it find a perfect
discretization, i.e., F(Πr) = F(Πr+1) if and only if Πr is a perfect discretization.

We prove this theorem by proving separate lemmas for decision and state transition probabilities.
Let us denote the decision and transition part of F(Π) by Fdc(Π) and F tr(Π) respectively.

Lemma 3. For any candidate additional split {k, q, z} to discretization Π, that splits πp ∈ Π into
{πl, πr} ∈ Π′, we have Fdc(Π) = Fdc(Π′) if and only if for all x ∈ X and j ∈ J the decision
probabilities in πl and πr are similar, i.e., Pr(j|x, πl) = Pr(j|x, πr).
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Proof. We have

Fdc(Π′)−Fdc(Π) = N(x, πl, j; Π) log
N(x, πl, j; Π)

N(x, πl; Π)
+N(x, πr, j; Π) log

N(x, πr, j; Π)

N(x, πr; Π)

−N(x, πp, j; Π) log
N(x, πp, j; Π)

N(x, πp; Π)

According to log sum inequality the right-hand side of this equality is equal to zero if and only if
N(x,πr,j;Π)
N(x,πr;Π)

= N(x,πl,j;Π)
N(x,πl;Π)

, which concludes Pr(j|x, πl) = Pr(j|x, πr).

Lemma 4. For any candidate additional split {k, q, z} to discretization Π, that splits πp ∈ Π into
{πl, πr} ∈ Π′, we have F tr(Π) = F tr(Π′) if and only if for all {x, x′} ∈ X, π′ ∈ Π′, and j ∈ J

the following equations hold

Pr(x′, π′|x, πl, j) = Pr(x′, π′|x, πr, j)
Pr(x, πl|x′, π′, j)

N(x, πl)
=

Pr(x, πr|x′, π′, j)
N(x, πr)

(a) Transition from the new sub-partitions (b) Transition to the new sub-partitions

Figure A2: The change in likelihood from transition-to and transition-from perspective.

Proof. We proved in Web AppendixA.1 that likelihood, L(θt), increases with any additional
split. We assumed a completely non-parametric form for the state transition part of the likelihood
function. Therefore the state transition of the likelihood function and recursive partitioning objective
function are the same, i.e., Ltr(Π) = F tr(Π). Here we prove that the increment in likelihood, and
consequently in F(θt), is equal to zero if and only if Lemma’s equations hold. The split changes the
likelihood by changing the transition-to and average transition-from probabilities presented in figure
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A2. We can calculate the changes in likelihood with respect to each of these changes separately.
First, according to (a) in figure A2 we have

F(Π′)−F(Π) =
∑
x,x′∈X

∑
π′∈Π′

∑
j∈J

N(x′, π′)

(
N(x′, π′, x, πr, j)

N(x′, π′)
log

N(x′, π′, x, πr, j)

N(x′, π′)N(x, πr, j)

+
N(x′, π′, x, πl, j)

N(x′, π′)
log

N(x′, π′, x, πl, j)

N(x′, π′)N(x, πl, j)

−N(x′, π′, x, πp, j)

N(x′, π′)
log

N(x′, π′, x, πp, j)

N(x′, π′)N(x, πp, j)

)

According to log sum inequality the term in the parentheses is greater or equal to zero. The
left-hand side is equal to zero if and only if N(x′,π′,x,πl,j)

N(x,πl,j)
= N(x′,π′,x,πr,j)

N(x,πr,j)
= N(x′,π′,x,πp,j)

N(x,πp,j)
, for every

{x, x′} ∈ X, j ∈ J and π′ ∈ Π′. This concludes the first equation of the lemma.
We can conclude the second equation similarly with (b) in figure A2 as the following

F(Π′)−F(Π) =
∑
x,x′∈X

∑
π′∈Π′

∑
j∈J

N(x′, π′, j)

(
N(x, πr, x

′, π′, j)

N(x′, π′, j)
log

N(x, πr, x
′, π′, j)

N(x, πr)N(x′, π′, j)

+
N(x, πl, x

′, π′, j)

N(x′, π′, j)
log

N(x, πl, x
′, π′, j)

N(x, πl)N(x′, π′, j)

−N(x, πp, x
′, π′, j)

N(x′, π′, j)
log

N(x, πp, x
′, π′, j)

N(x, πp)N(x′, π′, j)

)

Again, according to log sum inequality the term in the parentheses is greater or equal to zero.
The left-hand side is equal to zero if and only if N(x′,π′,x,πl,j)

N(x,πl)N(x′,π′,j)
= N(x′,π′,x,πr,j)

N(x,πr)N(x′,π′,j)
= N(x′,π′,x,πp,j)

N(x,πp)N(x′,π′,j)
,

for every {x, x′} ∈ X, j ∈ J and π′ ∈ Π′. This concludes the second equation of the lemma.

Proof for theorem 2. Now we prove theorem 2 using lemmas 4 and 3. Assume that our algorithm
stops at iteration r. Given that the algorithm stops once no split increase the F function, for
any additional split that generates candidate partition Π′, we have F(Π′) = F(Πr). Therefore,
according to lemmas 4 and 3 for any additional split to Πr the following equalities hold for all
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{x, x′} ∈ X, π′ ∈ Πr and j ∈ J.

Pr(d|x, πl) = Pr(d|x, πr)

Pr(x′, π′|x, πl, j) = Pr(x′, π′|x, πr, j)
Pr(x, πl|x′, π′, j)

N(x, πl)
=

Pr(x, πr|x′, π′, j)
N(x, πr)

which concludes that Πr is a perfect discretization according to corollary 1.

B Random discretization generator algorithm
This section explains the random discretization generator algorithm that we used in the second
simulation study. The intuition for this algorithm is very similar to recursive partitioning – in each
step, we randomly select one of the partitions and split it into two partitions along one of the first 10
variables in Q. Please note that we only used the first 10 variables in Q for partitioning, and the
following 20 variables are added as irrelevant variables to show the robustness of the algorithm to
irrelevant variables. In addition, to prevent very small or very large partitions, the random partition
selection is weighted by the size of the partition: big partitions are more likely to be selected than
smaller partitions. Formally, the random partitioning algorithm is as follows.

• Initialize Π0 as one partition equal to the full covariate space.

• Do the following for 15 rounds.

– Step 1: Randomly select a partition from Πr weighted by ( 1
partition’s total splits)

2

– Step 2: Randomly select a variable from the first 10 variables

– Step 3: Split the selected partition into two from the midpoint along the selected variable.
If there is no exact midpoint to split, then pick the smaller of the two integers closest to
the midpoint as the splitting point. Go back to Step 1 and repeat this round if the split is
not possible10.

The total number of splits for each partition is the total of times their parents have selected to
be split. If the total split for a partition is 5, it means that it takes five splits from Π0 to get to this

10Recall that the variables in Q only take integer values from 0 to 10. Therefore, if the selected variable in Step 2, say
q1, starts at 9 and ends at 10 in the chosen partition, then further splits along q1 within this partition are not possible.
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partition. Note that the total number of splits of a partition is negatively correlated with the size of
the partition.

We also vary the replacement cost for each partition to add a decision variation to the model
that is not caused by state transition. The replacement cost of a partition is calculated based on the
range of its first 10 variables as the following.

fdc(π) = 5−
∑10

i=1(vmini (π) + vmaxi (π))

10
(A20)

where vmini (π) and vmaxi (π) are the minimum and maximum range of ith variable in partition π. We
choose this formulation for the replacement cost to create a good balance between decision variation
caused by state transition or replacement cost. Figure A3 depicts the distribution of total split and
replacement costs in the 1500 generated partitions across all the 100 generated discretizations in the
second simulation study.

Figure A3: The histogram of generated partitions’ calculated replacement cost, and number of
splits in the 100 rounds of partitioning generation.

xiii


	Introduction
	Related Literature
	Problem Definition
	Challenges
	Dimensionality Reduction using Discretization
	Properties of a Good Discretization
	Formulation of DDC in a discretized space


	Our Discretization Approach
	Discretization using Recursive Partitioning
	Recursive Partitioning for Dynamic Discrete Choice Models
	Nonparametric Objective Function
	Algorithm Properties

	Hyperparameter Optimization and Model Selection
	Set of Hyperparameters
	Score function
	Zero Probability Outcomes in Training Data

	Summary of Estimation Approach

	Monte Carlo Experiments
	Engine replacement problem
	First simulation study
	Data generating process
	Results

	Second Simulation Study
	Data generating process
	Results


	Extensions, Limitations, and Conclusion
	Web Appendix
	Proof of Convergence
	Proof of Likelihood Increase
	The proof of convergence to perfect discretization

	Random discretization generator algorithm

