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Abstract

When creating new content, many social media users hope to receive engagement from
other users. This research examines how receiving that engagement affects different users’
subsequent behavior on the platform. We address this question through a field experiment on
Twitter in which some users’ posts were purposefully shown more often to other users, which
(on average) increased the amount of engagement they received. We estimate a doubly robust
instrumental variable model that allows us to estimate individual-level treatment effects, and we
find substantial heterogeneity across users in terms of how they respond to additional engagement:
most users do not significantly change their behavior, but some users respond by substantially
increasing their time spent on the platform, posting more content, and engaging more with other
users’ content. Users who respond most strongly are systematically different than the rest of
the user base on observable pre-experiment user metrics, thereby providing substantive insights
about which users value engagement very highly. Our results demonstrate how social media
platforms can increase content creation, content consumption, and overall usage of the platform
by focusing on this group of users and targeting them with interventions that are intended to
increase the amount of engagement they receive.
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1 Introduction

Social media has become an integral part of our daily lives, with billions of people using various platforms

to connect, share information, and stay informed. According to recent statistics, as of January 2023, there

are approximately 4.6 billion active social media users worldwide (Kemp, 2023). A unique aspect of social

media platforms is that users are both content creators and consumers in this setting, and the platform serves

as an intermediary. This is in contrast to other digital media platforms like Spotify or Netflix, where the

content is created or licensed by the platform and users mainly function as consumers of the content. The

long-run success of social media platforms thus depends on their ability to encourage users to use the platform

more, both to consume more content and to produce more content. There are a couple of ways in which

the platform can do this directly – by paying users directly for their content1, or by giving them attention or

recognition (Huang and Narayanan, 2020; Burtch et al., 2022; Lu et al., 2022). Another natural channel that

can potentially motivate users to increase usage of the platform is if they receive peer engagement on their

content (e.g., favorites, likes, or retweets) provided by other consumers on the platform (Restivo and van de

Rijt, 2014; Eckles et al., 2016; Gallus et al., 2020), which is the focus of this study.

In this paper, we study how content producers respond to increased engagement on social media platforms,

and how the platform can leverage this information to improve platform usage, content production, and

content consumption.

We combine data from a large-scale field experiment on Twitter with a Doubly Robust Instrumental

Variable (DRIV) approach to address these questions. The first component of our approach consists of a

large-scale field experiment on Twitter consisting of 4.9 million users. Unlike direct payment or recognition,

engagement is an intervention that is not directly under the platform’s control, since engagements are given

by consumers and not the platform. Therefore, we adopt an encouragement design (Messing, 2013), where

we exogenously shift the opportunity to get incremental engagements. Twitter users in the experiment were

randomly assigned into either a control group or a “boost” condition, which artificially increased the relevance

scores of their tweets for a two-week period. As a result, boosted users’ content was shown more often

and more prominently than it otherwise would have been during this time, which in turn led to increased

engagement on their content. We also collect data on a rich set of user-level pre-treatment variables based on

their demographics and usage in the two weeks prior to the experiment. Finally, we track their post-treatment

behavior for a two-week period on a variety of metrics – minutes active on the platform, number of days active

on the platform, content produced (tweets composed), and the engagement given to other users’ content.

The simplest way to analyze the experiment’s data is to compare time spent on the platform (which is a

metric directly relevant to ad revenue) between users who were assigned to the boost condition vs. the control

condition. We find that this intent to treat (ITT) estimate is positive and significant, i.e., being boosted has a

positive effect on the time spent on the platform. However, ITT estimates in two-sided markets suffer from
1An example of a platform that uses direct payments is YouTube, with its YouTube Partner Program (YouTube, 2023). While this
approach is easy to implement in cases where the content is sufficiently long and discrete, it is harder in the case of platforms
like Facebook, Instagram, and Twitter where multiple pieces of small text/pictures from a variety of producers are consumed
concurrently within a few seconds.

2



two fundamental drawbacks. First, they lack counterfactual validity, i.e., these estimates do not represent

what would happen if we applied the boost condition to all the producers in the system. Indeed, if all the

producers’ items were equally boosted, the resulting rank ordering would be the same as the baseline case

where all producers are in the control condition. Second, the ITT estimate does not represent the incremental

benefit of a producer receiving one additional engagement.

Therefore, we next consider a two-stage least squares (2SLS) model where we use the experiment bucket

(control or boost) as an instrument that exogenously varies the actual treatment (number of engagements) but

does not directly influence the outcome. This estimation procedure gives us a positive Average Treatment

Effect (ATE), which implies that one incremental engagement leads to an increase in time spent (minutes

active) over the two-week post-treatment period. However, 2SLS estimates are consistent only under two

conditions: (1) constant treatment effect and (2) no heterogeneity in treatment intensity (Syrgkanis et al.,

2019). The first requires that the treatment effect is constant across all users. This is unlikely to be true

in our setting since social media users are likely to be highly heterogeneous in how much they value

incremental engagement. The second condition fails because the treatment intensity (the number of additional

engagements received) is not equal across all users who were assigned to the boost condition. For example,

people who tweet a lot will get more engagement than those who tweet less because the former will have

more items that get boosted. A final challenge, similar to the ITT estimate, the ATE (even if consistent) is not

particularly useful from a managerial perspective since any targeted intervention from the platform’s side

requires it to know which users would be the most responsive to incremental engagement — that is, it needs

individual-level estimates of the causal impact of incremental engagement.

To address these challenges, we employ a Doubly Robust Instrumental Variable (DRIV) method that

allows for both heterogeneous treatment intensity and heterogeneous treatment effects in the estimation and

provides individual-level conditional average treatment effect (CATE) estimates (Syrgkanis et al., 2019). This

approach has all the standard properties of double machine learning methods (Chernozhukov et al., 2018).

Furthermore, the CATE value is allowed to be a flexible function of user-specific pre-treatment variables

learned from the data.

Estimating heterogeneous treatment effects means that we can examine how much different kinds of

users increase their activity in response to receiving additional engagement on their content. We find that

most users on the platform demonstrate a weak response, as the average user increases their time spent on the

platform by about 8.4 seconds in response to one incremental engagement. However, there is a long right

tail for this metric — the top 1 percent of users each increases their time on the platform by more than 2.12

minutes (roughly 19x larger than the median). Users who respond most strongly are systematically different

than the rest of the user base on observable pre-experiment user metrics, thereby providing substantive

insights about which users value engagement very highly. The kinds of users who respond to engagement by

significantly improving their time spent on the platform tend to be connected with others (more followers and

also following more accounts), have older accounts, but do not use the platform as regularly.

Next, we examine the source of this incremental time spent – whether it comes from increased content
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production, increased content consumption, or both. To that end, we estimate the DRIV models on two

separate outcome variables – (1) the number of tweets composed, which is a pure production-focused measure,

and (2) the number of favorites given, a pure consumption-focused metric. Overall, we find that incremental

engagement encourages users on both fronts – they produce more content and engage more with others’

content, but the relative effect size is larger for the production outcome. This is understandable because they

have just received positive engagement with the content they have recently produced.

Furthermore, we examine the impact of engagement on two other outcome variables of interest to the

platform. First, we consider monetizable active days, which is the number of days a user is active on

the platform. This metric captures the regularity of platform usage. We find that receiving incremental

engagement causes users to increase their monetizable active days, but the improvements are smaller in

magnitude and in percentage terms compared to the results for minutes active. This result is partially driven

by the fact that most users are already active every day, and therefore they cannot be improved on this metric.

Second, we consider the total engagements given to other users as the outcome variable of interest. This

metric captures the spillover effects of giving an incremental engagement to a focal user. Again, we find a

positive effect on this metric, which suggests a “virtuous cycle”, i.e., a user who receives engagement may go

on to provide engagement for a second user, who in turn may provide engagement for a third user, and so on.

Finally, we examine the returns to using our approach to identify which producers to target for interven-

tions that lead to increased engagement. We focus on quantifying the total gain in activity for the platform

if it were to target users based on four possible criteria: users in the top 1% of CATE values for minutes

active, users in the top 1% of CATE values for engagement given, top 1% of users based on user activity (in

the pre-treatment period), and bottom 1% of users based on user activity (in the pre-treatment period). The

first two criteria are based on our DRIV models and are intended to focus on groups of users who are more

responsive to incremental engagement, while the latter two criteria are commonly used activity heuristics that

allow the platform to focus on different subsets of their user base.

We find that targeting users with high CATE values is more effective than targeting users based on

heuristics that use activity-level thresholds, i.e., the two former approaches yield bigger improvements in

total minutes active. Between the two CATE-based approaches, we find substantial benefits to targeting users

in the top 1% of CATE values for minutes active rather than engagement given. This pattern holds true if we

consider the improvement among the users who are targeted, but also if we consider the improvement among

the entire platform due to targeted users providing positive spillovers to others. Overall, this suggests that

there is substantial value in using our CATE estimates (that are flexible functions of all the pre-treatment

variables) compared to using heuristic thresholds that are commonly used in the industry.

In summary, our paper provides a few key contributions to the literature on social media and user behavior

in two-sided platforms. First, from a methodological perspective, our framework (that combines boosting

experiments and doubly robust instrumental variable estimation) is quite general and be used by a wide variety

of social media platforms for similar purposes. From a substantive perspective, we show that when users

receive increased engagement with their social media content, they subsequently change their activity on the
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same platform on a variety of metrics: they spend more time on the platform, they create more content, they

engage more with other users’ content, and they increase the regularity of their platform usage. Importantly,

there is significant heterogeneity in user responsiveness on all these metrics, with a long right tail of users who

exhibit high responsiveness. From a managerial perspective, we show that the firm can achieve substantial

improvements in platform usage by targeting users based on the estimates from our approach compared to

standard baselines.

2 Related Literature

Our paper relates to the literature on usage patterns in social media platforms. Papers in this stream usually try

to quantify users’ incentives to create content and interact with others’ content. Early research on this topic

focused on the effect of social ties on content generation. Using observational data, Shriver et al. (2013) show

that a user’s social ties have a positive effect on their propensity to create content and vice-versa. They use an

instrumental variable approach to control for the fact that ties and posts are often co-determined/endogenous.

Toubia and Stephen (2013) examine Twitter users’ incentives to create content using data from a field

experiment where they randomly add fake followers to some accounts. Using this exogenous variation

in follows, they show that while users get both intrinsic and image-related utility from posting, the latter

plays a bigger role. Ahn et al. (2016) develop a forward-looking structural model of user-generated content

production and consumption and consider counterfactuals where the platform can sponsor content. Guo et al.

(2023) show that the amount of information in the early content posted on a platform can have a negative

impact on the quantity of future knowledge content but a positive effect on the diversity of the content.

A separate stream of research has focused on the effect of visible interventions from the platform such

as featuring or publicly recognizing users’ content. Huang and Narayanan (2020) and Burtch et al. (2022)

show that such increased attention and recognition can have a positive effect on users’ subsequent content

production. On the other hand, Lu et al. (2022) find that recognition (a digital badge awarded by the platform)

leads to increased content generation but reduces content consumption immediately after receiving the award,

though the longer-term effects are positive on both outcomes.2 In contrast to these papers, we focus on

how users respond to peer engagement on their content (e.g., favorites, retweets, and replies), which is

substantively different from the recognition by the platform. Further, since the platform cannot directly

provide engagement, there are a set of additional methodological challenges both in terms of estimation and

intervention that we need to address (see §4.1 for details).

A related stream of work focuses on peer feedback and peer recognition (as opposed to platform

recognition), and the results here are mixed. Restivo and van de Rijt (2014) and Gallus et al. (2020) directly

manipulate the peer feedback received by contributors on forums, and find that there is no significant effect

on post-treatment user activity. Given the relatively small size of their samples, this inconclusive result could

be because the true effects are small but positive on average, or it could be because users have heterogeneous
2There is also another stream of research that examines how users change the type of content they create after receiving visible
recognition and attention. Burtch et al. (2022) find that Reddit users who receive external recognition subsequently create content
that is similar to their award-winning posts, but Huang et al. (2022) find the opposite pattern when examining content creation in an
online image-sharing platform.
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effects that yield a near-zero average treatment effect. More closely related to our work, Eckles et al. (2016)

adopt an encouragement design (similar to ours) and find that receiving feedback or recognition from one’s

peers has a positive average downstream effect. Our research contributes to this literature in a few ways.

First, we are able to speak to this debate and show that the average treatment effect of peer engagement is

positive (in our setting). Second, in addition to content generation, we examine multiple dimensions of user

behavior: production, consumption, time spent, regularity of usage, and engagements given. Third, unlike the

previous papers, we are able to quantify user-level treatment effects for peer engagement, thereby showing

that there is heterogeneity in the value that users derive from peer engagement. These treatment effects can

be used by the platform to identify and target users who are the most responsive to engagement through

interventions in the user interface or in a two-sided recommendation system that balances both producer

and consumer engagement. Finally, from a methodological perspective, our estimation task has significant

additional challenges compared to the earlier literature since we need to account for endogenous treatment

intensity and individual-level heterogeneity in our analysis (as discussed in §4.2).

More broadly, our paper relates to the growing marketing literature on the customization of digital

products and promotions using machine learning methods; see Rafieian and Yoganarasimhan (2023) for a

detailed overview. The main difference between this literature and our paper is that our experimental data has

an intent to treat structure, which makes the estimation of personalized treatment effects more challenging.

Finally, our paper also contributes to the literature on how to design optimal recommendation systems in

both computer science and marketing (Falk, 2019; Liu et al., 2021; Yoganarasimhan, 2020). Specifically, our

producer-level treatment effects can serve as inputs into a recommendation system that incorporates both

consumer-specific engagement scores and also individual producer-level utilities. Thus, it can be used to

balance the platform’s goals of increasing activity among both content producers and content consumers.

3 Setting

On social media platforms, users both create content and consume (read, or watch) content produced by other

users. Typically, when consuming content, users on social media platforms do not see all the content that

is available on the platform. Instead, the platform serves as the intermediary by helping consumers to find

content that they might enjoy and also helping producers to find an audience for their content. To accomplish

this, social media platforms like Twitter have a recommendation system that ranks items that could potentially

be shown to the consumer.3 These recommendation systems are usually focused on maximizing consumer

utility. Platforms typically cannot measure consumer utility directly, so many platforms instead use consumer

engagement as their measure for a positive consumer outcome. We consider a situation in which the platform

observes consumer engagement metrics such as favorites or sharing behavior (e.g., retweets and replies). At a

given time, there are I different items that could be shown to consumers. In our setting, for each specific item
3Historically, social media platforms such as Twitter used a reverse chronological order to show content. However, over the years
they have evolved to adopt recommendation algorithms that rank the content based on the consumer’s interest (Huszár et al., 2022).
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i ∈ I and consumer c, the platform calculates the following relevance score:

sic = P (c engages with i | i is shown to c) (1)

Higher values of sic imply that the consumer is more likely to engage with a particular item, which

therefore suggests that it should be shown to them. Typically, the platform estimates sic in real time for each

{i, c} combination using a broad scope of information including the item’s popularity, the item’s genre or

topic, the item producer’s prior popularity, the consumer’s prior engagement history, whether the item is

currently very popular; etc. The prediction problem itself is typically estimated using standard supervised

machine learning methods (e.g., boosted trees). The specific variables, methods, and algorithms used to make

this prediction are beyond the scope of this paper — these are typically idiosyncratic to the specific platform,

and we treat them as fixed for the purpose of our research.4 Once the platform has predicted sic for each

{i, c}, it shows the items I to the consumer c in descending order based on their relevance scores. On Twitter,

this was known as the “Top Tweets” option on the user’s Home timeline at the time of the experiment.

3.1 Field Experiment

To understand how receiving engagement as a producer affects the user’s subsequent activity on the platform,

the platform would like to understand how much each producer p would increase their activity ap if the

number of engagements received (denoted by ep) went up by 1:

θp = E[ap | ep + 1]− E[ap | ep] (2)

The θp term can be interpreted as each producer’s incremental utility from receiving one additional engagement

on the platform (over a baseline engagement of ep). The platform typically has information about the

producer’s activity and how many engagements each producer has received. However, predicting θp is

difficult with existing archival data because the number of engagements ep is endogenous. One concern is the

possibility of reverse causation. For example, producers who are highly active and produce quality content

may be spending a lot of time on the platform, and at the same time may also receive a lot of engagement

on their content. In such cases, it is the quality and activity of the producer that is driving the downstream

consumer engagement rather than vice-versa. Another possibility is that a high level of activity (ap) and a

high level of engagement (ep) could be jointly caused by a common driver such as an important current event

or discussions of topics that are currently popular.

Given these endogeneity issues, a cleaner approach would be for the platform to run an experiment
4About 18 months after our experiment concluded, Twitter published a blog post describing the outline of their recommendation
algorithm and ranking system (Twitter, 2023). The general principles are similar to what we describe here: the algorithm is intended
to “optimize for positive engagement (e.g. Likes, Retweets, and Replies). This ranking mechanism takes into account thousands of
features and outputs ten labels to give each Tweet a score, where each label represents the probability of an engagement. We rank
the Tweets from these scores.” There are some minor differences between their description of the ranking algorithm and what was in
place during our experiment (e.g., in our context the score was based on an unweighted combination of likes, retweets, and replies
rather than a weighted combination). However, these differences and/or the specifics of the ranking algorithm are not relevant to our
methodological approach or substantive findings; we only require the experimental conditions (boost/control) to be exogenous.
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Figure 1: Design of the boosting experiment. In this example, users i and j are in the control and boost conditions, respectively. The
items created by user i do not receive any boost to their scores. In contrast, the scores of all the items created by user j are multiplied
by 16, and as a result, j’s items are likely to be shown at higher ranks (and hence be more visible to consumers).

and estimate θp from the experimental results. For instance, the platform could randomize the number of

engagements that each producer receives and then observe how that affects subsequent user-level activity.

However, the engagements are decided by consumers and are not directly under the platform’s control, so the

only way to randomize them directly would be by lying or making up false engagement numbers. We treat

this as being an unacceptable option for the platform.

To sidestep these concerns, we adopt a peer encouragement experimental approach that exogenously

varies how often and how prominently each producer gets shown to consumers. Similar designs have

previously been used by Messing (2013) and Eckles et al. (2016). In our setting, the main difference is that

the boost condition increases the probability of being shown at the producer level rather than employing

interventions at the consumer or edge level. See Angrist et al. (1996); Bradlow (1998) for a more general

discussion of encouragement designs in randomized experiments.

We conduct a large-scale field experiment on Twitter consisting of approximately 4.9 million users over a

two-week period in 2021. Each user was randomly assigned to one of two different buckets: 33.33% were

assigned to a boosted group and the remaining 66.6% were assigned to the control group. Tweets by users

(producers) in the boosted group were boosted by a factor of 16 (i.e., their scores sic were multiplied by 16)

in the recommendation system, which means their items rise in the rankings, and therefore be seen more

often by consumers and seen at higher positions.5 Tweets of users in the control group were not boosted
5The boost factor was chosen based on two important, but opposing, considerations. On the one hand, very low boost factors will not
lead to any significant increase in the engagement received, for the boosted group. That is, the boost factor needs to be sufficiently
high to ensure that the experiment is a sufficiently strong instrument. On the other hand, very high boost factors will push the
boosted users to the top of all the consumer feeds and can degrade the consumer experience. After discussions with the product
teams and recommendation systems teams, we chose 16 as a good factor that balanced both these considerations.

8



(i.e., their scores sic remain untouched), and as a result, they do not rise in the rankings. Figure 1 presents

a pictorial depiction of the experiment design. Producers do not directly observe how often their items are

shown to consumers6; instead, they only observe the number of engagements they receive. Note that this

experimental design allows us to treat the bucket (boost vs. control) as the exogenous instrument (Z) because

the bucket exogenously shifts the intensity of treatment (amount of engagement received), but has no effect

on the outcome directly. In the rest of the paper, we use the term “boosted group” instead of “treatment

group” to refer to users who were boosted because treatment in our context refers to the engagement received,

and users in both the boosted and control groups receive engagements (though the magnitude of engagements

differ across the two groups). Therefore, we do not use the term “treated group” to avoid confusion around

the definition of treatment.

Data for the analysis come from the three time periods, as shown in Figure 2 and discussed below:

• Pre-treatment period: August 19 – September 1, 2021. This is the two-week period before the experiment.

We use it to generate user features (Xp) that can be used both to model the heterogeneity in getting

engagement (during the treatment period) as well for estimating heterogeneous treatment effects.

• Treatment period: September 2 – September 17, 2021. The two-week period during which users’ tweets

are boosted by 16x if they are in the boost condition. The control group’s tweets do not get any additional

boost factor.

• Post-treatment period: September 18 – October 1, 2021. This is the period when we measure the impact

of the treatment on producers’ activity.
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��[�ERRVW

&RQWURO
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Figure 2: Timeline for the experiment

Before we proceed to data and analysis, we make note of two points about the experiment design. First,

users were added to the experiment only if they tweeted at least once during the experiment period (September

2 – 17). For example, if a user tweeted for the first time on September 15th, then this user was considered

eligible to be added to the experiment — and if assigned to the boost condition, they saw all their posts

boosted by the 16X factor for the rest of the experiment. Essentially, this implies users who were not active

during the experiment period are not in the experiment (in either the control or boost conditions).7 Second,
6In late 2022 (over a year after our study ended), this detail was changed by Twitter so that view counts became visible for tweets
(Clark, 2022).

7From an analysis perspective, our approach is reasonable because completely inactive users do not get any treatment (or engagements)
at all and have no impact on the outcomes observed. Nevertheless, this implies that the distribution of users in the experiment is
different from the overall population of users on Twitter; i.e., the users in the experiment skew more active. As such, the summary
statistics shown in § 3.2 should be interpreted as specific to users in the experiment and not as platform-level metrics.
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in principle, our experiment design can give rise to Stable Unit Treatment Value Assumption (SUTVA)

violations. That is, when we boost one set of users, it can have a negative effect on the ranking of users in

the control group. However, since the fraction of users boosted was very small (approximately 0.8% of the

overall population of active users on Twitter during this period), we do not see any such interference effects.

That said, our main analysis only requires that the buckets (boost and control) be exogenously assigned, and

it allows the actual engagement to be endogenous to the producer and/or the experiment. Thus, even if there

were interference effects that influenced the ranking of control users, our estimates on the incremental impact

of an additional engagement on the downstream activity would still be valid.

3.2 Summary Statistics

In this section, we present the summary statistics of the pre-treatment variables or producer features (Xp), the

realized treatment variable, i.e., engagement received by the producer (ep), and the outcome variable, which

is the activity of the producer in the post-treatment period (ap).

Table 1 presents the summary statistics of the producer features Xp by the experimental bucket (or

instrument Z). These features represent the cumulative activity and engagement of the user during the

two-week pre-treatment period as well as some user-specific features. Notice that almost all the variables

have large standard deviations. This is because the distribution of these variables has a heavy right tail, i.e.,

there are some very heavy users whose high levels of usage and activity mask the lower activity levels of the

vast majority of users. Therefore, the median is a better measure of the central tendency of the data in this

case, and we will use that in the rest of the discussion.

First, we see that the median user in the experiment spent 291 minutes on the platform in the two-week

pre-treatment period. During this time, they composed around six tweets and received over three favorites,

zero re-tweets, and one reply. Further, the median user made one follow, gave 20 favorites, and sent one

retweet and one reply in this two-week period. We also have two metrics that capture the regularity with

which consumers use the platform: active days and monetizable active days. The former is the number of

days a user logged into the platform over the 2-week pre-treatment period. The latter is the number of days

a user logged in and provided non-zero ad revenue in the same period.8 The median for these metrics is

14, which suggests that the population consists of fairly active and regular users. Next, we discuss the user

features. The median user in the experiment has been with the platform for 3.64 years, has 107 followers, and

is following 189 other accounts.

In addition, we observe two categorical user-level variables that capture producer heterogeneity: user

state and country. The former is a variable created by Twitter that is a summary measure of the recent usage

and activity of the user. These user states can take eight possible values, and Table 2 shows the distribution of

values for the boosted and control groups at the start of the experiment. We see that over 44% of the users are

heavy tweeters whereas 26% are heavy users who are non-tweeters (who predominantly consume others’

content rather than producing content themselves). The rest of the six states are less prevalent and form the
8The main distinction between active days and monetizable active days is that the latter metric only includes days in which the user
accessed Twitter long enough to be shown at least one advertisement.
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Variable Control Group
Mean Standard deviation 25th Percentile Median 75th Percentile

Tweets composed 41.51 343.56 1 6 25
Favorites received 202.89 9277.49 0 3 25
Retweets received 36.54 2419.55 0 0 1
Replies received 21.45 447.46 0 1 6
Follows received 17.44 341.14 0 1 4
Follows made 10.78 57.42 0 1 5
Favorites given 155.04 495.80 2 20 100
Retweets sent 31.45 184.89 0 1 10
Replies sent 21.08 110.52 0 1 9
Quote retweets sent 3.59 22.6 0 0 1
Minutes active 622.34 914.86 74 291 804
Active days 11.73 3.9 11 14 14
Monetizable active days 11.31 4.31 1 14 14
Active followers 627.34 13845.95 22 76 228
Total followers 153.25 51107.06 29 107 344
Following 455.08 2056.69 71 189 447
Indicator push notification enabled 0.72 0.44 0 0 1
Account age (days) 1723.56 1430.48 430.32 1328.87 2995.28

Boosted Group
Tweets composed 41.28 164.03 1 7 25
Favorites received 200.89 9430.95 0 4 25
Retweets received 34.52 149.19 0 0 1
Replies received 21.62 381.79 0 1 6
Follows received 17.77 651.91 0 1 4
Follows made 10.82 57.81 0 1 5
Favorites given 155.46 498 2 20 102
Retweets sent 31.71 190.05 0 1 10
Replies sent 21.24 112.94 0 1 9
Quote retweets sent 36.08 21.57 0 0 1
Minutes active 623.28 935.65 74 292 805
Active days 11.73 3.89 1 14 14
Monetizable active days 11.32 4.30 1 14 14
Active followers 645.98 16278.83 22 76 228
Total followers 1214.08 58360.62 29 107 345
Following 453.19 1732.74 71 189 447
Indicator push notification enabled 0.73 0.44 0 1 1
Account age (days) 1724.44 1430.12 431.52 1328.83 2997.89

Table 1: Summary statistics of pre-treatment producer features (Xp) for the control and the boosted groups in the 14-day period
before the experiment.

remaining 30% of the users in the experiment. Next, Table 3 shows the distribution of users’ countries in

the control and boosted groups. We see that the distribution of users’ countries of origin broadly follows the

standard distribution of Twitter usage/adoption across the globe. Users from Japan and USA make up around

37% of the experiment, while the rest of the countries have a relatively small presence.

Next, we present the summary statistics of the treatment variable (ep) – the total engagement received

during the treatment period – in Table 4. We define the total engagement received as the sum of replies,

retweets, and favorites received during the treatment period.9 We see that producers in the boosted condition
9This is the exact definition used by the firm to define engagements, and it is considered the cumulative measure of engagement that
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User state Control % of Control Boosted % of Boosted

Heavy Tweeter 1449126 44.60% 724457 44.67%
Heavy Non-Tweeter 845820 26.03% 422060 26.02%
Medium Tweeter 353954 10.89% 177518 10.94%
Medium Non-Tweeter 233844 7.20% 116338 7.17%
Light 148151 4.56% 73575 4.5%
Very Light 110452 3.40% 54762 3.38%
Near Zero 31160 0.96% 15526 0.96%
New 24589 0.76% 12064 0.74%
Total 3249367 100% 1622227 100%

Table 2: Distribution of user-states at the time of entry into the experiment, for the control and boosted groups.

Country Control % of Control Boosted % of Boosted

Japan 660755 20.33% 328835 20.27%
USA 563974 17.36% 281969 17.38%
Brazil 243027 7.48% 121906 7.51%
Philippines 146040 4.49% 72366 7.17%
UK 134194 4.13% 67072 4.46%
Indonesia 126689 3.90% 63205 3.90%
Turkey 117751 3.62% 58694 3.62%
South Africa 104386 3.21% 52397 3.23%
Mexico 94168 2.90% 46771 2.88%
Argentina 8130 2.50% 40529 2.50%
Rest of the World 2199114 67.68% 1133744 69.89%
Total 3249367 100% 1622227 100%

Table 3: Distribution of users’ country of origin in the control and boosted groups.

received a lot more engagement than those in the control condition, which suggests that the experiment

successfully yielded exogenous variation in the likelihood of receiving engagement.

Group Mean Standard deviation 25th Percentile Median 75th Percentile

Control 268.53 8985.18 1 8 40
Boosted 724.17 24465.11 1 8 46

Table 4: Summary statistics of treatment or engagement received (ep) for the control and boosted groups in the 14-day period during
the experiment.

4 Preliminary Analysis

We now present some preliminary analysis based on the experimental data. First, we calculate an intent to

treat (ITT) treatment effect by comparing average outcomes among producers who were assigned to the

boost vs. control conditions. Next, we discuss the challenges in interpreting and using the ITT estimates in

counterfactual policy design. Then, we use the bucket assignment as an instrument and estimate a two-stage

is of importance to the firm. The firm did not see any managerial value in separately measuring the value of replies, retweets, and
favorites. Further, this measure was used for other purposes within the firm, e.g., to calculate relevance scores of tweets and rank
them. As such, it was important to keep the definition of engagement constant across the firm. Of course, if the firm cares about one
engagement metric over the other (instead of the cumulative engagement measure), then it can always measure the incremental
impact on one metric and control for the others, or potentially use multiple instruments to derive the relative effect of each.
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Dependent variable

Treatment received Producer activity

(1) (2)

Boost condition 455.642∗∗∗ 5.976∗∗∗

(19.845) (0.840)
Constant 268.530∗∗∗ 589.461∗∗∗

(4.985) (0.482)

R2 0.000 0.000
No. of Obs. 4871594 4871594

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 5: Effect of instrument Z (control or boost) on treatment received during the experiment (ep) and post-treatment activity (ap).
Robust standard errors are shown in parentheses.

least squares (2SLS) model. This yields a preliminary estimate of the average treatment effect (ATE).

4.1 Intent to Treat Estimates

The first model in Table 5 shows the effect of the experiment condition on the intensity of treatment received.

We see that being in the boosted condition does lead to a significant increase in engagement received. On

average, boosted producers received over 455 more engagements than producers in the control condition

during the two-week treatment period.

Next, we use the bucket assignment to estimate a simple intent to treat (ITT) treatment effect on the main

outcome variable of interest: the number of minutes the user spent on the platform in the two-week period

following the experiment. This variable is most closely aligned with the platform’s monetization goals – the

longer a user spends on the platform, the higher the ad revenue from the user. This ITT regression is the

simplest analysis of the experimental data and compares the post-treatment activity levels for producers in

the boosted vs. control groups. Formally, since we are randomly assigning producers to the two groups, the

ITT treatment effect (α1) can be estimated using the following model:

ap = α0 + α1 (boost condition)p + εp (3)

The estimates from this analysis are shown in Model 2 of Table 5. We find that being in the boosted condition

has a positive effect on users’ post-treatment activity. Users in the boosted condition spend approximately

six more minutes on the platform (i.e., ≈ 1% more time) than those in the control condition. This indicates

that, on average, giving producers more engagement has a positive effect on their future time spent on the

platform.10

10We can also conduct a related analysis where we estimate these ITT effects separately for different groups of users who receive
different amounts of additional engagement during the experiment (e.g., users who receive lots of additional engagement vs. those
who receive very little additional engagement). However, interpreting the results of this exercise is challenging because there are
multiple potential explanations. See Web Appendix §B for a description of this analysis.

13



Although this 1% improvement estimate shows that being boosted has a positive impact on producers’

overall activity in the post-treatment period, it does not provide us with the causal impact of giving more

engagement on producers’ future usage. Indeed, these estimates lack counterfactual validity and cannot be

mapped to marginal treatment effects. We discuss these challenges in detail below.

Counterfactual validity and policy design A fundamental challenge with the ITT estimates is their lack

of counterfactual validity, i.e., these estimates do not represent what would happen if we applied the boost

condition to all the producers in the system. Indeed, if all the producers’ items were equally boosted (i.e., their

scores were multiplied by 16 or any positive number), then the end result would be that no one is boosted:

the resulting rank ordering would be the same as the baseline case where all producers are in the control

condition. The ITT estimates simply give us the incremental effect on a producer’s activity when there is

a small portion of the producers being boosted. As the fraction of producers getting the boost treatment

increases, the ITT estimates would also change (decrease). Therefore, the current ITT estimates are not a

meaningful predictor of what the incremental change in activity would be under different counterfactual

conditions. We refer readers to Ha-Thuc et al. (2020) for a detailed discussion on the lack of counterfactual

validity of boosting experiments. Given these issues, we need to estimate a metric that has counterfactual

validity, i.e., a metric that is invariant to the treatment assigned to other producers and can be directly used in

policy design. As we will see in the next section, metrics that do have counterfactual validity are the average

treatment effect and the conditional average treatment effect.

Marginal treatment effects The ITT estimate does not represent the incremental benefit (marginal treat-

ment effect) of a producer receiving one additional engagement. Instead, it describes the effect of receiving

however many additional engagements producers received as a result of being assigned to the boost condition.

This distinction arises because the ITT estimate is an average treatment effect among people who were put

into the boost condition, but in order to design a counterfactual recommendation system/targeting policy, we

instead need a marginal treatment effect.

4.2 ATE of Engagement using Instrumental Variables Approach

One way to improve on the ITT estimate is by estimating marginal treatment effects with a two-stage least

squares (2SLS) model. Note that randomly assigning a producer to the boosted group serves as an external

source of variation that increases how often they will be shown to consumers. For each of their specific

items, this also has an effect on the number of engagements that the producer is going to receive. Recall

that producers do not observe whether they are in a boosted group or a control group in our experiment,

and do not observe how many impressions their tweets got. Therefore, the experiment condition serves

as an instrumental variable — it exogenously varies how many engagements a producer receives, but only

through affecting how often their items are shown. Thus, we can use the boost vs. control assignment as the

instrument (Z) and the total engagement received during the experiment period as the treatment variable.

Our goal is to use the instrumental variable Z to model how each individual producer’s activity ap

depends on their received consumer engagement ep. For each producer, Zp is 1 if the producer was randomly
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Dependent variable: Producer activity

Engagement received 0.0131∗∗∗

(0.0019)
Constant 585.94∗∗∗

(0.8755)

No. of Obs. 4871594

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 6: 2SLS estimates of the effect of incremental engagement (ep) on post-treatment activity (ap), where the instrument is the
treatment vs. control bucket (Z). Robust standard errors are shown in parentheses.

assigned to the boosted condition in our experiment and is 0 if they were assigned to the control condition.

The first stage of our (2SLS) estimator is a linear regression where the endogenous engagement variable ep is

regressed on the instrument Z. In the second stage, the outcome variable ap is regressed on the predicted

engagement values êp generated from the first stage.

1st stage: ep = γ0 + γ1Zp + ϵ

êp = γ̂0 + γ̂1Zp

2nd stage: ap = η0 + η1êp + ε

The results from this 2SLS model are shown in Table 6. We find that every incremental engagement

that producers receive over the two-week treatment period increases producers’ activity in the subsequent

two-week post-treatment period by 0.0131 minutes.

Note that an implicit assumption in the 2SLS model is the following – the main channel through which

the instrument affects post-treatment activity is the number of incremental engagements received during the

experiment. However, in practice, the experiment conditions can also affect other channels that may, in turn,

impact post-treatment activity. In particular, users who are boosted may also receive more followers during

the experiment, and the increase in the number of followers may increase their post-experiment activity. To

examine whether this is the case, we run the 2SLS model with the number of incremental followers obtained

during the experiment as a control variable. We find that controlling for this additional factor does not

meaningfully affect our estimated treatment effect for engagement received (see Table A4 in Web Appendix

§C). Thus, we can conclude that even if users receive more followers because of the treatment, that does not

bias the estimate of incremental engagement. It is also possible that boosted users get more direct messages

during the experiment, and as a result spend more time on the platform. We do not have data on the number

of direct messages to test for this alternative channel; however, given that direct messages on Twitter were

quite rare compared to other forms of engagement (e.g., favorites, replies), we do not expect this to be a

serious issue. Nevertheless, we caveat our findings with the note that if there is sufficient reason to believe

that such alternative pathways could meaningfully impact post-treatment activity, the firm should controlled

for them in the analysis.
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Finally, the 2SLS model requires two conditions for consistency – (1) constant treatment effect and (2) no

heterogeneity in treatment intensity (Angrist and Imbens, 1995; Syrgkanis et al., 2019). Unfortunately, neither

of these two assumptions is true in our setting. In addition, average treatment effects (even if consistent)

cannot help with policy design. We discuss these three challenges in detail below.

Treatment effect heterogeneity: Producers may differ significantly in terms of how much they value to

additional consumer engagements. We expect users with different pre-treatment variables to be differentially

responsive to an incremental engagement, both in terms of individual attributes (e.g., followers, followings,

and account age) as well as behavioral usage features (e.g., minutes active, engagement given, and engagement

received). For example, new users may be more responsive to additional engagement compared to older users

whose usage patterns may be more persistent. Thus, the estimated ATE may mask significant heterogeneity

in the individual-level treatment effects.

One approach to generating individual-level treatment effects would be to use the orthogonal instrumental

variable (OrthoIV) approach proposed by Chernozhukov et al. (2018). This method uses double machine

learning to generate improved estimates over the standard 2SLS approach. However, it does not appropriately

deal with the heterogeneous treatment intensity issues we described earlier, so it is not the best fit for this

particular context. In §D of the Web Appendix, we provide a summary of the OrthoIV method as well as the

results that it yields.

Heterogeneous treatment intensity and compliance issues: In there is heterogeneity in the treatment

effects, the presence of heterogeneous treatment intensity can further invalidate the 2SLS estimates; see

(Syrgkanis et al., 2019) for a detailed discussion.

Notice that the field experiment described in § 3.1 does not directly vary the number of times a specific

producer gets shown. Instead, producers in the boost condition have their item scores multiplied by a constant

value, thereby improving their chances of being shown to each consumer on the platform. The impact of

being put in the boost condition can vary tremendously between different producers, as a function of producer

attributes. For example, a producer who creates a lot of items will receive a stronger treatment “intensity”

(i.e., more engagements) than a producer who writes fewer tweets because the former will have more items

that get boosted. Similarly, a producer who has lots of followers is likely to receive more engagements

because there is a larger base of prospective consumers who can engage with their items (upon seeing them).

This heterogeneous treatment intensity problem is known in the statistics literature as a “partial compli-

ance” or “heterogeneous compliance” issue (Angrist and Imbens, 1995; Dawid, 2003). In our context, we

find that there is significant heterogeneity in the intensity of treatment received by producers as a function of

other producer-level observables. For example, we see that the treatment intensity varies with user state, e.g.,

“Heavy Tweeters” and “Medium Tweeters” are more likely to receive more engagement (see Table A1 in the

Web Appendix §A). Thus, our analysis needs to account for this heterogeneity, i.e., we cannot assume that all

individuals who were assigned to the boost condition received the same level of treatment.

Relevance to recommendation policy design: A final challenge is that the ATE (even if consistent) is not

particularly useful from a policy design perspective. If the goal is to use this analysis to design counterfactual
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targeting policies, then heterogeneous (ideally individual-specific) treatment effects are necessary because

the platform needs to identify which producers should be prioritized relative to others. Thus, just like the ITT

estimates, the ATE estimates cannot be used for counterfactual policy design, since a constant estimate across

all producers implies that all producers would be equally prioritized, which is equivalent to no one being

prioritized.

Given these issues and those discussed in §4.1, we cannot use the ITT, 2SLS, or OrthoIV estimates for

the purposes of identfying which producers have the strongest increase in activity if they receive additional

engagement on their content.

5 Problem Definition

We now define the firm’s problem more precisely and use the data from our field experiment to derive

consistent estimates of a different estimand that does not suffer from the drawbacks discussed earlier.

Specifically, our goal is to estimate the heterogeneous marginal treatment effect for each producer p as

follows:

θ(Xp) = E[ap | ep + 1, Xp]− E[ap | ep, Xp]. (4)

This treatment effect represents how much each user would increase their activity on the platform if they

received one additional engagement. In practice, the platform would need to estimate conditional average

treatment effect (CATE) values in order to summarize the treatment effect for users with different features

Xp.

Focusing on CATE values is useful for three reasons. First, understanding the heterogeneous causal

impact of engagement on subsequent user behavior is an interesting question from a scientific perspective.

As discussed in §2, there is no existing work that has estimated this metric in the context of user response to

engagement on social media settings; as such, this exercise can give researchers and managers insight into the

magnitude and variation of CATE across users in a real large-scale social media platform. Second, a unique

aspect of our setting is the rich set of user features (that consist of both past usage behavior and demographic

data), which can be used to capture the heterogeneity in CATE. From a substantive perspective, knowing

which types of users are more likely to respond to engagement is valuable, since these findings can help us

understand factors that influence producer behavior in social media platforms. Furthermore, managers can

use these findings to develop a profile of users who are the most responsive to engagement, and then target

these users.

Finally, from a counterfactual policy perspective, the platform’s problem is to identify and target producers

who will have the strongest positive response after receiving engagement. Since CATE estimates have

counterfactual validity, they can be used to develop a variety of potential interventions that prioritize

responsive producers. For example, after estimating CATE, the platform can boost the producers with the

highest CATE values (e.g., those in the top 1%) by a constant factor in its recommendation system, thereby

providing a targeted version of the intervention we assigned at random in our experiment. A second option

would be to prominently feature the content of the most responsive users. Alternately, instead of using
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CATE thresholds to target the responsive users, it can directly use these CATE estimates in a two-sided

recommendation system that balances consumer utility/engagement with producer utility/engagement. To

account for the fact that consumers and producers are both affected by the recommendation system, the

platform can instead use a recommendation system that accounts for both of these constituencies. Recall

that we previously defined the producer-specific CATE or response to receiving additional engagement as

θ(Xp) (see Equation 4). Thus, given an estimate of θ(Xp), the platform can calculate a weighted average of

producer and consumer utility to rank items. For item i, consumer c, and producer p, we can then use the

following score (σicp) to rank order items for consumer c:

σicp = sic [1 + λθ(Xp)]

= P (engagementic)
[
1 + λE

(
incremental producer utilityp | engagementic

)]
The term λ can be chosen to meet the platform’s goals: if they value consumer utility very highly, then λ

should be low so that the weighted term σicp is mostly based on the probability of a consumer engaging with

a particular piece of content. On the other hand, if the platform is heavily focused on generating additional

engagement for the producers who are most responsive to that, then λ should be high.

One approach that may initially seem promising would be to estimate a heterogeneous ITT effect of the

boost condition, α1(16XBoost, Xp), and use that to develop targeting policies that provide a 16X boost to a

small set of users. However, the ITT effect α1(16XBoost, Xp) is a function of engagement received, which

in turn is a function of the experiment itself (the type and size of users boosted), and is therefore unlikely to

be counterfactually valid. We refer readers to Web Appendix §E for a more detailed explanation of this issue.

6 Estimating Heterogeneous Treatment Effects

A naive approach to estimating CATE values is to slice the data along different pre-treatment variables and

estimate ATEs within those slices of the data. However, such an approach is both practically infeasible

and conceptually problematic for two reasons. First, we have a large number of pre-treatment variables

(Xp variables) which are highly correlated and it is not obvious which variables we should use to slice the

data. Second, slicing the data manually and exploring whether the treatment intensity and ATEs vary across

different sub-slices is subject to p-hacking concerns, and hence not recommended (Athey and Imbens, 2016).

To avoid these problems, the recent practice in the literature has been to use machine learning methods that

learn the heterogeneity in treatment intensity and treatment effects using a data-driven approach. We adopt

a similar solution here by leveraging the recently developed Doubly Robust Instrumental Variable (DRIV)

model to give us consistent individual-level CATE values (Syrgkanis et al., 2019). This estimator builds on

the double machine learning (DML) approach proposed in Chernozhukov et al. (2018). We refer readers

to Ellickson et al. (2022) for a recent application of the DML approach in the marketing setting. Table 7

presents a summary of how the DRIV estimator compares against the ITT, 2SLS, and OrthoIV estimators

discussed earlier.
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Properties of the Estimates

Counterfactual Marginal Heterogeneous Heterogeneous
validity treatment effects treatment intensity treatment effects

ITT ✗ ✗ ✗ ✗

2SLS ✓ ✓ ✗ ✗

OrthoIV ✓ ✓ ✗ ✓

DRIV ✓ ✓ ✓ ✓

Table 7: Comparison of Estimator Properties.

6.1 DRIV Model and Estimation

The DRIV approach provides a unified framework that allows us to estimate an instrumental variable model

with flexible functional forms, treatment effect heterogeneity, and heterogeneous treatment intensity. As with

the 2SLS model, our goal is to use the instrumental variable Zp to model how each individual producer’s

activity ap is a function of their features Xp and their received consumer engagement ep:

ap = θ(Xp)ep + g(Xp) + ε (5)

E[ε | Zp, Xp] = 0

The marginal effect of each additional engagement is modeled as a flexible function θ that depends on the

producer’s features Xp. Two producers with different X values will return different treatment effects θ(Xp),

so this modeling approach will generate heterogeneous treatment effects unlike the ITT approach described

in §4.1 or the 2SLS ATE approach described in §4.2. Furthermore, the treatment intensity ep is allowed to

depend on both the treatment vs. control bucket (Zp) and their individual features Xp.

We now provide a high-level summary of the estimation steps. First, split the data into training (70%)

and test (30%) data. Following the standard practice in double machine learning approaches, we will fit the

preliminary nuisance functions on one subset of the training data and then estimate the second-stage models

on a different subset (and vice-versa). This practice is referred to as cross-fitting and it ensures that the errors

from potential over-fitting in the first stage do not propagate into the second-stage models.

Step 1: First estimate a set of nuisance functions from the different partitions of the training data separately.

These sub-models include:

• A flexible model to predict user activity based on user features: â(Xp) = E[ap | Xp].

• A flexible model to predict user engagements or treatment intensity based on user features: ê(Xp) =

E[ep | Xp].

• A flexible model to predict user engagements or treatment intensity based on user features and

experiment condition: ĥ(Xp) = E[ep | Xp, Zp].
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• A flexible model to predict how user engagements and the experiment condition are jointly affected

by user features: f̂(Xp) = E[ep · Zp | Xp].

Step 2: Calculate the following residualized versions of the models using the preliminary models from Step

1 (estimated on a different partition of the training data):

ãp = ap − â(Xp)

ẽp = ep − ê(Xp)

Z̃p = Zp − Ẑ(Xp)

β̂(Xp) = E[ẽp · Z̃p | Xp] = E[(ep − êp) · (Zp − Ẑp) | Xp] = f̂(Xp)− â(Xp)ê(Xp)

Step 3: Using a preliminary estimate of θ̂pre and our estimate of β̂, estimate a doubly robust treatment

effect, θ̂DR(Xp), by minimizing the loss function:

θ̂DR(Xp) = arg inf
θ

2

N

∑
p

θ̂pre(Xp) +

(
ãp − θ̂pre(Xp)ẽp

)
Z̃p

β̂(Xp)
− θ(Xp)

2

, (6)

where N is the total number of observations in the training sample. When p is one partition of the

training sample, then θ̂pre and the nuisance function estimates come from a different partition, and vice

versa. The preliminary estimate of θpre comes from minimizing the following square loss function on

a separate part of the training sample:

θ̂pre = arg infθ
2
nΣp

[
ap − â(Xp)− θ(Xp)(ĥ(Xp, Zp)− ê(Xp))

]2
.

Note that θDR is robust to the potential misestimation of θ̂pre or β̂. Thus, as long as one of these

estimates is right, the final estimate is consistent. This approach is similar in spirit to the doubly robust

estimators in standard causal inference settings (see Dudı́k et al. (2011) as an example), with β̂ playing

a role similar to a propensity score. The loss function in Equation (6) can be minimized using any

parametric or semi-parametric estimator.

The full details of the model and consistency proofs for this procedure can be found in Syrgkanis et al.

(2019), and the estimation routine is publicly available as part of the EconML library using Python. A

major benefit of this modeling framework is that the different sub-models in Step 1 can be estimated using

flexible machine-learning methods. For our implementation, we first log-transform all of the continuous

features such as “tweets composed” and “favorites received” using a ln(X + 1) transformation. We then use

a combination of LightGBM gradient-boosted decision trees (Ke et al., 2017) and Lasso for the nuisance

sub-models from Step 1 and a Lasso model for the CATE function θ̂DR. These models are chosen based on

their predictive performance in the holdout test sample. The good performance of the Lasso in the second

step is consistent with earlier research that shows those Lasso-based CATE estimators often outperform other
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Outcome Mean Standard deviation 25th Percentile Median 75th Percentile
Minutes active 0.14 0.52 -0.16 0.11 0.37

Table 8: Summary statistics of the CATE estimates θ(Xp) from the DRIV model for all users in the data. These CATE estimates
represent how much users would be expected to increase their “minutes active” after receiving one additional engagement.

methods (Simester et al., 2020; Yoganarasimhan et al., 2022). We provide a comparison between different

model variants in §G of the Web Appendix.

Finally, we note that, in addition to the DRIV approach, researchers can also use other recently developed

double ML based estimators to estimate individual-level treatment effects that account for both heterogeneous

treatment intensity and heterogeneous treatment effects (Athey et al., 2019; Farrell et al., 2021). We do

not take a stance on the pros and cons of these different approaches since our focus is on substantive and

managerial insights. Nevertheless, the Syrgkanis et al. (2019) approach offers a few advantages in our specific

setting, such as the availability of the estimator in the EconML package that allows for easier adoption in real

industry applications, the flexibility to experiment with different machine learning methods for the first stage

nuisance models, and the ability to use a simple parametric model for the last step to aid with interpretability

and substantive insights.

6.2 DRIV Results

The key outputs from our estimation procedure are the predicted CATE estimates θ̂DR(Xp). Table 8 provides

summary statistics for these estimated CATE values. We find that most of the estimated CATE values are

small in magnitude. The outcome variable ap is measured in minutes, so the average value of 0.14 implies

that receiving one incremental engagement as a producer causes them to increase their usage by only about 8

seconds (i.e., 0.14 minutes ≈ 8.4 seconds) on average. The standard deviation of the CATE estimates is very

high relative to the mean, which demonstrates the importance of allowing for heterogeneous treatment effects

across users. This pattern is similar to the findings in earlier papers that estimate CATE values based on ITT

experiments; e.g., Syrgkanis et al. (2019).

We now interpret our model results and examine its predicted outcomes through two approaches: coeffi-

cient estimates and feature comparison.

6.2.1 Coefficient estimates

Because we use a Lasso model in Step 3 to estimate the CATE (θ̂DR(Xp)), we are able to generate coefficient

estimates for each of the pre-treatment producer features in our data. These coefficient estimates are displayed

in Table 9, and they summarize how a one-unit increase in each particular variable affects the user’s minutes

active, holding all other variables constant. This is helpful for understanding which factors contribute to

a particular user’s CATE value being large or small.11 Nevertheless, these coefficient results do not yield

actionable guidance for the platform, because the goal is to figure out which kinds of users have the highest
11An alternative approach for this task would be to project the estimated CATE values on the producer features. In Web Appendix §F,

we conduct this analysis using both a linear regression and an elastic net, and we find that the main takeaways are very similar to
the results in Table 9.
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Variable Coefficient

Tweets composed 0.228
Favorites received -0.056
Retweets received 0.035
Replies received -0.021
Follows received -0.095
Follows made -0.174
Favorites given 0.036
Retweets sent -0.008
Replies sent -0.139
Quote retweets sent 0.228
Minutes active 0.216
Active days -0.352
Monetizable active days -0.235
Active followers 0.070
Total followers -0.028
Following 0.016
Indicator push notification enabled -0.008
Account age (days) -0.024

User state: Heavy Tweeter -0.154
User state: Heavy non-Tweeter 0.144
User state: Medium Tweeter 0.094
User state: Medium non-Tweeter 0.403
User state: Light 0.271
User state: Very light 0.196
User state: Near zero 0.654

Country: Japan 0.046
Country: USA 0.042
Country: Brazil 0.096
Country: Philippines -0.594
Country: UK -0.207
Country: Indonesia -0.341
Country: Turkey -0.136
Country: South Africa 0.194
Country: Mexico 1.940
Country: Argentina -0.089

Intercept 0.200

Table 9: Coefficient results from the DRIV model. These coefficients are derived from the Lasso final stage sub-model and they
describe how each producer feature enters the CATE effect function θ̂DR(Xp). All continuous variables are log-transformed using a
ln(X + 1) transformation. For categorical variables, “User state: New” and “Country: Rest of the World” are the omitted baseline
levels.

CATE values, not necessarily why they have the highest values. This issue is particularly noticeable because

many of the producer features are highly correlated with each other. As such, it may not be that useful for the

platform to know what the effect of each variable is when holding other factors constant; instead, it would be

better for them to generate a profile of the kinds of customers who have high vs. low CATE values. Therefore,

in the next section, we analyze how producer-level features differ based on their CATE values.
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6.2.2 User-level heterogeneity: feature comparison

We now examine the heterogeneity in CATE estimates θ̂DR(Xp). Our goal is to understand if and how the

users who are the most responsive to engagement are distinct from the rest of the population. Note that

this question is important both substantively as well as managerially. From a substantive perspective, this

provides us insights into the profile of responsive users. Further, this information allows managers to develop

targeting strategies and recommendation policies that can target the right set of users.

We divide users into two groups: those in the top 1 percent of CATE values, and those in the bottom 99

percent of CATE values. The former group represents the set of users who benefit the most from incremental

engagement, while the latter group serves as the baseline level of response for the user base at large. The

average CATE value is 2.36 for users in the top 1% of CATE values, but it is only 0.12 for users in the bottom

99%. This large discrepancy reinforces the importance of estimating heterogeneous treatment effects here,

especially if we are considering targeted interventions that would go to some users but not others.

Figure 3: Histograms for key pre-treatment producer features (Xp) among users in the top 1% of CATE estimates vs. others. The
underlying CATE estimates represent how much the users would be expected to increase their “minutes active” after receiving one
additional engagement.
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Users in the top 1% of CATE values (minutes active)

Variable Mean Standard deviation 25th Percentile Median 75th Percentile

Tweets composed 62.78 1593.57 1 6 28
Favorites received 161.86 3404.82 0 3 23
Retweets received 38.81 1649.75 0 0 1
Replies received 22.45 252.63 0 1 5
Follows received 8.64 218.01 0 0 2
Follows made 3.86 17.09 0 0 2
Favorites given 170.28 517.75 3 26 123
Retweets sent 31.37 175.25 0 2 12
Replies sent 22.27 115.22 0 1 7
Quote retweets sent 8.47 63.34 0 0 3
Minutes active 611.02 901.67 55 290 808
Active days 10.23 4.99 7 13 14
Monetizable active days 10.15 5.03 6 13 14
Active followers 525.50 9227.77 26 83 211
Total followers 1132.27 32712.44 36 127 341
Following 452.81 1579.88 90 222 471
Indicator push notification enabled 0.75 0.44 0 1 1
User state: Heavy Tweeter 0.36 0.48 0 0 1
User state: Heavy non-Tweeter 0.20 0.40 0 0 0
User state: Medium Tweeter 0.14 0.34 0 0 0
User state: Medium non-Tweeter 0.09 0.29 0 0 0
User state: Light 0.06 0.23 0 0 0
User state: Very light 0.08 0.27 0 0 0
User state: Near zero 0.03 0.17 0 0 0
User state: New 0.04 0.20 0 0 0
Account age (days) 2106.25 1559.68 537 2005 3666

Users in the bottom 99% of CATE values (minutes active)

Tweets composed 41.22 250.84 1 7 25
Favorites received 202.63 9369.62 0 4 25
Retweets received 35.84 2159.96 0 0 1
Replies received 21.50 428.11 0 1 6
Follows received 17.64 469.97 0 1 4
Follows made 10.87 57.81 0 1 5
Favorites given 155.02 496.31 2 20 101
Retweets sent 31.54 186.74 0 1 10
Replies sent 21.12 111.29 0 1 9
Quote retweets sent 3.55 21.44 0 0 1
Minutes active 622.77 922.04 74 292 804
Active days 11.75 3.88 11 14 14
Monetizable active days 11.33 4.30 10 14 14
Active followers 613.16 14495.75 19 70 218
Total followers 1134.13 52887.95 24 98 330
Following 442.18 1933.04 64 180 435
Indicator push notification enabled 0.73 0.44 0 1 1
User state: Heavy Tweeter 0.45 0.50 0 0 1
User state: Heavy non-Tweeter 0.26 0.44 0 0 1
User state: Medium Tweeter 0.11 0.31 0 0 0
User state: Medium non-Tweeter 0.07 0.26 0 0 0
User state: Light 0.05 0.21 0 0 0
User state: Very light 0.03 0.18 0 0 0
User state: Near zero 0.01 0.10 0 0 0
User state: New 0.02 0.15 0 0 0
Account age (days) 1719.98 1428.47 430 1325 2987

Table 10: Summary statistics of pre-treatment producer features (Xp) among users in the top 1% of CATE estimates vs. others. The
underlying CATE estimates represent how much the users would be expected to increase their “minutes active” after receiving one
additional engagement.
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To understand how these groups differ from each other in observable ways, we can summarize their

values for the pre-treatment producer features Xp. A full comparison between the two groups across all of

the features Xp is provided in Table 10. To more easily visualize a few of the key differences, we also show

detailed histograms for some of the key pre-treatment producer features for each group in Figure 3.

We find differences between these groups in users’ activity levels, account age, and popularity. First, we

find that users with high CATE values tend to have more followers and they are also following more accounts.

They also have older accounts (more account days) but they do not use the platform as regularly (fewer

active days). Users with high CATE values are also more likely to be in the lower-intensity user state groups

(everything other than heavy Tweeter and heavy non-Tweeter). On most of the other observable features,

there are not major differences between users in the top 1% of CATE values vs. the other 99% of users.

Overall, this analysis suggests that longstanding users who are no longer using the platform regularly are

likely to respond most positively to receiving incremental engagement; as such, these users should be targeted

if the goal is to increase users’ time spent on the platform. Finally, note that while we focused on the 99%–1%

cohorts in this analysis, the broader substantive results are similar if we use larger thresholds/cut-offs (e.g.,

95%–5%).12

7 Focusing on Other Outcomes

The results in §6.2 show that on average, receiving additional engagement on one’s social media content

leads to an increase in time spent on the platform. This outcome is of first-order importance to social

media platforms because time spent on the platform is often the key monetizable outcome for ad-supported

applications and websites. However, there may be other metrics that are of interest to the platform as well.

We now examine how receiving engagement affects four other measures of user activity: tweets composed,

favorites given, monetizable active days, and total engagements given.

7.1 How Does Receiving Engagement Improve Users’ Production vs. Consumption?

In addition to understanding how receiving additional engagement causes users to increase their time spent

on the platform, the platform may also be interested in discovering how that additional time is being spent. In

particular, we can now examine whether additional engagement causes producers to produce more content,

consume more of other people’s content, or both.

First, we examine these outcomes using ITT and 2SLS models in which we replace the outcome variable,

which was previously the overall minutes spent on the platform. We estimate two sets of models: one that uses

a purely production-focused outcome (tweets composed) and one that uses a purely consumption-focused

outcome (favoriting other users’ tweets). The results from these preliminary approaches are presented in

Table 11 and Table 12, respectively. In both sets of results, we find that there is a positive effect on both

tweets composed and favorites given.

To investigate this issue further while dealing with heterogeneous treatment intensity and heterogeneous

treatment effects, we now re-estimate our DRIV model specification (see §6.1) with tweets composed and
12In §8, we provide a more detailed discussion on the reasons for focusing interventions on a small fraction of users.
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Dependent variable

Tweets composed Favorites given

(1) (2)

Boost condition 0.6629∗ 2.433∗∗∗

(0.293) (0.459)
Constant 38.260∗∗∗ 145.319∗∗∗

(0.266) (0.261)

R2 0.000 0.000
No. of Obs. 4871594 4871594

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 11: Effect of instrument Z (control or boost) on the production-focused outcome (tweets composed) and the consumption-
focused outcome (favorites given) after the experiment. Robust standard errors are shown in parentheses.

Dependent variable

Tweets composed Favorites given

(1) (2)

Engagement received 0.0015∗ 0.0053∗∗∗

(0.0006) (0.001)
Constant 37.869∗∗∗ 143.89∗∗∗

(0.429) (0.474)

No. of Obs. 4871594 4871594

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 12: 2SLS estimates on the production-focused outcome (tweets composed) and the consumption-focused outcome (favorites
given) after the experiment. Robust standard errors are shown in parentheses.

favorites given as the outcome variables. The estimated CATE values from these DRIV models are shown in

the top two rows of Table 13. On average, we find that receiving one additional engagement causes users to

increase their tweets composed by 0.042 and to increase their favorites given by 0.054. This corresponds to

average increases of 0.10% for the production outcome (tweets composed) and 0.03% for the consumption

outcome (favorites given), relative to those variables’ pre-treatment baseline values (shown in Table 1).

Overall, the results from our different models indicate that receiving incremental engagement encourages

users to consume and engage with other users’ content, and produce more content, but it has an even larger

relative effect (roughly 3x bigger) on their production of content. This indicates that interventions based on

increasing users’ engagement can lead to broad improvements across multiple dimensions that are of interest

to the platform, and that the benefits are significant for users’ overall enjoyment of the platform rather than

being isolated to their enjoyment from producing content. However, if the platform specifically wanted to

maximize production or consumption rather than minutes active, then it would benefit from targeting users
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Outcome Mean Standard deviation 25th Percentile Median 75th Percentile

Tweets composed 0.042 0.181 -0.067 0.009 0.105
Favorites given 0.054 0.153 -0.037 0.054 0.139
Monetizable active days 0.0044 0.0017 0.0034 0.0045 0.0055

Table 13: Summary statistics of the CATE estimates θ(Xp) for all users in the data for the DRIV models trained on different
outcomes. These CATE estimates represent how much users would be expected to increase their “tweets composed”, their “favorites
given”, and “monetizable active days” after receiving one additional engagement.

who are most responsive on that particular dimension. In Web Appendix §H, we show that the platform would

end up targeting very different sets of users if the goal was to maximize users’ production vs. consumption.

In particular, we find that targeting relatively inactive users is ideal for maximizing consumption (favorites

given) but if the goal is to maximize product (tweets composed), then the platform should target a broader set

of users.

7.2 How Does Receiving Engagement Improve Users’ Monetizable Active Days?

In §6.2, we focused on users’ total minutes active as the main variable of interest. This is consistent with the

standard monetization strategy used by social media platforms, which is to increase users’ time spent on the

platform because that allows them to be shown more advertisements. However, platforms are also interested

in the overall size of their user base and getting these users to use the service on a regular basis. These

active-day metrics are important because platforms typically report them to investors regularly. Furthermore,

having a large user base helps attract new advertisers and can increase the diversity and broader appeal of

the content on the platform (Godes and Mayzlin, 2004). For these reasons, we now focus on the number of

monetizable active days; see Table 1 for the summary statistics of this variable in the pre-treatment period.

This variable refers to the number of days a user used the platform and provided non-zero ad revenue, so it

provides a measure of how regularly each user is using the platform, rather than measuring how intensely

they are using it. Similar daily log-in measures have previously been used as a measure of platform usage;

see Gallus et al. (2020) as an example.

We re-estimate the DRIV model as described in §6.1 with monetizable active days as the outcome variable

ap, and present the results in the last row of Table 13.13 We find that the average incremental effect is positive

but small in magnitude: on average, each incremental engagement leads to an increase of 0.0044 monetizable

active days. One reason for this smaller effect size could be the fact that the values of this outcome variable

are both constrained and skewed. For instance, in the 14-day pre-treatment period, over half of the users in

our sample were active for all 14 days; see Table 1. From an intervention perspective, this is challenging

because it means that the majority of the users cannot be improved on this metric. Further, compared to the

CATE estimates for minutes active (as summarized in Table 8), the CATE estimates for monetizable active

days are not distributed as widely; i.e., the standard deviation is not that large compared to the mean. In Web

Appendix §I.2, we present a detailed analysis of how users in the top 1% of CATE on this metric differ from
13Preliminary ITT and 2SLS models are shown and discussed in §I.1 of the Web Appendix.
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users in the bottom 99%.

Broadly speaking, monetizable active days represent the extensive margin of usage on the platform, while

minutes active represent the intensive margin. If the platform’s primary objective is to get more users to use

the platform regularly, then the platform should focus on increasing monetizable active days. On the other

hand, if the platform’s primary objective is to increase the time that each user spends within each day or

within each login session, then the platform should focus on increasing the minutes active. In Web Appendix

§I.3, we present a more detailed comparison of the differences in the profiles of users who are the most

responsive on these two different usage metrics.

7.3 Effect on Engagements Given

So far, we have shown that receiving engagements makes producers more likely to spend time on the platform

and return to the platform more regularly. In addition, we also found that producers created more content and

favorited more tweets from other users. From the platform’s perspective, favoriting other users’ tweets is

helpful because it may encourage the recipients to increase their own usage of the platform, to create more

content, and to engage more with others. However, favoriting is just one of the three user behaviors that

represent engagement. To consider this issue more holistically, we now examine how receiving additional

engagement causes each user to alter their total engagement given to others.

Dependent variable: Engagements given

Boost condition 3.5879∗∗∗

(0.587)
Constant 193.077∗∗∗

(0.334)

R2 0.000
No. of Obs. 4871594

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 14: Effect of instrument Z (control or boost) on the “ engagements given” as the outcome variable. Robust standard errors are
shown in parentheses.

Dependent variable: Engagements given

Engagement received 0.0079∗∗∗

(0.0013)
Constant 190.96∗∗∗

(0.6071)

No. of Obs. 4871594

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 15: 2SLS estimates of the effect of incremental engagement (ep) on post-treatment engagements given (ap), where the
instrument is the bucket (Z). Robust standard errors are shown in parentheses.

We start with some preliminary analysis. First, in Table 14, we show the ITT estimates of the effect of

the instrument on the outcome variable. There is a positive and significant effect; being in the boost condition
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Outcome Mean Standard deviation 25th Percentile Median 75th Percentile
Total engagement given 0.1010 0.1827 -0.0034 0.0990 0.2005

Table 16: Summary statistics of the CATE estimates θ(Xp) from the DRIV model for all users in the data. These CATE estimates
represent how much users would be expected to increase their “total engagement given” after receiving one additional engagement.

leads to an approximately 1.86% improvement in the number of engagements given, compared to the baseline

of 193 for the control group. This is almost twice the effect as on minutes active (see the discussion in §4.1).

Next, we estimate a 2SLS model with total engagements given as the outcome variable and present the results

in Table 15. Once again, we find that receiving engagement has a small but positive effect on downstream

engagements given. Nevertheless, these ITT and 2SLS estimates suffer from the same challenges discussed

earlier in §4.

Figure 4: Histograms for key pre-treatment producer features (Xp) among users in the top 1% of CATE estimates vs. others. The
underlying CATE estimates represent how much the users would be expected to increase their “engagement given” after receiving
one additional engagement.

Therefore, next, we re-estimate our DRIV model with “total engagement given” as the outcome variable
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and present a summary of the CATE values from this analysis in Table 16. We find that the average CATE is

0.10, i.e., receiving one engagement leads producers to give an incremental 1⁄10 engagement to other users.

Furthermore, we see that there is significant heterogeneity in CATE values across users (similar to the CATE

estimates for active minutes).

To further understand which users are the most responsive on this outcome variable, we conduct an

analysis similar to that in §6.2.2. As before, we divide users into two groups: those in the top 1 percent of

CATE values, and those in the bottom 99 percent of CATE values. The average CATE value is 1.01 for users

in the top 1% of CATE values, but it is only 0.09 for users in the bottom 99%. We show detailed histograms

for some of the key pre-treatment producer features for each group in Figure 4, and a full comparison across

all of the user features Xp is provided in Table J of the Web Appendix. We find that the users with the

highest CATE values (i.e., the users who provide the most engagements to other people after they receive one

incremental engagement) are systematically different from the rest of the population – they tend to be less

active users (fewer minutes active and active days) with lower levels of content production (tweets composed)

and engagement with others (favorites given and favorites received). These substantive findings can be used

by platforms and managers to target users if they seek to promote downstream engagement on others’ content.

8 Quantifying the Returns to Engagement Across Target Groups

We now use the individual-level CATE estimates to understand the returns from different types of targeting

approaches. We focus on quantifying the total gain in minutes active for the platform if it were to target the

most responsive producers (top 1 percent of θ(Xp) values) with one incremental engagement.

We use minutes active as the primary outcome of interest since it is most closely tied to platform

revenue. Moreover, in §8.2, we show how a producer’s response to other outcomes (e.g., engagement)

can be transformed into a measure of incremental downstream change in minutes active. We estimate

the counterfactual gains from one incremental engagement rather than the overall gains from a specific

intervention (e.g., boosting the most responsive users, or prominently showcasing them on the front page,

etc.) because the overall effect of such interventions is a function of both the total engagements received

under the intervention as well as the CATE estimate. While our CATE estimates have counterfactual validity,

the engagement received is endogenous to the experiment (see Web Appendix §E for details), and is therefore

unlikely to be counterfactually valid. Thus, we focus on counterfactual exercises that rely only on CATE

estimates.

Finally, focusing on the top 1% of users (or a relatively small percentage) has a few natural advantages.

First, it ensures that the platform will be discovering producers who will respond most positively if they were

to receive additional engagement, so targeting this group can yield substantial benefits for the platform. This

is likely to be the case since the treatment effects θ(Xp) are highly heterogeneous (as we saw in Table 8,

some producers have very high values, but most do not). Second, targeting a small percentage of producers

allows the platform to maintain a consumer experience that is nearly fully in line with their preferences. On

the other hand, if many producers get targeted/boosted, then the consumers’ content suggestions can deviate

significantly from what they actually want to see. This may negatively affect their experience on the platform
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Group that gets targeted

(1) (2) (3) (4)
Outcome Top 1% minutes

active CATE
Top 1% engagement
given CATE

Top 1% most
active

Bottom 1%
most active

Incremental minutes active 114,894 40,243 29,605 6,102

Number of targeted users 48,716 48,716 48,673 48,717

Table 17: Summary of results from four potential intervention scenarios. Each scenario examines the effect of providing one
additional engagement to four different target groups. We consider targeting users either based on their individual CATE values or
their activity (i.e., their minutes active). The number of observations varies slightly between the four interventions because of ties
regarding who meets the criteria for the top 1%.

and may lead to worse outcomes for the platform over the long run. Therefore, in the rest of this section, we

will consider counterfactuals where we will examine the impact of giving one incremental engagement to the

top 1% of producers with the highest estimated treatment effects, and measuring the overall increase in time

spent on the platform.

8.1 Direct Gains Compared to Benchmark Target Groups

Recall that our DRIV models yield individual-level CATE values that indicate how each user would change

their behavior if they were to receive one additional engagement from other users. To understand how much

the platform can benefit from this information, we now consider what would happen if the platform were to

target users who are in the top 1% of CATE values for minutes active vs. target users who are in the top 1%

of CATE values for engagement given.

For comparison, we also evaluate the effects of targeting two other baseline groups chosen based on

user activity levels: users who are in the top 1% of minutes active, and users who are in the bottom 1% of

minutes active. Such heuristics/baselines are commonly used by the managers of the platform to identify

and target users. For instance, one existing approach at the platform at the time of the experiment was to

focus on low-activity users and employ interventions that gave them additional engagement. Comparing our

targeting strategy with the two heuristic approaches allows us to: (a) provide preliminary benchmarks on the

returns to using the individual-level CATE estimates from our approach compared to simpler heuristics, and

(b) generate insights on how interventions based on one outcome (e.g., minutes active) perform compared to

interventions based on other outcomes of interest (e.g., engagements given).

For each of these four groups, we estimate what happens to the total minutes active when we provide the

targeted group of users with one additional engagement.14 The results of this exercise are shown in Table

17. A few important patterns emerge from this analysis. First, we find that targeting users with high CATE

values is more effective than targeting users based on heuristics that use activity-level thresholds, i.e., the

former approaches yield bigger improvements in total minutes active. For instance, if the platform wants to

increase minutes active, then targeting users with the highest CATE values for minutes active yields a roughly
14This approach is a direct evaluation method based on the estimated CATE values. Therefore, any error or noise in the estimated

CATE values will propagate into the estimated quantities.
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Figure 5: Histograms for key pre-treatment producer features (Xp) among users in the top 1% of CATE estimates for “engagement
given” vs. users in the top 1% of CATE estimates for “minutes active”. These correspond to the groups of people who should be
targeted if the platform is trying to improve each of these two criteria.

4x – 19x improvement over the other alternatives we consider. Second, we find that targeting users with the

highest CATE values for minutes active (column 1) yields about a 3x improvement over targeting users with

the highest CATE values for engagement given (column 2).

Interestingly, the set of users with the highest CATE values for minutes active is quite different from the

set of users with the highest CATE values for engagement given. To provide some substantive insights into

how the two target groups vary, we provide a comparison of the distribution of some of the key pre-treatment

variables across both the groups in Figure 5. We find that targeting based on engagement given CATE would

focus on less active (fewer tweets composed, minutes active, etc.) and less connected users (fewer followers

and following), compared to targeting based on minutes active CATE.
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8.2 Gains with Spillover Effects

The analysis in the previous section only quantifies the effects for the focal (targeted) users, but it does not

consider the potential positive spillover effects on other users connected to the targeted users. Recall the

analysis in §7.3, which suggests that when a user receives an additional engagement, it encourages them

to not only increase their own usage of the platform but also to provide additional engagements to other

users, which in turn would cause those users to increase their usage of the platform. These spillover effects

can lead to long-term benefits for the platform because they could create a “virtuous cycle” in which users

are increasing their own usage, engaging more with each other’s content, and therefore increasing other

people’s usage. Similar positive spillover phenomena have been examined in the contexts of other social

media settings; e.g., video seeding strategies on YouTube (Yoganarasimhan, 2012), customer relationship

management efforts (Ascarza et al., 2017), and social nudges on a video sharing platform (Zeng et al., 2022).

Measuring these spillover benefits is challenging in our context because we have a CATE estimate for

how much each targeted user engages with other people’s content (i.e., we know the CATE of engagements

given), but we do not observe which specific people’s content they engage with (i.e., we do not observe the

user-to-user engagement edges in the network). This data limitation also means that we do not know how

much a recipient of this spillover engagement would increase their time spent on the platform by (i.e., we do

not know their CATE values) because their user characteristics are not observed. Therefore, we approximate

the effect by assuming that any additional engagements are dispersed at random to the other users on the

network. We also only consider a one-hop spillover; i.e. we consider the targeted group as well as the users

who receive engagement from people in that targeted group. This can be interpreted as a lower bound of the

spillover effects, because in reality there may be further downstream positive effects (e.g., user A engages

with user B, who engages with user C, who engages with user D).15

We can now provide an estimate of the spillover effect by adding together two outcomes for each

intervention: the direct effect that the intervention has on the targeted group, and the indirect effect of how

the targeted group causes other people to increase their usage. For example, if we want to consider how

providing one additional engagement to a specific user p will affect the total minutes active on the platform,

we can use the following equation:

Incremental minutes activep = Direct effect of engagement + Indirect effect of engagement

= θminutes active
p +

(
θengagement
p · E

[
θminutes active]) , (7)

where θminutes active
p is user p’s individual CATE value from the DRIV model for minutes active, θengagement

p is

user p’s individual CATE value from the DRIV model for total engagement given, and E
[
θminutes active

]
is the

overall average CATE value from the DRIV model for minutes active (roughly 0.14; see Table 8).16 Thus,
15While it is theoretically possible to include additional hops of spillover in our analysis, doing so would likely yield less credible

results because the marginal effects of providing engagement would shrink with each additional hop and the results could be
outweighed by any noise in the estimates. Further, we see that even one-hop spillover effects are not particularly large. Hence, the
spillover effects on higher hops are likely to be negligible.

16This approach is flexible and can be used to consider other outcomes as well. For instance, to estimate the effect on incremental
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Group that gets targeted

(1) (2) (3)
Outcome Top 1% minutes ac-

tive CATE
Top 1% engagement
given CATE

Top 1% incremental
minutes active

Incremental minutes active (with spillovers) 116,558 47,197 116,585

Number of targeted users 48,716 48,716 48,716

Table 18: Summary of results from three potential intervention scenarios. Each scenario examines the effect of providing one
additional engagement to three different target groups, accounting for the effects both on that target group as well as the spillovers
from the additional engagement that they provide to others. The first two approaches target users based on their individual CATE
values from two DRIV models with different outcome variables. The third approach targets users based on their values for
“incremental minutes active” with spillovers, as defined in Equation 7.

the first term θminutes active
p captures the direct impact on the focal user p, which is simply the incremental

time spent on the platform by user p. The second term θ
engagement
p · E

[
θminutes active

]
is the one-hop spillover

effect on other users in the platform – this is the average incremental time spent by the users who received

incremental engagements from user p (as a result of user p receiving an additional engagement).

In order to calculate the total effects of targeting a specific group of users, we can apply Equation (7)

to different target groups and then aggregate the results across users within that particular target group. In

Table 18, we show the results of this exercise when we consider three potential target groups: (1) users

who are in the top 1% of CATE values for minutes active, (2) users who are in the top 1% of CATE

values for engagement given, and (3) users who are in the top 1% of incremental minutes active (based

on the definition provided in equation 7). Note that this last target group is the set of users for whom the

total treatment effect (the sum of direct and spillover effects) is the highest, i.e., users in the top 1% of

θminutes active
p +

(
θ

engagement
p · E

[
θminutes active

])
.

The results in Table 18 provide two main takeaways. First, we can compare the results in columns 1 and

2 of Table 18 vs. Table 17 to isolate the effects of including spillovers in our analysis. We find that the effects

of spillovers are relatively small and that including these spillovers has not changed the main conclusions

from our earlier analysis. Second, we can see that targeting users with the largest values for incremental

minutes active (column 3) yields very small improvements over targeting users who are in the top 1% of

CATE values for minutes active (column 1). This indicates that targeting users based on the CATE values for

minutes active is a good targeting strategy for the platform, even if there are spill-over effects.

The close similarity in results between columns 1 and 3 is due to the fact that the first term in Equation (7)

(the direct effect) largely overwhelms the second term (the spillover effect). Notice that while both θ
engagement
p

and θminutes active are relatively similar in magnitude, the second term of Equation (7) consists of a multiplier

(E
[
θminutes active

]
= 0.14), which leads to the spillover effects being much smaller than the direct effects.

As a result, in our full data sample of nearly 4.9 million users, the CATE for minutes active (only direct

effect,) and the total CATE for incremental minutes active (the sum of direct and spillover effect, as shown in

monetizable active days, we can simply replace θminutes active
p and E

[
θminutes active] with θmonetizable active days

p and E
[
θmonetizable active days],

respectively.
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Equation (7)) have a very high correlation of 99.88%. Thus, targeting the people in the top 1% of values for

each of these two criteria also yields groups that are very similar to each other; in our context, there is a 96%

overlap between the users who would be targeted under these two scenarios. In sum, these findings suggest

that while positive spillover effects exist, they are not significant in magnitude and the platform can simply

focus on the first-order effects when choosing targeting criteria.

Finally, note that our counterfactual analysis should be interpreted carefully with the appropriate caveats.

First, we only focus on the producers directly targeted and/or those within one hop of the targeted producer.

However, if we view consumer attention and engagement as a zero-sum game, then any incremental engage-

ments for the targeted group may come at the expense of other producers on the platform (the 99% who are

not targeted for intervention). When we shift engagements and attention to a focal targeted group, these other

producers may be relatively disadvantaged in terms of opportunities to receive consumer engagement. As a

result, they may receive fewer engagements and this may negatively affect their subsequent behavior. Second,

in the quest to provide additional engagement to producers, consumers may be shown content that they do not

enjoy as much, and this could cause them to reduce their consumption or their usage of the platform. Given

these caveats, our counterfactual analyses should be used as a first-order approximation when comparing

different targeting approaches rather than used as a definitive prediction of the overall impact of any specific

strategy. More broadly, if the platform wanted to implement a two-sided recommendation system that takes

into account both consumer and producer utility (as described in §5), then our producer-side CATE estimates

could be treated as inputs into a two-sided recommendation system that takes into account both consumer

and producer utility.

9 Discussion and Conclusion

On social media platforms, users can receive engagement from other people in response to their posts. We

outline a framework that allows us to measure how individual users respond to this kind of engagement:

how it affects their minutes spent on the platform, their monetizable active days, the amount of content they

produce, and the amount of other people’s content they engage with. Our approach yields heterogeneous

marginal treatment effects that summarize how each user would respond if they were to receive one additional

engagement, while also dealing with the endogeneity and measurement problems inherent in measuring user

behavior on social media platforms.

We apply our approach through a field experiment on Twitter in which some users were purposefully

boosted compared to other users. This intervention exogenously increases the number of impressions

their content receives, which in turn increases the amount of engagement they receive. We analyze this

experimental data with a doubly robust instrumental variable (DRIV) machine learning model. Our results

indicate that receiving engagement has a positive effect on users’ time spent on the platform, their monetizable

active days, and engagements given to other users; but there is a considerable amount of user heterogeneity in

each of these estimated treatment effects. We also find that receiving additional engagement causes users to

engage more with other people’s content as well as produce more tweets themselves.

Apart from these broad takeaways, the main focus of our research is to estimate how individual users
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would respond to receiving additional engagement. These estimates provide insight into the types of users

who are most responsive to engagement. Our approach can be used by managers to build user profiles and

gain an understanding of which user features/characteristics are tied to user responsiveness and behavior.

Our findings also have important implications for possible interventions that could be used by social media

platforms. We find that platforms can likely improve the overall success of the platform by identifying users

who respond heavily to receiving additional engagement and then making them more prominent to other

users. Showing these users’ content more often will increase the total usage of the platform, which in turn

should improve advertising revenues and other financial metrics for the platform. Further, we find that the

platform can simply focus on the first-order effects of its interventions since spillover effects, while positive,

are quite small in magnitude.

Finally, our study provides many avenues for future research. First, in our setting, we do not delve

into why certain users respond more to engagement. It is possible that some users simply enjoy the social

feedback and respond with more content, while others respond positively in order to leverage the feedback

for financial gains. However, this is something future research can examine more closely, and doing so can

provide additional insights into how the platform can incentivize and manage these different types of content

producers. Second, in our setting, there are no direct financial incentives for content production/engagement

on the platform. However, as discussed in §1, in some social media platforms, users can also directly make

money from their content. In such settings, it would be useful to examine the extent to which users’ content

production and platform usage is driven by peer feedback vs. financial incentives.
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Web Appendix
A Heterogeneity in Treatment Intensity
Table A1 shows the interaction effects between user-state and experimental condition (boost vs. control). We
see that users who create more content (e.g., “Heavy Tweeters” and “Medium Tweeters”) are more likely to
receive more engagement.

Dependent variable: Engagement received

User state: Heavy Tweeter 482.229∗∗∗

(11.197)
User state: Light -25.736∗∗∗

(2.512)
User state: Medium non-Tweeter -20.209∗∗∗

(2.298)
User state: Medium Tweeter 24.922∗∗∗

(3.245)
User state: Near zero 31.507∗∗∗

(7.108)
User state: New 125.584∗∗∗

(7.373)
User state: Very light 11.351

(9.121)
Boost 44.371∗∗∗

(6.242)
Boost × User state: Heavy Tweeter 881.543∗∗∗

(42.860)
Boost × User state: Light -11.453

(16.403)
Boost × User state: Medium non-Tweeter 27.373

(59.516)
Boost × User state: Medium Tweeter 65.893∗∗∗

(14.945)
Boost × User state: Near zero 119.821∗

(49.518)
Boost × User state: New 294.887∗

(138.446)
Boost × User state: Very light 16.170

(29.011)
Constant 49.724∗∗∗

(1.633)

R2 0.000
No. of Obs. 4871594

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table A1: Heterogeneous impact of user state on incremental engagement (ep). Robust standard errors are shown in parentheses.

B Examining ITT Effects for Different User Groups
The ITT analysis in §4.1 compares outcomes for the boost vs. control groups, and we find that users in
the boost group significantly increase their activity on the platform afterwards. One might be interested in
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Dependent variable: Producer activity

Boost & eincrease
p < 0 -114.802∗∗∗

(1.348)
Boost & 0 < eincrease

p < 1 843.095∗∗∗

(43.894)
Boost & 1 < eincrease

p < 10 304.260∗∗∗

(7.118)
Boost & 10 < eincrease

p < 50 159.185∗∗∗

(3.114)
Boost & 50 < eincrease

p < 100 109.291∗∗∗

(3.273)
Boost & 100 < eincrease

p < 1000 66.872∗∗∗

(2.166)
Boost & eincrease

p > 1000 92.784∗∗∗

(4.885)
Constant 745.355∗∗∗

(0.661)

R2 0.005
No. of Obs. 3210719

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table A2: Effect of instrument Z (boost) and the percentage increase in engagement (eincrease
p ) on post-treatment activity (ap). We

define the percentage increase in engagement during the two weeks of the experiment vs. the two weeks before the experiment as:

eincrease
p = 100 · eexperiment

p −epre-experiment
p

e
pre-experiment
p

. The baseline (constant) group consists of users who were in the control condition rather than

the boost condition. The linear regression omits observations for which eincrease
p is undefined. Robust standard errors are shown in

parentheses.

examining how these effects vary depending on how much additional engagement someone received during
the experiment; i.e, whether the effects of the boost condition are higher or lower for people who receive lots
of additional engagement vs. very little additional engagement.

To examine this issue, we start by calculating a metric for the percentage increase in engagement that
each user p received during the 2 weeks of the experiment compared to the 2 weeks before the experiment:

eincrease
p = 100 · e

experiment
p − e

pre-experiment
p

e
pre-experiment
p

There is a large amount of variation in this metric among different users: the 25th percentile value of
eincrease
p is -50, the median is 26, and the 75th percentile value is 500.

The correlation between eincrease
p and our main treatment effect θ̂(Xp) is -0.000229. This very weak

correlation indicates that there is not a consistent relationship between how much a user’s engagement
increases during the experiment and their individual treatment effect.

To separate users, we define seven categories based on this new metric eincrease
p : percentage increases

in engagement of less than 0 percent, 0 to 1 percent, 1 to 10 percent, 10 to 50 percent, 50 to 100 percent,
100 to 1000 percent, and greater than 1000 percent. We then estimate a linear regression (similar to the ITT
regression in the paper) where we interact these categories with the boost condition assignment, thereby
allowing us to estimate how the effect of getting boosted varies depending on the percentage increase that the
user experienced during the experimental two-week period. The results from this procedure are in Table A2.
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Percentage increase in engagement

(1) (2) (3) (4) (5) (6) (7)
Variable Negative 0 to 1 1 to 10 10 to 50 50 to 100 100 to 1000 1000+

Engagement received 21 316 73 39 38 10 4
Tweets composed 14 121 42 26 25 10 5
Total followers 108 346 184 168 189 151 170
Following 188 293 230 225 238 224 231
Account age (days) 1252 850 1173 1255 1274 1288 991

Table A3: Pre-experiment variable comparison (medians) between different user groups. Groups 1 – 7 are defined by their percentage

increase in engagement during the experiment: eincrease
p = 100 · eexperiment

p −epre-experiment
p

e
pre-experiment
p

. We only include users who were assigned to the

boost condition and received non-zero engagement during the pre-experiment period.

From Table A2, we find the following results. Some users in the boost condition received less engagement
compared to the two weeks before the experiment, perhaps because they posted less content or because their
content was less successful. Those users decreased their activity on the platform by about 115 minutes in
the two weeks after the experiment. Users who received a relatively small increase in their engagements
(between 0 and 1 percent increase) went on to increase their activity on the platform by 843 minutes, which
was the biggest increase in post-treatment activity across all the groups we examined. This number steadily
declines (but remains positive) as we examine users with higher levels of percentage increases in engagement,
up until the final group (greater than 1000 percent increase) where we see a small uptick compared to the
previous group.

At first glance, these results are surprising because they suggest that users who received the biggest
benefit from being boosted (those with larger values of eincrease

p ) have a much smaller ITT treatment effect
than users whose engagements barely went up. However, there is a confounding factor because the kinds
of users with high values of eincrease

p are quite different than the kinds of users with low values on that same
metric. See Table A3 for a comparison of these different groups and how they differ on five key variables: the
engagement received, their tweets composed, their total followers, the number of accounts they are following,
and their account age. The fact that users who receive different percentage increases in engagement are
also quite different on other important dimensions (engagement received, tweets composed, number of
followers; etc.) means that we cannot disentangle whether the differences in Table A2 are due to the groups
being fundamentally different vs. groups receiving different amounts of increases in engagement during the
experiment.

C Including Incremental Followers in the 2SLS Model
A key assumption in the 2SLS model in §4.2 is the following – the main channel through which the instrument
affects post-treatment activity is the “number of incremental engagements” received during the experiment.
In particular, users who are boosted may also receive more followers during the experiment, and the increase
in the number of followers may increase their post-experiment activity. To examine whether this is the case,
we run the 2SLS model with the number of incremental followers obtained during the experiment as a control
variable, and present the results in Table A4. We find that controlling for this additional factor does not
meaningfully affect our estimated treatment effect for “engagement received”: the average treatment effects
are 0.0127 when we control for incremental followers vs. 0.0131 when we do not control for it, and these
two effects are not statistically different from each other. Thus, we can conclude that even if users receive
more followers because of the treatment, that does not bias the estimate of incremental engagement (which is
the treatment effect of interest).
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Dependent variable: Producer activity

Engagement received 0.0127∗∗∗

(0.0022)
Incremental followers -0.0465

(0.0437)
Constant 587.07∗∗∗

(1.2119)

No. of Obs. 3410115

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table A4: 2SLS estimates of the effect of incremental engagement (ep) on post-treatment activity (ap), where the instrument is the
treatment vs. control bucket (Z). We also include “incremental followers” as a control variable. Robust standard errors are shown in
parentheses.

D Using OrthoIV to Estimate Treatment Effects
The OrthoIV approach allows us to estimate CATE values using a double machine learning method (Cher-
nozhukov et al., 2018). This approach solves the following moment condition:

E [(ap − E[ap | X]− θ(X) ∗ (ep − E[ep | X])) (Zp − E[Zp | X])] = 0 (A1)

Here, we can treat E[ap | X], E[ep | X], and E[Zp | X]) as nuisance parameters, and we can estimate
them on a subset of the training data. Then, on the remaining training data, we can solve the above moment
condition.

We summarize the CATE estimates from this procedure in table A5. We find that the average and median
CATE values from the OrthoIV model are positive, but they are both lower in magnitude compared to the
corresponding metrics from the DRIV model. These differences in results between the OrthoIV and DRIV
CATE values underline the importance of correcting for heterogeneous treatment intensity and differences in
treatment intensity in our context. The DRIV model accounts for these issues, but the OrthoIV model does
not.
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Outcome Mean Standard deviation 25th Percentile Median 75th Percentile
Minutes active 0.051 0.124 0.014 0.023 0.042

Table A5: Summary statistics of the CATE estimates θ(Xp) from the OrthoIV model. These CATE estimates represent how much
users would be expected to increase their “minutes active” after receiving one additional engagement.

E Lack of Counterfactual Validity of ITT CATE Estimates
We now provide a short discussion of why ITT CATE estimates based on the experiment cannot be used for
any targeting or counterfactual interventions. Intuitively, the CATE estimate of ITT (in our experiment) can
be written as follows:

α1(16XBoost, Xp) = ê(16XBoost, Xp)× θ(Xp), (A2)

where ê(16XBoost, Xp) can be interpreted as the number of incremental engagements that a user would
get under this current experiment, i.e. when a random set of XX million users are assigned a 16X boost.
Note that ITT CATE would give us the composite estimate α1(16XBoost, Xp), but not ê(16XBoost, Xp) or
θ(Xp) separately. Given this decomposition, notice that we cannot use the ITT CATE estimates to analyze
the impact of any of the following interventions:
• First, the CATE estimate of ITT cannot be used as input into any two-sided recommendation model, as

described in section 5.
• Second, this estimate cannot be used to evaluate the effect of any other boost factor other than 16 since we

have no way to model/estimate how many engagements a producer would get under alternative boosting
factors. Thus, the estimated ITT CATEs are invalid for any targeting interventions with other boost
factors.

• Third, even if the platform simply plans to target a small subset of users based on the CATE of ITT
using a 16X boost, the CATE estimates are still problematic because of the following reason. Notice
that ê(16XBoost, Xp) is the number of incremental engagements when a random set of 3.2 million users
are assigned a 16X boost. However, if a different subset of users were chosen for boosting at 16X, (e.g.,
a different number of users or a different targeting criterion other than a random sample, such as users
with specific features (Xp)), then the number of engagements received will vary because of the two-sided
nature of the market; see the discussion in §4.1 and Ha-Thuc et al. (2020) for additional details. Thus,
even under a 16X boost, ê() does not predict what the number of engagements would be if a different
subset of users received
Finally, notice that any modification to the status quo (through boosting or changes to the recommendation

system) will naturally move us to a world where consumers’ preferences are somewhat compromised, i.e.,
consumers would not see the best matches for them as per Equation (1). Thus, from the platform’s perspective,
it is important that any distortion that compromises consumer utility should be done in favor of producers
who are most responsive to engagements, and not necessarily producers who will get more engagements.
Thus, the ITT CATE would not help the platform target the most responsive users while balancing consumer
utility (i.e., maintaining the consumer experience).

F Interpreting the CATE Estimates Using Regression Models
In section 6.2, we provide a couple of ways to interpret the estimated CATE values from our DRIV model.
We now provide two additional interpretation methods that are based on projecting the CATE estimates onto
producer features. A major advantage of this approach is that it yields estimates of how much each feature
contributes to the CATE outcome while holding other feature values constant.

Formally, we use the CATE estimates θ(Xp) as the outcome variable and we try to predict this with a
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Variable Elastic net coefficient Linear regression coefficient (SE)

Tweets composed 0.226 0.228 (6.85 ×10−18)
Favorites received -0.062 -0.056 (5.15 ×10−18)
Retweets received 0.042 0.035 (5.59 ×10−18)
Replies received -0.031 -0.021 (7.58 ×10−18)
Follows received -0.113 -0.095 (6.57 ×10−18)
Follows made -0.155 -0.174 (5.48 ×10−18)
Favorites given 0.041 0.036 (3.37 ×10−18)
Retweets sent -0.012 -0.008 (3.92 ×10−18)
Replies sent -0.115 -0.139 (7.40 ×10−18)
Quote retweets sent 0.171 0.157 (6.28 ×10−18)
Minutes active 0.140 0.216 (4.95 ×10−18)
Active days -0.383 -0.352 (2.28 ×10−17)
Monetizable active days -0.008 -0.236 (1.62 ×10−17)
Active followers 0.066 0.070 (1.73 ×10−17)
Total followers -0.003 -0.028 (1.66 ×10−17)
Following 0.009 0.016 (4.73 ×10−18)
Indicator push notification enabled -0.032 -0.008 (1.01 ×10−17)
Account age (days) -0.022 -0.024 (4.76 ×10−18)

User state: Heavy Tweeter -0.258 -0.154 (5.38 ×10−17)
User state: Heavy non-Tweeter 0.011 0.144 (5.40 ×10−17)
User state: Medium Tweeter -0.037 0.094 (4.92 ×10−17)
User state: Medium non-Tweeter 0.235 0.403 (5.22 ×10−17)
User state: Light 0.171 0.271 (4.58 ×10−17)
User state: Very light 0.153 0.196 (4.29 ×10−17)
User state: Near zero 0.639 0.654 (5.63 ×10−17)

Country: Japan 0.075 0.046 (1.30 ×10−17)
Country: USA 0.040 0.042 (1.29 ×10−17)
Country: Brazil 0.095 0.096 (1.74 ×10−17)
Country: Philippines -0.604 -0.594 (2.16 ×10−17)
Country: UK -0.207 -0.207 (2.23 ×10−17)
Country: Indonesia -0.334 -0.341 (2.32 ×10−17)
Country: Turkey -0.126 -0.136 (2.38 ×10−17)
Country: South Africa 0.215 0.194 (2.60 ×10−17)
Country: Mexico 1.930 1.940 (2.60 ×10−17)
Country: Argentina -0.095 -0.090 (2.79 ×10−17)

Intercept 0.156 0.200 (2.95 ×10−17)

Table A6: Coefficient results: elastic net projection and linear regression projection for the CATE estimates θ(Xp) from the DRIV
model. The linear regression results include the standard errors in parentheses. All continuous variables are log-transformed using a
ln(X + 1) transformation. For categorical variables, “User state: New” and “Country: Rest of the World” are the omitted baseline
levels.

regression model using the producer features Xp. We do this with two different models: a linear regression
and an elastic net. The potential benefit of using an elastic net for this task rather than a standard linear
regression is that the elastic net is regularized and will shrink some of the coefficient values to zero. Our
setting is particularly well-suited for using an elastic net because many of the producer features Xp are
correlated with each other and many of them may also have a negligible effect on the CATE.

In Table A6, we show coefficient results from both models, and we find that the two sets of coefficients
are overall quite similar to each other.
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G Alternative Models for the DRIV Framework
Our DRIV framework is a combination of a few different sub-models, most of which are “nuisance models”
that affect the final outcome but which we do not report individually. Each of these sub-models requires its
own specification, and one positive aspect of the DRIV approach is that it is very flexible — we can specify
many kinds of machine learning models for these different sub-models.

Sub-models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

E[ap | Xp] LightGBM Lasso Lasso Lasso Elastic Net Linear regression
E[ep | Xp] LightGBM Lasso Lasso Lasso Elastic Net Linear regression
E[ep | Xp, Zp] Lasso Lasso Lasso Lasso Lasso Lasso
E[ep · Zp | Xp] LightGBM Lasso Lasso Lasso Elastic Net Linear regression
θ̂DR and θ̂pre Lasso Linear regression LightGBM Lasso Lasso Lasso

RMSE 2005 4278 6252 7135 4533 4607

Table A7: Summary of DRIV model variants. The root mean squared error (RMSE) is calculated based on a holdout test sample
comprising 1,461,479 observations. Model 1 is the focal specification in the paper.

To measure model performance, we can use the following criterion as the predictive error for each
individual producer p:

errorp =
(
ãp − θ̂DR(Xp)ẽp

)
Z̃p

To compare different models, we calculate the root mean squared error (RMSE) for each model based on a
holdout test sample of 1,461,479 people.

In Table A7, we show six different model variants that we estimated. The focal specification is Model 1,
which uses a combination of LightGBM gradient-boosted trees and Lasso models for the different sub-models.
This specification yields the best predictions in our holdout test sample, based on root mean squared error.

The estimated CATE values are the key result from the DRIV model; specifically, we are most interested
in the ordering of CATE values between different users. In our setting, we find that the CATE values produced
by Model 1 are positively correlated with the CATE values produced by each of the other five model variants.
This indicates that our results are robust to alternative model specifications: if producer A has a higher CATE
value than producer B based on model 1, that pattern generally holds with the other model specifications as
well.

H What if the Platform Focuses on Production vs. Consumption?
In this research, we predominantly focus on “minutes active” as the key outcome variable that the platform is
seeking to improve. This was chosen after discussions with employees at the platform, and the main reason is
because “minutes active” is closely linked with the platform’s ability to earn advertising revenue.

However, there may be situations where platforms are instead interested in increasing users’ content
production or consumption, rather than their minutes active. We can examine this by re-estimating our
main DRIV model but with using different outcome variables. In our context, we use “tweets composed” as
the outcome variable representing production and “favorites given” as the outcome variable representing
consumption.

After estimating these models, we can examine the results in a couple of ways. First, in figure A1 we
compare users who would get targeted if the company were focusing on production vs. consumption; i.e.,
people in the top 1% of CATE estimates for each outcome. We find that these two groups of users look
very different from each other. Most notably: if the goal is to maximize consumption (favorites given), the
platform should predominantly target users who are relatively inactive (near zero user state, 0 active days,
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Figure A1: Histograms for key pre-treatment producer features (Xp) among users in the top 1% of CATE estimates for “favorites
given” (consumption) vs. users in the top 1% of CATE estimates for “tweets composed” (production). These correspond to the
groups of people who should be targeted if the platform is trying to improve each of these two criteria.

few tweets composed, and few engagements). Meanwhile, if the goal is to maximize production (tweets
composed), the platform should target a broader set of users.

A second way to understand the differences between production and consumption is to examine the cco-
efficient results from the Lasso final stage sub-model in our DRIV models for tweets composed (production)
and favorites given (consumption). These results are provided in Table A8. The coefficient results are quite
different between these two models, which again indicates that the kinds of users with large treatment effects
for production will be very different than the kinds of users with large treatment effects for consumption.
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(Model 1) (Model 2)
Outcome: Tweets composed Outcome: Favorites given

Variable Coefficient Coefficient

Tweets composed 0.126 -0.058
Favorites received -0.039 0.017
Retweets received 0.005 -0.010
Replies received -0.005 -0.010
Follows received 0.001 -0.003
Follows made -0.025 -0.016
Favorites given 0.003 0.040
Retweets sent 0.019 0.005
Replies sent -0.060 0.031
Quote retweets sent 0.037 -0.006
Minutes active 0.034 -0.015
Active days -0.144 -0.009
Monetizable active days 0.006 -0.017
Active followers -0.102 0.069
Total followers 0.111 -0.066
Following -0.013 0.041
Indicator push notification enabled 0.012 -0.029
Account age (days) -0.008 -0.045

User state: Heavy Tweeter -0.108 0.020
User state: Heavy non-Tweeter 0.007 0.042
User state: Medium Tweeter -0.048 0.078
User state: Medium non-Tweeter 0.055 0.067
User state: Light 0.050 0.071
User state: Very light 0.012 0.099
User state: Near zero 0.130 0.789

Country: Japan 0.017 0.091
Country: USA 0.003 -0.014
Country: Brazil -0.014 0.023
Country: Philippines -0.024 -0.033
Country: UK 0.014 -0.138
Country: Indonesia -0.005 -0.025
Country: Turkey 0.006 -0.208
Country: South Africa -0.007 -0.043
Country: Mexico 0.784 -0.046
Country: Argentina -0.052 -0.220

Intercept 0.109 0.243

Table A8: Coefficient results from the DRIV models: model 1 corresponds to the production-focused outcome (tweets composed)
and model 2 corresponds to the consumption-focused outcome (favorites given). These coefficients are derived from the Lasso final
stage sub-models and they describe how each producer feature enters the CATE effect function θ̂DR(Xp). All continuous variables
are log-transformed using a ln(X+1) transformation. For categorical variables, “User state: New” and “Country: Rest of the World”
are the omitted baseline levels.

I How Does Receiving Engagement Improve Users’ Monetizable Active Days?
We now focus on the number of monetizable active days as the main outcome variable of interest. Figure A2
shows the distribution of the number of monetizable days active for the 14-day pre-treatment period. Note
that, over half of the users in our sample were active for all 14 days.
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Figure A2: Histogram of monetizable active days from the 14-day pre-treatment period. More than half of the users were active for
all 14 days.

I.1 Preliminary Models

We start by examining intent-to-treat (ITT) estimates that summarize how being in the boost condition affects
users’ monetizable active days. Model (1) in Table A9 presents the main ITT estimate for this outcome. We
find that being boosted increases users’ monetizable active days by 0.0184. Since the pre-treatment average
for this variable was 11.31, this corresponds to an increase of only 0.16%, which is much smaller than the
roughly 1% ITT increase that we saw when analyzing minutes active (see Table 5).

One reason for the disparity in the size of the ITT treatment effects could be that the number of days a
user can be active is capped at 14 days. About half of the users were already active (and monetizable) for
all 14 days in the pre-treatment period, and Model (2) in Table A9 shows the ITT estimates for these users.
For these highly active users, the incremental effect of the treatment is relatively small in magnitude (0.006)
although it is positive and statistically significant. This indicates that receiving engagement helps to keep
heavy users engaged with the platform by limiting their natural fluctuations in usage, even though it cannot
yield increases in their usage above their pre-treatment values. On the other hand, when we focus on less
active users who were active and monetizable for less than 14 days in the pre-treatment period, the effects are
higher at 0.035 (see Model (3) in Table A9). While this translates to a 0.4% increase over the control group,
it is still less than the 1% increase we saw in the ITT estimate for minutes active in §5.

We also estimate a 2SLS model with monetizable days active as the outcome variable and present the
results in Table A10. We find that receiving engagement has a small but positive effect on monetizable days
active.

I.2 Discussion of DRIV Estimates

One way to examine the distribution of the CATE estimates is to compare users in the top 1% of CATE
values vs. users in the bottom 99%, and we find that the average CATE values for those groups are 0.0085
and 0.0043, respectively. This difference in average CATE values is not as large as it was when we were
considering minutes active as our outcome variable (see §6.2.2), which indicates that the “monetizable active
days” treatment effects are not distributed as widely as the “minutes active” treatment effects. If the platform
wants to focus on improving monetizable active days, it should consider boosting users with high values of
CATE values from our DRIV model. In Figure A3, we show how users in the top 1 percent of CATE values
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Estimation sample

All users Very active users Less active users

(1) (2) (3)

Boost condition 0.0184∗∗∗ 0.006∗∗∗ 0.035∗∗∗

(0.004) (0.002) (0.007)
Constant 11.410∗∗∗ 13.523∗∗∗ 8.654∗∗∗

(0.002) (0.001) (0.004)

R2 0.000 0.000 0.000
No. of Obs. 4871594 2757135 2114459

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table A9: Effect of instrument Z (control or boost) on the “ monetizable active days” as the outcome variable. Robust standard
errors are shown in parentheses. Very active users are those who were active all 14 days of the pre-treatment period, and less active
users are those who were active for less than 14 days of the pre-treatment period.

Dependent variable: Monetizable days active

Engagement received 4.029 × 10−5∗∗∗

(8.879 × 10−6)
Constant 11.399∗∗∗

(0.0042)

No. of Obs. 4871594

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table A10: 2SLS estimates of the effect of incremental engagement (ep) on post-treatment monetizable days active (ap), where the
instrument is the bucket (Z). Robust standard errors are shown in parentheses.

(those who should get boosted) differ from the rest of the users. In Table A11, we compare the producer
features Xp for two groups: users in the top 1% of CATE values when we use monetizable active days as the
outcome, and users in the bottom 99% of CATE values.

The comparisons in Figure A3 provide a nuanced explanation for how users with high CATE values
differ from the rest of the user base. Although they are slightly more active users of the platform (in terms
of minutes spent), they are also less regular in terms of their usage (fewer active days) and their production
(fewer tweets composed). In terms of the user state categories, they are also much more likely to be medium
tweeters or medium non-tweeters rather than any of the high- or low-tail activity states. A major difference
is that users with high CATE values are more likely to be longstanding users (with higher account ages).
However, the most noticeable pattern is that users with high CATE values are more connected with other
users – they have more favorites received, more favorites given, more total followers, and are following more
accounts.

I.3 How Does the Set of Targeted Users Change?

Only 2.1 percent of users are in the top 1% of CATE values for both outcomes (active minutes and monetizable
active days). This lack of overlap indicates that it can be hard for the platform to achieve both of these
objectives simultaneously, which means that the platform needs to first decide on its main objective before
deciding who should be targeted.

One way to examine the importance of choosing an objective would be to see how the set of targeted

xi



Users in the top 1% of CATE values (monetizable active days)

Variable Mean Standard deviation 25th Percentile Median 75th Percentile

Tweets composed 14.79 46.30 0 3 11
Favorites received 3393.31 85439.63 0 10 91
Retweets received 527.45 19243.02 0 0 7
Replies received 119.29 3501.14 0 1 9
Follows received 183.92 3674.38 0 2 8
Follows made 2.41 13.08 0 0 2
Favorites given 134.41 448.67 4 24 96
Retweets sent 11.77 197.48 0 1 5
Replies sent 8.36 33.69 0 1 5
Quote retweets sent 0.90 4.05 0 0 0
Minutes active 738.44 1285.08 74 296 985
Active days 10.48 4.32 8 12 14
Monetizable active days 10.30 4.42 7 12 14
Active followers 9051.89 83781.45 209 587 1927
Total followers 14839.28 223340.59 266 763 2469
Following 1323.66 7301.52 248 558 1215
Indicator push notification enabled 0.83 0.38 1 1 1
User state: Heavy Tweeter 0.28 0.45 0 0 1
User state: Heavy non-Tweeter 0.20 0.40 0 0 0
User state: Medium Tweeter 0.31 0.46 0 0 1
User state: Medium non-Tweeter 0.13 0.33 0 0 0
User state: Light 0.01 0.08 0 0 0
User state: Very light 0.00 0.00 0 0 0
User state: Near zero 0.07 0.25 0 0 0
User state: New 0.00 0.00 0 0 0
Account age (days) 2254.25 1381.64 961 2196 3495

Users in the bottom 99% of CATE values (monetizable active days)

Tweets composed 41.71 297.57 1 7 25
Favorites received 169.99 3750.69 0 3 25
Retweets received 30.90 974.78 0 0 1
Replies received 20.52 244.97 0 1 6
Follows received 15.87 291.04 0 1 4
Follows made 10.88 57.82 0 1 5
Favorites given 155.39 496.99 2 20 102
Retweets sent 31.73 186.50 0 1 10
Replies sent 21.26 111.83 0 2 9
Quote retweets sent 3.62 22.37 0 0 1
Minutes active 621.48 917.36 74 291 803
Active days 11.74 3.89 11 14 14
Monetizable active days 11.32 4.31 10 14 14
Active followers 527.03 11805.05 19 69 213
Total followers 995.68 47981.13 24 97 322
Following 433.39 1793.17 63 179 429
Indicator push notification enabled 0.73 0.45 0 1 1
User state: Heavy Tweeter 0.45 0.50 0 0 1
User state: Heavy non-Tweeter 0.26 0.44 0 0 1
User state: Medium Tweeter 0.11 0.31 0 0 0
User state: Medium non-Tweeter 0.07 0.26 0 0 0
User state: Light 0.05 0.21 0 0 0
User state: Very light 0.03 0.18 0 0 0
User state: Near zero 0.01 0.09 0 0 0
User state: New 0.02 0.15 0 0 0
Account age (days) 1718.48 1429.84 427 1320 2989

Table A11: Summary statistics of pre-treatment producer features (Xp) among users in the top 1% of CATE estimates vs. others.
The underlying CATE estimates represent how much the users would be expected to increase their “monetizable active days” after
receiving one additional engagement.
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Figure A3: Histograms for key pre-treatment producer features (Xp) among users in the top 1% of CATE estimates vs. others.
The underlying CATE estimates represent how much the users would be expected to increase their “monetizable active days” after
receiving one additional engagement.

users differs depending on the criterion used. We compare two groups: users who would be targeted if the
platform is trying to improve minutes active, and users who would be targeted if the platform is trying to
improve monetizable active days. In Figure A4, we show how these two groups vary based on their observable
pre-treatment features. Users who are targeted based on the monetizable active days criterion tend to be older
accounts (higher account days) that are following more users and also have more followers. For variables like
active days and favorites given, users who are targeted based on the monetizable active days criterion are
disproportionately weighted towards moderate values, whereas users who are targeted based on the minutes
active criterion are spread more widely, with heavier distributional weights on both tails. The monetizable
active days criterion is also more likely to target users with medium user states (medium Tweeter and medium
non-Tweeter).
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Figure A4: Histograms for key pre-treatment producer features (Xp) among users in the top 1% of CATE estimates for “monetizable
active days” vs. users in the top 1% of CATE estimates for “minutes active”. These correspond to the groups of people who should
be targeted if the platform is trying to improve each of these two criteria.

J Appendix for Analysis on Engagements Given
Table A12 compares the summary statistics of the pre-treatment features of users in the top 1% of CATE
(with engagements given as the outcome) vs. users in the bottom 99%.
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Users in the top 1% of CATE values (engagement given)

Variable Mean Standard deviation 25th Percentile Median 75th Percentile

Tweets composed 5.25 51.99 0 0 0
Favorites received 14.98 279.06 0 0 0
Retweets received 5.16 365.36 0 0 0
Replies received 2.55 53.07 0 0 0
Follows received 6.22 197.30 0 0 1
Follows made 4.00 37.89 0 0 0
Favorites given 33.82 265.97 0 0 0
Retweets sent 17.76 239.63 0 0 0
Replies sent 3.57 43.58 0 0 0
Quote retweets sent 0.37 5.16 0 0 0
Minutes active 52.52 224.40 0 0 1
Active days 1.38 2.90 0 0 1
Monetizable active days 1.35 2.87 0 0 1
Active followers 216.80 1914.35 4 24 98
Total followers 374.98 4842.56 6 37 158
Following 330.71 2828.30 17 81 260
Indicator push notification enabled 0.35 0.48 0 0 1
User state: Heavy Tweeter 0.00 0.05 0 0 0
User state: Heavy non-Tweeter 0.00 0.01 0 0 0
User state: Medium Tweeter 0.03 0.16 0 0 0
User state: Medium non-Tweeter 0.00 0.01 0 0 0
User state: Light 0.00 0.02 0 0 0
User state: Very light 0.02 0.13 0 0 0
User state: Near zero 0.95 0.21 1 1 1
User state: New 0.00 0.01 0 0 0
Account age (days) 1452.43 1328.02 323 921 2519

Users in the bottom 99% of CATE values (engagement given)

Tweets composed 41.80 297.55 1 7 25
Favorites received 204.11 9375.80 0 4 25
Retweets received 36.18 2166.00 0 0 1
Replies received 21.70 428.83 0 1 6
Follows received 17.66 470.07 0 1 4
Follows made 10.86 57.71 0 1 5
Favorites given 156.40 498.17 2 21 103
Retweets sent 31.67 186.01 0 1 10
Replies sent 21.31 111.79 0 2 9
Quote retweets sent 3.63 22.36 0 0 1
Minutes active 628.41 924.41 77 297 812
Active days 11.84 3.76 11 14 14
Monetizable active days 11.41 4.20 10 14 14
Active followers 616.28 14524.06 19 71 219
Total followers 1141.78 52987.75 24 100 332
Following 443.42 1918.58 65 182 437
Indicator push notification enabled 0.73 0.44 0 1 1
User state: Heavy Tweeter 0.45 0.50 0 0 1
User state: Heavy non-Tweeter 0.26 0.44 0 0 1
User state: Medium Tweeter 0.11 0.31 0 0 0
User state: Medium non-Tweeter 0.07 0.26 0 0 0
User state: Light 0.05 0.21 0 0 0
User state: Very light 0.03 0.18 0 0 0
User state: Near zero 0.00 0.01 0 0 0
User state: New 0.02 0.15 0 0 0
Account age (days) 1726.58 1431.09 432 1333 3001

Table A12: Summary statistics of pre-treatment producer features (Xp) among users in the top 1% of CATE estimates vs. others. The
underlying CATE estimates represent how much the users would be expected to increase their “engagement given” after receiving
one additional engagement.
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