Effective Adaptive Exploration of Prices and Promotions in Choice-Based Demand Models

Lalit Jain, Zhaoqi Li, Erfan Loghmani, Blake Mason, Hema Yoganarasimhan

UNIVERSITY of WASHINGTON

1. Introduction

2. Adaptively Setting Prices and Promotions

3. Incorporating Context

Outline

Problem: Setting Prices and Promotion

Highly rated

Sponsored 1 Based on star rating and number of customer ratings

Starbucks K-Cup Coffee Pods—Medium San Francisco Bay Ground Coffee Roast Coffee—Pike Place Roast for Keurig Brewers—100% Arabica—4...

Pod 24 Count (Pack of 4)

★★★★★ ~ 100,551

French Roast (28oz Bag), Dark Roast Ground

★★★★☆ ~ 3,607

\$21⁹⁹ (\$0.79/Ounce) Was: \$24.99 ✓prime FREE One-Day

Starbucks Breakast Blend Medium Roast Ground Coffee, 18 Ounce (Pack of 1)

Ground

★★★★★ ~ 11,275

\$**11**⁹⁹ (\$0.67/Ounce) Was: \$13.47 ✓prime FREE One-Day

Ground

Firm needs to

• set prices

• decide what items to promote

Starbucks Ground Coffee—Medium Roast Coffee—Pike Place Roast—100% Arabica—1 bag (28 oz)

★★★★☆ ~ 30,100

\$**18**⁴⁹ (\$0.66/Ounce) vprime Today 7 AM - 11 AM

Problem: Setting Prices and Promotion

Firm needs to

- set prices
- decide what items to promote

Sponsored 🔒

Kauai Coffee Single-Serve Pods, Garden Isle Medium Roast – 100% Arabica Coffee from Hawaii's... **★★★★ 1**,044

\$28⁷⁵ (\$0.60/Count)

✓prime Same-Day FREE delivery Today 7 AM - 11 AM • by how much given a budget.

Why study this problem?

frequently as once every 10 minutes!

in order to maximize profit?

jointly optimize.

customer segment.

- Amazon changes it's prices hourly, and can change a product's price as
- How can an online retailer jointly decide how to set prices and promotions

If the demand curve for each consumer/product was known - we could

But in practice, the demand is rarely known and can depend on the

Traditional Approaches for Pricing

Existing Approaches Suffer from a Lack of Strategic Exploration

Exploiting Historical Data

- Lack of Exogenous Variation
- "Greedy method" no exploration

Structural Demand Estimation:

Berry+Levinson+Pakes '95, Guadagni+Little '83, Hitsch '06, and more...

Traditional Approaches for Pricing

Existing Approaches Suffer from a Lack of Strategic Exploration

Pricing Experiments (A/B tests)

- Potentially High Opportunity cost
- Extremely large action space with many products

Literature:

Aghnion et al '91, Dube and Misra '17, ...

Assume K products and one outside option

For t = 1.2.3..., TCustomer(s) arrives at platform Firm chooses price $\mathbf{p}_t = (p_{1t}, \dots, p_{Kt}) \in [\ell, u]^K$ and promotion $\mathbf{x}_{t} = (x_{1t}, \dots, x_{Kt}) \in \mathbf{X} \subset [0, 1]^{K}$,

Adaptive Pricing: Protocol

- Observe purchase decision(s) $I_t \in \{0, 1, \dots, K\}$, and collect revenue p_L

*Easily extended to the batched setting

Adaptive Pricing: Minimize Regret

Expected Profit

$R(\mathbf{p}, \mathbf{x}) = \sum_{k=1}^{K} \mathbb{P}(I = k | \mathbf{p}, \mathbf{x})(p_k - m_k)$

Adaptive Pricing: Minimize Regret Optimal Price/Promotion

Expected Profit

K $R(\mathbf{p}, \mathbf{x}) = \sum_{k=1}^{K} \mathbb{P}(I = k | \mathbf{p}, \mathbf{x})(p_k - m_k)$ *k*=1

$\mathbf{p}_{\star}, \mathbf{x}_{\star} = \arg \max_{\mathbf{p} \in [\ell, u]^{K}, x \in \mathsf{X}} R(\mathbf{p}, \mathbf{x})$

Expected Profit

$R(\mathbf{p}, \mathbf{x}) = \sum_{k=1}^{N} \mathbb{P}(I = k | \mathbf{p}, \mathbf{x})(p_k - m_k)$ k=1

Goal: Minimize Regret

t=1

 $Reg_T = \sum R(\mathbf{p}_{\star}, \mathbf{x}_{\star}) - R(\mathbf{p}_t, \mathbf{x}_t)$

Expected Profit

$$R(\mathbf{p}, \mathbf{x}) = \sum_{k=1}^{K} \mathbb{P}(I = k | \mathbf{p}, \mathbf{x})(p_k - m_k)$$

Goal: Minimize Regret $Reg_T = \sum R($ t = 1

We want to minimize our opportunity cost of learning the optimal price and promotion. Ideally $Reg_T/T \rightarrow 0$

$$(\mathbf{p}_{\star}, \mathbf{x}_{\star}) - R(\mathbf{p}_{t}, \mathbf{x}_{t})$$

•A/B/n Testing:

•A/B/n Testing:

•Necessarily O(T) regret!

•UCB Approach: Multi-Armed-Bandits on discrete set of prices

[KleinbergLeighton '03, MisraSchwarzAbernethy'19]

•UCB Approach: Multi-Armed-Bandits on discrete set of prices

[KleinbergLeighton '03, MisraSchwarzAbernethy'19]

•UCB Approach: Multi-Armed-Bandits on discrete set of prices

•Can guarantee $O(\sqrt{DT + \epsilon T})$ in general

•If profit function is "strongly concave" can choose D so regret is $O(\sqrt{T})$

[KleinbergLeighton '03, MisraSchwarzAbernethy'19]

•Natural Approach: Multi-Armed-Bandits on a discrete set of prices

\$2.00

•Number of price combinations grows exponentially with number of products!

Extending to Multiple Products

Shortfalls of Discretized Approaches

- Number of price combinations grows exponentially with number of products!
- Difficult to add promotions to the model
- Can't handle customer heterogeneity
- Not exploiting the "smoothness" of the problem

Fundamentally, a totally non-parametric approach is difficult to scale!*

1. Introduction

3. Incorporating Context

2. Adaptively Setting Prices and Promotions

• Strategic Exploration

• Explore to learn the demand curve while Exploiting current information

• Strategic Exploration

- Exploit demand curve to reduce experimentation cost
 - Random utility choice model

Explore to learn the demand curve while Exploiting current information

Strategic Exploration

• Explore to learn the demand curve while Exploiting current information Exploit demand curve to reduce experimentation cost

Random utility choice model

• Flexible

- Can accommodate both prices and promotions
- Can incorporate customer heterogeneity

Model (McFadden '77)

K products, marginal costs $m \in \mathbb{R}_{>0}^{K}$

Product k utility for user t

Model (McFadden '77)

K products, marginal costs $m \in \mathbb{R}_{>0}^{K}$

$$u_{tk}(\mathbf{p}, \mathbf{x}) = \alpha_k$$

$$\uparrow$$
Product *k* utility for user t
$$\theta$$

$$\underline{\mathbf{Demand}}$$

$$\mathbf{x}) := \mathbb{P}_{\theta}(I = k | \mathbf{p}, \mathbf{x}) = \frac{e^{u_k(p_k, x_k)}}{1 + \sum_{i=1}^{K} e^{u_i(p_i, x_i)}}$$

 $= [(\alpha_k, \beta_k, \gamma_k)]_{k=1}^K \in \mathbb{R}^{3K}$

Model (McFadden '77)

K products, marginal costs $m \in \mathbb{R}_{>0}^{K}$

$$u_{tk}(\mathbf{p}, \mathbf{x}) = \alpha_k$$

$$\uparrow$$
Product *k* utility for user t
$$\theta$$

$$\underline{\mathbf{Demand}}$$

$$\mathbf{x}) := \mathbb{P}_{\theta}(I = k | \mathbf{p}, \mathbf{x}) = \frac{e^{u_k(p_k, x_k)}}{1 + \sum_{i=1}^{K} e^{u_i(p_i, x_i)}}$$

 $Q_{k}(\mathbf{p})$

Expected Profit
$$R_{\theta}(\mathbf{p}, \mathbf{x}) = \sum_{k=1}^{K} (p_k - m_k) Q_k(\mathbf{p}, \mathbf{x})$$

Model: Bayesian Approach

$$Q_k(\mathbf{p}, \mathbf{x}) := \mathbb{P}_{\theta}(\text{choose } k \mid \mathbf{p}, \mathbf{x}) = \frac{e^{u_k(p_k, x_k)}}{1 + \sum_{j=1}^K e^{u_j(p_k)}}$$
$$R_{\theta}(\mathbf{p}, \mathbf{x}) := \sum_{k=1}^K (p_k - m_k) Q_k(\mathbf{p}, \mathbf{x})$$

$\frac{\text{Objective: Minimize Bayesian Regret}}{\text{Let } \mathbf{p}_{\star}, \mathbf{x}_{\star} \text{ be the optimal price and promotion.}} \\ Reg_{T} = \mathbb{E}_{\theta \sim \Pi_{0}} \left[\sum_{t=1}^{T} R_{\theta}(\mathbf{p}_{\star}, \mathbf{x}_{\star}) - R_{\theta}(\mathbf{p}_{t}, \mathbf{x}_{t}) \right]$

Bayesian Approach

Assume a prior $\Pi_0 \text{, and } \theta \sim \Pi_0$

- Parametric Generalized Linear Settings: [KeskinZeevi'14],[BoerZwart'14], ...
- **Non-Parametric:** [BesbesZeevi'09],..., [MisraSchwarzAbernethy'19]
- Choice Models: [JavanmardNazerzedahShao'19, MiaoChao'21]
- Assortment Selection: in retail settings, impossible to know choice set.

Our work is the first to consider:

- a) Choice Models
- b) Promotion variables
- c) Consumer Heterogeneity

Dynamic Pricing Literature

Epoch:
$$s = 1, 2, \cdots$$

K s - 3 *K s* - 2

Pure Exploration Phases: Play K random prices, MLE estimate $\hat{\theta}_s$

Pure Exploitation Phases: Play $\hat{\mathbf{p}}_{s} = \arg \max R_{\hat{\theta}_{s}}(\mathbf{p})$ p

Existing Work: Forced Exploration

Epoch:
$$s = 1, 2, \cdots$$

Play K random prices, MLE estimate $\hat{\theta}_{s}$ Pure Exploration Phases:

Pure Exploitation Phases: Play $\hat{\mathbf{p}}_{s} = \arg \max R_{\hat{\theta}_{s}}(\mathbf{p})$ p

Guarantee*: $Reg_T \leq O(K\sqrt{T})$

[BroderRusmevichientong'12] ['JavanmardNazerzedahShao'20]

Existing Work: Forced Exploration

Playing randomized prices is not particularly feasible in practice! Can't handle promotions easily! A form of ϵ -Greedy

Epoch:
$$s = 1, 2, \cdots$$

Play K random prices, MLE estimate $\hat{\theta}_{s}$ Pure Exploration Phases:

Pure Exploitation Phases: Play $\hat{\mathbf{p}}_{s} = \arg \max R_{\hat{\theta}_{s}}(\mathbf{p})$ p

Guarantee*: $Reg_T \leq O(K\sqrt{T})$

[BroderRusmevichientong'12] ['JavanmardNazerzedahShao'20]

Existing Work: Forced Exploration

$$t \approx Ks + s^2$$

 K/\sqrt{t} in exploration

Playing randomized prices is not particularly feasible in practice! Can't handle promotions easily! A form of ϵ -Greedy

Epoch:
$$s = 1, 2, \cdots$$

Play K random prices, MLE estimate $\hat{\theta}_s$ Pure Exploration Phases:

Pure Exploitation Phases: Play $\hat{\mathbf{p}}_{s} = \arg \max R_{\hat{\theta}_{s}}(\mathbf{p})$ p

Guarantee*: $Reg_T \leq O(K\sqrt{T})$

[BroderRusmevichientong'12] ['JavanmardNazerzedahShao'20]

Existing Work: Forced Exploration

Playing randomized prices is not particularly feasible in practice! Can't handle promotions easily! A form of ϵ -Greedy

Our Approach: Thompson/Posterior Sampling

- Input: *K* products, X promotion set Initialize: Π_0 as some prior distribution over θ
- For $t = 1, 2, 3, \dots, T$: 1.Sample $\theta_t \sim \Pi_t$ 2.Set best price/promotion for θ_t : $\mathbf{p_t}, \mathbf{x_t} = \arg \max_{\mathbf{p}, \mathbf{x}} R_{\theta_t}(\mathbf{p}, \mathbf{x})$ \mathbf{p}, \mathbf{x}
 - 4.**Observe** $I_t \sim Q_t(\mathbf{p}_t, \mathbf{x}_t)$, collect revenue p_{t,I_t} 5.**Update** $\Pi_{t+1} = \text{Posterior}(\Pi_t, \theta_{t+1})$

Our Approach: Thompson Sampling

- Model Based Exploration and Pricing: Exploration is driven by the model, not by playing random prices
- **Computational Advantages:** Easily implemented if you can *sample* from the posterior. Maintaining the posterior is impossible in many settings, but sampling is straightforward.
- Easily Extended: Can easily incorporate additional features to the model

Thompson Sampling: Intuition

Implementation Challenges

1. Optimizing over p and x at the same time is non-convex and high dimensional

 $\mathbf{p_t}, \mathbf{x_t} = \arg \max_{\mathbf{p}, \mathbf{x}} R_{\theta_t}(\mathbf{p}, \mathbf{x})$

2. Posterior Computation Π_{t}

Optimize Prices with Fixed Promotions Revenue $\mathbf{p_t}, \mathbf{x_t} = \arg \max_{\mathbf{p}, \mathbf{x}} R_{\theta_t}(\mathbf{p}, \mathbf{x})$ Unfortunately non-convex in **p** $-\gamma_k x_k$

$$R_{\theta}(\mathbf{p}, \mathbf{x}) = \sum_{k=1}^{K} (p_k - m_k) \frac{e^{\alpha_k - \beta_k p_k + \gamma_k x_k}}{1 + \sum_{j=1}^{K} e^{\alpha_k - \beta_k p_k + \gamma_k x_k}}$$

Lemma (Aydin & Ryan '00) For a fixed value of \mathbf{X} ,

$$\mathbf{p}_{*,i} = \frac{1}{\beta_i} + R$$

A fairly fast binary search procedure works well

$$R = \sum_{i=1}^{K} \frac{1}{\beta_i} e^{-(1+\beta_i R)} e^{\alpha_i + \gamma_i x_i}$$

Optimizing Promotion at a Fixed Price

Easy Setting: X finite and combinatorial

- e.g. $X = \{e_1, \dots, e_K\}$ - we can promote at most one item

27

Optimizing Promotion at a Fixed Price

Easy Setting: X finite and combinatorial - e.g. $X = \{e_1, \dots, e_k\}$ - we can promote at most one item - e.g. $X = \{0,1\}^K$ - we can promote a subset of items

But discrete settings don't capture magnitude of the promotion.

Optimize Promotions Fixing Prices

Simplex Constraint: $X = \Delta^{K} := \{$

Choosing amount of budget each item gets: - e.g. some items get a larger amount of screen space

$$\mathbf{x} \in \mathbb{R}_{\geq 0}^{K} : \sum_{i=1}^{K} x_i = 1 \}$$

Sponsored 🕤

Kauai Coffee Single-Serve Pods, Garden Isle Medium Roast – 100% Arabica Coffee from Hawaii's... **★★★★☆** ~ 21,044

\$28⁷⁵ (\$0.60/Count)

✓prime Same-Day FREE delivery Today 7 AM - 11 AM

Optimize Promotions Fixing Prices

Optimal Promotion Lemma. The optimal promotion is a vertex of X:

- $1.\mathbf{X} = \Delta^K: \qquad \mathbf{x}_{\star} \in \{e_1, \cdots, e_K\}$
- $2.\mathbf{X} = [0,1]^K : \mathbf{x}_{\star} \in \{0,1\}^K$

The optimal marketing mix is an all or nothing strategy!

Optimal Promotion: Intuition

	Parameters	Product 1	Product 2	P
	α	1	1	
	eta	.1	.2	
	γ	.8	.3	
Case 1	р	\$16	\$2	
	\mathbf{X}_{*}	1	0	

1. Optimizing over p and x at the same time is non-convex and high dimensional

 $\mathbf{p}_t, \mathbf{x}_t = \arg$

2. Posterior Computation Π_{t}

Challenges

$$g \max_{\mathbf{p}, \mathbf{x}} R_{\theta_t}(\mathbf{p}, \mathbf{x})$$

Solution: Can assume X is finite, find optimal price for each $x \in X$

Likelihood Function: $L(\theta)$

Posterior Distribution: $p(\theta | \{(\mathbf{p}_s, \mathbf{x}_s, I_s)\}_{s=1}^t) \propto \mathbf{L}(\theta) \Pi_0(\theta)$ $\propto \exp(\log \mathbf{L}(\theta) + \log \Pi_0(\theta))$

Posterior Computation

$$:= \mathbf{L}(\theta | \{(\mathbf{p}_s, \mathbf{x}_s, I_s)\}_{s=1}^t) = \prod_{s=1}^t Q_{I_s}(\mathbf{p}_s, \mathbf{x}_s)$$

Langevin Dynamics: for $r = 1, 2, \dots, R$

Posterior Sampling:

MCMC method which converges to posterior sampling [WellingYeh'15]

Posterior Computation

 $\theta_{r+1,t} = \theta_{r,t} + \epsilon_t \nabla_{\theta} [\log \mathbf{L}(\theta_{r,t}) + \log \Pi_0] + \sqrt{2\epsilon_t} \eta_r$

 $\eta_k \sim N(0,I)$

Langevin $(\theta_{r,t}) \stackrel{R \to \infty}{\Rightarrow} \exp(\log \mathbf{L}(\theta) + \log \Pi_0(\theta))$

Generally take $\epsilon_t = O(1/t)$

Langevin Dynamics:

for
$$r = 1, 2, \dots, K$$

 $\theta_{r+1,t} = \theta_{r,t} + \epsilon$

Example of 1 product, $\alpha_1 = 1, \beta_1 = 1.25$

- 1. Very fast updates in PyTorch
- 2. Take $\epsilon_k = O(1/k)$
- 3. Need a few dozen steps each iteration

Posterior Computation

 $\nabla_t \nabla_{\theta} [\log \mathbf{L}(\theta_{r,t}) + \log \Pi_0] + \sqrt{2\epsilon_t} \eta_r$

 $\eta_k \sim N(0,I)$

1. Optimizing over p and x at the same time is non-convex and high dimensional

 $\mathbf{p}_t, \mathbf{x}_t = \arg$

2. Posterior Computation Π_{t}

Solution: Langevin Dynamics

Challenges

$$g \max_{\mathbf{p}, \mathbf{x}} R_{\theta_t}(\mathbf{p}, \mathbf{x})$$

Solution: Can assume X is finite, find optimal price for each $x \in X$

Our Approach: Thompson Sampling

Input: *K* products, X promotion set <u>Initialize:</u> Π_0 as some prior distribution over θ

For $t = 1, 2, 3, \dots, T$: 1.Sample $\theta_t \sim \Pi_t$ for r = 1, 2, ..., RSample $\eta_r \sim N(0,$ $\theta_{r+1,t} = \theta_{r,t} + \epsilon_t \nabla_t$

> 2.**Set** best price/promotion for θ_t : for $x \in X$ p

4.**Observe** $I_t \sim Q_t(\mathbf{p}_t, \mathbf{x}_t)$, collect revenue p_{t, I_t} 5.**Update** Π_{t+1} = Posterior(Π_t, θ_{t+1})

$$I)_{\theta} \log \mathbf{L}(\theta_{r,t}) + \sqrt{2\epsilon_t} \eta_r$$

- find $\mathbf{p} = \arg \max R_{\theta_{t,R}}(\mathbf{p}, \mathbf{x})$, take highest

<u>Theorem:</u> [JLMY] The Bayesian regret of the Thompson Sampling Procedure after a time horizon of T steps is

 $\kappa =$ $\min_{\mathbf{p}\in[\ell,u]^{K},x\in\mathsf{X}}\dot{Q}(\mathbf{p},\mathbf{x})$

Empirical Example

- Greedy: Solve the MLE at each time ar the optimal price
- Thompson Sampling: Implemented usin Langevin Dynamics

nd play	Parameters	Product 1	Product 2	Produc
• •	α	1	1	1
	β	.1	.2	.3
	γ	.8	.3	.5
ng	\mathbf{p}_*	\$20.50	\$15.50	\$13.8
	\mathbf{x}_*	1	0	0

1. Introduction

2. Adaptively Setting Prices and Promotions

3. Incorporating Context

Incorporating Heterogeneity

- Demand may depend on information about customers
 - Past purchases, location, device, etc.
- Demand may depend on environmental conditions
 - Time of year, location
- Demand may depend on other firms actions
 - Promotions and Prices of other firms

Adaptive Pricing: Protocol

For $t = 1, 2, 3, \dots, T$

Customer arrives at platform with context $\mathbf{c}_t \in \mathbb{R}^d$ Firm chooses price $\mathbf{p}_t \in [\ell, u]^K, \mathbf{x}_t \in X$ Observe purchase decision $I_t \in \{0, 1, \dots, K\}$, and collect revenue p_{I_t}

Incorporating Heterogeneity: Model

•Utility parameters depend on the context

 $u_k(\mathbf{p}, \mathbf{x}, \mathbf{c}) = \alpha_k(\mathbf{c}) - \beta_k(\mathbf{c})p_k + \gamma_k(\mathbf{c})x_k$

 $\alpha_k : \mathbb{R}^d \to \mathbb{R}$ $\beta_k: \mathbb{R}^d \to \mathbb{R}$ $\gamma_k : \mathbb{R}^d \to \mathbb{R}$

 $R_{\theta}(\mathbf{p}, \mathbf{x}, \mathbf{c}) = \sum_{k=1}^{K} p_k \frac{e^{\alpha_k(\mathbf{c}) - \beta_k(\mathbf{c})p_k + \gamma_k(\mathbf{c})x_k}}{1 + \sum_{j=1}^{K} e^{\alpha_j(\mathbf{c}) - \beta_j(\mathbf{c})p_j + \gamma_j(\mathbf{c})x_j}}$

- Captures user level elasticities in an economically motivated model.
- Easily compute the maximal price and promotion using previous methods.

Can estimate using MLE

Incorporating Heterogeneity: Linear Case

 $u_{ik}(\mathbf{p}, \mathbf{x}, \mathbf{C}) = \alpha_k(\mathbf{C}) - \beta_k(\mathbf{C})p_k + \gamma_k(\mathbf{C})x_k$

 $\alpha_k(\mathbf{c}) = \langle \alpha_k, \mathbf{c} \rangle$

 $\beta_k(\mathbf{c}) = \langle \beta_k, \mathbf{c} \rangle$

 $\gamma_k(\mathbf{c}) = \langle \gamma_k, \mathbf{c} \rangle$

 $\alpha_k, \beta_k, \gamma_k \in \mathbb{R}^d$
for all $1 \le k \le K$

Incorporating Heterogeneity: Linear Case

 $u_{ik}(\mathbf{p}, \mathbf{x}, \mathbf{c}) = \alpha_k(\mathbf{c}) - \beta_k(\mathbf{c})p_k + \gamma_k(\mathbf{c})x_k$

 $\alpha_k(\mathbf{c}) = \langle \alpha_k, \mathbf{c} \rangle$

 $\beta_k(\mathbf{c}) = \langle \beta_k, \mathbf{c} \rangle$

 $\gamma_k(\mathbf{c}) = \langle \gamma_k, \mathbf{c} \rangle$

 $\alpha_k, \beta_k, \gamma_k \in \mathbb{R}^d$
for all $1 \le k \le K$

- •Ban+Keskin '21, Javanmard+Nazerzedah '20, Javanmard+Nazerzedah+Shao '21, Qiang+Bayati '16, Dube+Misra '17
- Forced exploration methods tend to consider the linear Gaussian case
- Require the context distribution to be fixed and stochastic

Thompson Sampling

Input: *K* products, X promotion set Initialize: Π_0 as some prior distribution over θ

For $t = 1, 2, 3, \dots, T$: 1. Receive $\mathbf{c}_t \in \mathbb{R}^d$ 2. Sample $\theta_t \sim \Pi_t$ for $r = 1, 2, \dots, R$ Sample $\eta_r \sim N(0, I)$ $\theta_{r+1,t} = \theta_{r,t} + \epsilon_t \nabla_{\theta} \log \mathbf{L}(t)$ 3. Set best price/promotion for θ_t :

for $x \in X$ find $\mathbf{p} = \arg \max_{\mathbf{p}} R_{\theta_{t,R}}(\mathbf{p}, \mathbf{x}, \mathbf{c_t})$, take highest

5.**Observe** $I_t \sim Q_t(\mathbf{p}_t, \mathbf{x}_t, \mathbf{c}_t)$, collect revenue p_{t, I_t} 6.**Update** $\Pi_{t+1} = \text{Posterior}(\Pi_t, \theta_{t+1})$

$$\log \mathbf{L}(\theta_{r,t}) + \sqrt{2\epsilon_t}\eta_r$$

Experiment: Real Life Setting

Considered two large supermarket on the category of ground coffee

- Have access to price/oz of 9 different brands
- Considered a year of data with market share aggregated weekly
- Have price and promotion variables for each brand at a weekly level
- Fit a choice model using Berry Inversion
- Simulated using this data

Store Dummy Variables

$c = (Q_1, Q_2, Q_3, Q_4, S1, S2)$ Quarter Dummy Variables

Experiment: Simulation

- 40000 Purchase Decisions
- Split into Four Quarters
- 65% chance of store 1, 35% from store 2
- Compared Thompson Sampling, Greedy, M3P (Forced Exploration)

Experiments: Estimation

Utility Equation

$u_i(\mathbf{p}_t, \mathbf{x}_t, \mathbf{c}_t) = \alpha_i(c_t)$

Where

$$\begin{aligned} \alpha_{i}(\mathbf{c}) &= \alpha_{iQ_{1}} \mathbb{I}(Q_{1}) + \alpha_{iQ_{2}} \mathbb{I}(Q_{2}) + \alpha_{iQ_{3}} \mathbb{I}(Q_{3}) + \alpha_{iQ_{4}} \mathbb{I}(Q_{4}) + \alpha_{iS_{1}} \mathbb{I}(store = 1) + \alpha_{iS_{2}} \mathbb{I}(store = 1) \\ \beta_{i}(\mathbf{c}) &= \beta_{iQ_{1}} \mathbb{I}(Q_{1}) + \beta_{iQ_{2}} \mathbb{I}(Q_{2}) + \beta_{iQ_{3}} \mathbb{I}(Q_{3}) + \beta_{iQ_{4}} \mathbb{I}(Q_{4}) + \beta_{iS_{1}} \mathbb{I}(store = 1) + \beta_{iS_{2}} \mathbb{I}(store = 1) \\ \gamma_{i}(\mathbf{c}) &= \gamma_{iQ_{1}} \mathbb{I}(Q_{1}) + \gamma_{iQ_{2}} \mathbb{I}(Q_{2}) + \gamma_{iQ_{3}} \mathbb{I}(Q_{3}) + \gamma_{iQ_{4}} \mathbb{I}(Q_{4}) + \gamma_{iS_{1}} \mathbb{I}(store = 1) + \gamma_{iS_{2}} \mathbb{I}(store = 2) \end{aligned}$$

$$-\beta_i(c_t) + \gamma_i(c_t)x_{it}$$

Experiment: Simulation Results

Model Misspecification

Regret Guarantees in Linear Setting

after a time horizon of T steps is

<u>Theorem:</u> [JLMY] The Bayesian regret of the Thompson Sampling Procedure

$\approx Kd\sqrt{\kappa T}$

<u>With no assumption on the context distribution!</u>

Nonlinear Pricing Experiments $u_{ik}(\mathbf{p}, \mathbf{x}, \mathbf{c}) = \alpha_k(\mathbf{c}) - \beta_k(\mathbf{c})p_k + \gamma_k(\mathbf{c})x_k$

What if $\alpha_k, \beta_k, \gamma_k$ are non-linear functions of the context **c**?

- Gradient Boosted Trees
- Neural Networks
- Gaussian Process Methods

Nonlinear Pricing Experiments $u_{ik}(\mathbf{p}, \mathbf{x}, \mathbf{c}) = \alpha_k(\mathbf{c}) - \beta_k(\mathbf{c})p_k + \gamma_k(\mathbf{c})x_k$

What if $\alpha_k, \beta_k, \gamma_k$ are non-linear functions of the context **c**?

- Gradient Boosted Trees
- Neural Networks
- Gaussian Process Methods

How do we adopt Posterior sampling to more general classes?

Answer: Langevin Dynamics as Deep Bayesian Posterior Approximation

Experiment: Clustered Customer Preferences

 \smile .

Utility Parameters

 $\alpha_k, \beta_k, \gamma_k : \mathbb{R}^4 \to \mathbb{R}, k \leq 9$

Piecewise constant on each cluster - 27 parameters/cluster

Eg: Mixture of Gaussians, with piecewise constant utility for each cluster

Experiment: Results

- Introduced the new setting of adaptive pricing with promotions
- Bounded the regret of a Thompson Sampling procedure.
- Extended to settings with context and non-linear utility.
- Demonstrated the viability of this methodology on real-life inspired datasets.

Thank you!! Questions?