Effective Adaptive Exploration of Prices and Promotions in Choice-Based Demand Models

Lalit Jain, Zhaoqi Li, Erfan Loghmani, Blake Mason, Hema Yoganarasimhan

Outline

1. Introduction
2. Adaptively Setting Prices and Promotions
3. Incorporating Context

Problem: Setting Prices and Promotion

Maxwell House Wake Up Roast Medium Roast Ground Coffee (30.65 oz Canister) 1.91 Pound (Pack of 1)
 ${ }^{5} 8^{99}$ (50.29/Ounce) Add to Cart

Maxwell House The Original Roast Medium Roast Ground Coffee (30.6 Roz Cist Mediu Roast Ground Coffee (30.6 oz Canister) Ground 1.91 Pound (Pack of f) 54,460 © 7 Highlight ${ }^{5799}$ (50.26/Ounce) Was: 58.99 Add to cart

Strbucks Breakast Blend Medium Roast Ground Goffee 18 Medium 1) Ground
11^{99} (\$0.67/Ounce) Was: \$43.47 Yprime fREE One-Day

The Original Donut Shop Regular, SingleServe Keurig K-Cup Pods, Medium Roast Coffee Pods, 24 Count (Pack of 4) Pod 24 Count (Pack of 4)
 ${ }^{5} 43^{12}$ (50.45/(count) Add to Cart

tarbucks Ground Coffee-Medium Roast Coffee-Pike Place Roast-100\% Arabica-1 bag (28 oz)
Ground

$\$ 18{ }^{49}$ (\$0.66/Ounce) /prime Today 7 AM - 11 AM

Firm needs to

- set prices
- decide what items to promote

Problem：Setting Prices and Promotion

Maxwell House The Original Roast Medium Roast Ground Coffee（ 30.6 oz Canister） Found 1.91 Pound（Pack of 1） あわれ ${ }^{5} 7^{99}$（50．26／Ounce）Was：$\$ 8.99$ Add to Cart

The Original Donut Shop Regular，Single－ Serve Keurig K－Cup Pods，Medium Roa Pod 24 Count Pack of 4 ） Pod 24 Count（Pack of 4） ${ }^{5} 43^{12}$（50．45／Count） Add to Cart

Kauai Coffee Single－Serve Pods Garden Isle Medium Roast－100\％ Arabica Coffee from Hawaii＇s

$\$ 28^{75}$（\＄0．60／Count）
\checkmark prime Same－Day
FREE delivery Today 7 AM－ 11 AM

Why study this problem?

Amazon changes it's prices hourly, and can change a product's price as frequently as once every 10 minutes!

How can an online retailer jointly decide how to set prices and promotions in order to maximize profit?

If the demand curve for each consumer/product was known - we could jointly optimize.

But in practice, the demand is rarely known and can depend on the customer segment.

Traditional Approaches for Pricing

Existing Approaches Suffer from a Lack of Strategic Exploration

Exploiting Historical Data

- Lack of Exogenous Variation
- "Greedy method" - no exploration

Structural Demand Estimation:
Berry+Levinson+Pakes '95, Guadagni+Little '83, Hitsch '06, and more...

Traditional Approaches for Pricing

Existing Approaches Suffer from a Lack of Strategic Exploration

Pricing Experiments (A / B tests)

- Potentially High Opportunity cost
- Extremely large action space with many products

Literature:

Aghnion et al '91, Dube and Misra '17, ...

Adaptive Pricing: Protocol

Assume K products and one outside option

For $t=1,2,3, \cdots, T$
Customer(s) arrives at platform
Firm chooses price $\mathbf{p}_{t}=\left(p_{1 t}, \cdots, p_{K t}\right) \in[\ell, u]^{K}$ and promotion $\mathbf{x}_{t}=\left(x_{1 t}, \cdots, x_{K t}\right) \in \mathrm{X} \subset[0,1]^{K}$,

Observe purchase decision(s) $I_{t} \in\{0,1, \cdots, K\}$, and collect revenue $p_{I_{t}}$

Adaptive Pricing: Minimize Regret

Expected Profit

$$
R(\mathbf{p}, \mathbf{x})=\sum_{k=1}^{K} \mathbb{P}(I=k \mid \mathbf{p}, \mathbf{x})\left(p_{k}-m_{k}\right)
$$

Adaptive Pricing: Minimize Regret

> Expected Profit
> $R(\mathbf{p}, \mathbf{x})=\sum_{k=1}^{K} \mathbb{P}(I=k \mid \mathbf{p}, \mathbf{x})\left(p_{k}-m_{k}\right)$

Optimal Price/Promotion

$$
\mathbf{p}_{\star}, \mathbf{x}_{\star}=\arg \max _{\mathbf{p} \in[\ell, u]^{K}, x \in \mathrm{X}} R(\mathbf{p}, \mathbf{x})
$$

Adaptive Pricing: Minimize Regret

$$
R(\mathbf{p}, \mathbf{x})=\sum_{k=1}^{\text {Expected Profit }} \mathbb{P}(I=k \mid \mathbf{p}, \mathbf{x})\left(p_{k}-m_{k}\right) \quad \mathbf{p}_{\star}, \mathbf{x}_{\star}=\arg \max _{\mathbf{p} \in[\ell, u]^{K}, x \in \mathrm{X}} R(\mathbf{p}, \mathbf{x})
$$

Goal: Minimize Regret

$$
R e g_{T}=\sum_{t=1}^{T} R\left(\mathbf{p}_{\star}, \mathbf{x}_{\star}\right)-R\left(\mathbf{p}_{t}, \mathbf{x}_{t}\right)
$$

Adaptive Pricing: Minimize Regret

$$
R(\mathbf{p}, \mathbf{x})=\sum_{k=1}^{\text {Expected Profit }} \mathbb{P}(I=k \mid \mathbf{p}, \mathbf{x})\left(p_{k}-m_{k}\right) \quad \mathbf{p}_{\star}, \mathbf{x}_{\star}=\arg \max _{\mathbf{p} \in[\ell, u]^{K}, x \in \mathrm{X}} R(\mathbf{p}, \mathbf{x})
$$

Goal: Minimize Regret

$$
R e g_{T}=\sum_{t=1}^{T} R\left(\mathbf{p}_{\star}, \mathbf{x}_{\star}\right)-R\left(\mathbf{p}_{t}, \mathbf{x}_{t}\right)
$$

We want to minimize our opportunity cost of learning the optimal price and promotion. Ideally $\operatorname{Reg}_{T} / T \rightarrow 0$

Review of Single Product Pricing: A/B/N testing

- A/B/n Testing:

Review of Single Product Pricing: A/B/N testing

- $\mathrm{A} / \mathrm{B} / \mathrm{n}$ Testing:

- Necessarily $O(T)$ regret!

Review of Single Product Pricing: $A / B / N$ testing

- UCB Approach: Multi-Armed-Bandits on discrete set of prices [KleinbergLeighton '03, MisraSchwarzAbernethy'19]

Review of Single Product Pricing: $A / B / N$ testing

- UCB Approach: Multi-Armed-Bandits on discrete set of prices
[KleinbergLeighton '03, MisraSchwarzAbernethy'19]

Review of Single Product Pricing: A/B/N testing

- UCB Approach: Multi-Armed-Bandits on discrete set of prices
[KleinbergLeighton '03, MisraSchwarzAbernethy'19]

- Can guarantee $O(\sqrt{D T}+\epsilon T)$ in general
- If profit function is "strongly concave" can choose D so regret is $O(\sqrt{T})$

Extending to Multiple Products

- Natural Approach: Multi-Armed-Bandits on a discrete set of prices

- Number of price combinations grows exponentially with number of products!

Shortfalls of Discretized Approaches

- Number of price combinations grows exponentially with number of products!
- Difficult to add promotions to the model
- Can't handle customer heterogeneity
- Not exploiting the "smoothness" of the problem

Fundamentally, a totally non-parametric approach is difficult to scale!*

Outline

1. Introduction
2. Adaptively Setting Prices and Promotions
3. Incorporating Context

Adaptive Pricing: Our Approach

Adaptive Pricing: Our Approach

- Strategic Exploration
- Explore to learn the demand curve while Exploiting current information

Adaptive Pricing: Our Approach

- Strategic Exploration
- Explore to learn the demand curve while Exploiting current information
- Exploit demand curve to reduce experimentation cost
- Random utility choice model

Adaptive Pricing: Our Approach

- Strategic Exploration
- Explore to learn the demand curve while Exploiting current information
- Exploit demand curve to reduce experimentation cost
- Random utility choice model
- Flexible
- Can accommodate both prices and promotions
- Can incorporate customer heterogeneity

Model (McFadden '77)

K products, marginal costs $m \in \mathbb{R}_{\geq 0}^{K}$

$$
\begin{aligned}
& u_{t k}(\mathbf{p}, \mathbf{x})=\alpha_{k}-\beta_{k} p_{k}+\gamma_{k} x_{k}+\epsilon_{t k} \\
& \text { Product } k \text { utility for user } t \\
& \text { Model Parameters } \\
& \theta=\left[\left(\alpha_{k}, \beta_{k}, \gamma_{k}\right)\right]_{k=1}^{K} \in \mathbb{R}^{3 K}
\end{aligned}
$$

Model (McFadden '77)

K products, marginal costs $m \in \mathbb{R}_{\geq 0}^{K}$

$u_{t k}(\mathbf{p}, \mathbf{x})=\alpha_{k}-\beta_{k} p_{k}+\gamma_{k} x_{k}+\epsilon_{t k}$

Product k utility for user t
Model Parameters
$\theta=\left[\left(\alpha_{k}, \beta_{k}, \gamma_{k}\right)\right]_{k=1}^{K} \in \mathbb{R}^{3 K}$

Demand

$Q_{k}(\mathbf{p}, \mathbf{x}):=\mathbb{P}_{\theta}(I=k \mid \mathbf{p}, \mathbf{x})=\frac{e^{u_{k}\left(p_{k} x_{k}\right)}}{1+\sum_{j=1}^{K} e^{u_{j}\left(p_{j} x_{j}\right)}}$

Model (McFadden '77)

K products, marginal costs $m \in \mathbb{R}_{\geq 0}^{K}$

$u_{t k}(\mathbf{p}, \mathbf{x})=\alpha_{k}-\beta_{k} p_{k}+\gamma_{k} x_{k}+\epsilon_{t k}$

Type-1 GEV
Product k utility for user t
Model Parameters
$\theta=\left[\left(\alpha_{k}, \beta_{k}, \gamma_{k}\right)\right]_{k=1}^{K} \in \mathbb{R}^{3 K}$

Demand

$Q_{k}(\mathbf{p}, \mathbf{x}):=\mathbb{P}_{\theta}(I=k \mid \mathbf{p}, \mathbf{x})=\frac{e^{u_{k}\left(p_{k} x_{k}\right)}}{1+\sum_{j=1}^{K} e^{u_{j}\left(p_{j} x_{j}\right)}}$

Expected Profit

$$
R_{\theta}(\mathbf{p}, \mathbf{x})=\sum_{k=1}^{K}\left(p_{k}-m_{k}\right) Q_{k}(\mathbf{p}, \mathbf{x})
$$

Model: Bayesian Approach

$Q_{k}(\mathbf{p}, \mathbf{x}):=\mathbb{P}_{\theta}($ choose $k \mid \mathbf{p}, \mathbf{x})=\frac{e^{u_{k}\left(p_{k} x_{k}\right)}}{1+\sum_{j=1}^{K} e^{u_{j}\left(p_{j} x_{j}\right)}}$
$R_{\theta}(\mathbf{p}, \mathbf{x}):=\sum_{k=1}^{K}\left(p_{k}-m_{k}\right) Q_{k}(\mathbf{p}, \mathbf{x})$

Bayesian Approach

Assume a prior Π_{0}, and $\theta \sim \Pi_{0}$

Objective: Minimize Bayesian Regret

Let $\mathbf{p}_{\star}, \mathbf{x}_{\star}$ be the optimal price and promotion.

$$
\operatorname{Re} g_{T}=\mathbb{E}_{\theta \sim \Pi_{0}}\left[\sum_{t=1}^{T} R_{\theta}\left(\mathbf{p}_{\star}, \mathbf{x}_{\star}\right)-R_{\theta}\left(\mathbf{p}_{t}, \mathbf{x}_{t}\right)\right]
$$

Dynamic Pricing Literature

- Parametric Generalized Linear Settings: [KeskinZeevi'14],[BoerZwart'14], ...
- Non-Parametric: [BesbesZeevi'09],..., [MisraSchwarzAbernethy'19]
- Choice Models: [JavanmardNazerzedahShao'19, MiaoChao'21]
- Assortment Selection: in retail settings, impossible to know choice set.

Our work is the first to consider:
a) Choice Models
b) Promotion variables
c) Consumer Heterogeneity

Existing Work: Forced Exploration

Epoch: $s=1,2, \cdots$

Pure Exploration Phases: Play K random prices, MLE estimate $\hat{\theta}_{s}$

Pure Exploitation Phases: Play $\hat{\mathbf{p}}_{\mathbf{s}}=\arg \max _{\mathbf{p}} R_{\hat{\theta}_{s}}(\mathbf{p})$

Existing Work: Forced Exploration

Epoch: $s=1,2, \cdots$

Pure Exploration Phases: Play K random prices, MLE estimate $\hat{\theta}_{s}$
Pure Exploitation Phases: Play $\hat{\mathbf{p}}_{\mathbf{s}}=\arg \max _{\mathbf{p}} R_{\hat{\theta}_{s}}(\mathbf{p})$
Guarantee*: $\operatorname{Reg}_{T} \leq O(K \sqrt{T})$
[BroderRusmevichientong'12]
['JavanmardNazerzedahShao'20]
Playing randomized prices is not particularly feasible in practice!

Can't handle promotions easily!
A form of ϵ-Greedy

Existing Work: Forced Exploration

Epoch: $s=1,2, \cdots$

Pure Exploration Phases: Play K random prices, MLE estimate $\hat{\theta}_{s}$

Pure Exploitation Phases: Play $\hat{\mathbf{p}}_{\mathbf{s}}=\arg \max _{\mathbf{p}} R_{\hat{\theta}_{s}}(\mathbf{p})$
Guarantee*: $\operatorname{Reg}_{T} \leq O(K \sqrt{T})$
[BroderRusmevichientong'12]
['JavanmardNazerzedahShao'20]
Playing randomized prices is not particularly feasible in practice!

Can't handle promotions easily!
A form of ϵ-Greedy

Existing Work: Forced Exploration

Epoch: $s=1,2, \cdots$

Pure Exploration Phases: Play K random prices, MLE estimate $\hat{\theta}_{s}$
Pure Exploitation Phases: Play $\hat{\mathbf{p}}_{\mathbf{s}}=\arg \max _{\mathbf{p}} R_{\hat{\theta}_{s}}(\mathbf{p})$
Guarantee*: $\operatorname{Reg}_{T} \leq O(K \sqrt{T})$
[BroderRusmevichientong'12]
['JavanmardNazerzedahShao'20]
Playing randomized prices is not particularly feasible in practice!

Can't handle promotions easily!
A form of ϵ-Greedy

Our Approach: Thompson/Posterior Sampling

Our Approach: Thompson Sampling

- Model Based Exploration and Pricing: Exploration is driven by the model, not by playing random prices
- Computational Advantages: Easily implemented if you can sample from the posterior. Maintaining the posterior is impossible in many settings, but sampling is straightforward.
- Easily Extended: Can easily incorporate additional features to the model

Thompson Sampling: Intuition

Implementation Challenges

1. Optimizing over p and x at the same time is non-convex and high dimensional

$$
\mathbf{p}_{\mathbf{t}}, \mathbf{x}_{\mathbf{t}}=\arg \max _{\mathbf{p}, \mathbf{x}} R_{\theta_{t}}(\mathbf{p}, \mathbf{x})
$$

2. Posterior Computation Π_{t}

Optimize Prices with Fixed Promotions

$$
\begin{gathered}
\text { Revenue } \\
R_{\theta}(\mathbf{p}, \mathbf{x})=\sum_{k=1}^{K}\left(p_{k}-m_{k}\right) \frac{e^{\alpha_{k}-\beta_{k} p_{k}+\gamma_{k} x_{k}}}{1+\sum_{j=1}^{K} e^{\alpha_{k}-\beta_{k} p_{k}+\gamma_{k} x_{k}}}
\end{gathered}
$$

$$
\mathbf{p}_{\mathbf{t}}, \mathbf{x}_{\mathbf{t}}=\arg \max _{\mathbf{p}, \mathbf{x}} R_{\theta_{t}}(\mathbf{p}, \mathbf{x})
$$

Unfortunately non-convex in \mathbf{p}

Lemma (Aydin \& Ryan '00) For a fixed value of \mathbf{x},

$$
\mathbf{p}_{*, i}=\frac{1}{\beta_{i}}+R \quad \quad R=\sum_{i=1}^{K} \frac{1}{\beta_{i}} e^{-\left(1+\beta_{i} R\right)} e^{\alpha_{i}+\gamma_{i} x_{i}}
$$

- A fairly fast binary search procedure works well

Optimizing Promotion at a Fixed Price

Easy Setting: X finite and combinatorial

- e.g. $\mathrm{X}=\left\{e_{1}, \cdots, e_{K}\right\}$ - we can promote at most one item

Optimizing Promotion at a Fixed Price

Easy Setting: X finite and combinatorial

- e.g. $\mathrm{X}=\left\{e_{1}, \cdots, e_{K}\right\}$ - we can promote at most one item
- e.g. $X=\{0,1\}^{K}$ - we can promote a subset of items

But discrete settings don't capture magnitude of the promotion.

Optimize Promotions Fixing Prices

Simplex Constraint: $X=\Delta^{K}:=\left\{\mathbf{x} \in \mathbb{R}_{\geq 0}^{K}: \sum_{i=1}^{K} x_{i}=1\right\}$
Choosing amount of budget each item gets:

- e.g. some items get a larger amount of screen space

Sponsored θ
Kauai Coffee Single-Serve Pods, Garden Isle Medium Roast - 100\% Arabica Coffee from Hawaii's..

$\$ 28^{75}$ (\$0.60/Count)
\checkmark prime Same-Day FREE delivery Today 7 AM - 11 AM

Optimize Promotions Fixing Prices

Optimal Promotion Lemma. The optimal promotion is a vertex of X :
1.X $=\Delta^{K}: \quad \mathbf{x}_{\star} \in\left\{e_{1}, \cdots, e_{K}\right\}$
2. $\mathrm{X}=[0,1]^{K}: \mathbf{x}_{\star} \in\{0,1\}^{K}$

The optimal marketing mix is an all or nothing strategy!

Optimal Promotion: Intuition

$$
R_{\theta}(\mathbf{p}, \mathbf{x})=\sum_{k=1}^{K}\left(p_{k}-m_{k}\right) \frac{e^{\alpha_{k}-\beta_{k} p_{k}+\gamma_{k} x_{k}}}{1+\sum_{j=1}^{K} e^{\alpha_{j}-\beta_{j l}}}
$$

However, optimal promotion may not always align with the highest price item!

	Parameters	Product 1	Product 2	Product 3
	α	1	1	1
	β	.1	.2	.3
	γ	.8	.3	.5
Case 1	\mathbf{p}	$\$ 16$	$\$ 2$	$\$ 9$
	\mathbf{x}_{*}	1	0	0

Challenges

1. Optimizing over p and x at the same time is non-convex and high dimensional

$$
\mathbf{p}_{\mathbf{t}}, \mathbf{x}_{\mathbf{t}}=\arg \max _{\mathbf{p}, \mathbf{x}} R_{\theta_{t}}(\mathbf{p}, \mathbf{x})
$$

Solution: Can assume X is finite, find optimal price for each $x \in X$
2. Posterior Computation Π_{t}

Posterior Computation

$$
\text { Likelihood Function: } \quad \mathbf{L}(\theta):=\mathbf{L}\left(\theta \mid\left\{\left(\mathbf{p}_{s}, \mathbf{x}_{s}, I_{s}\right)\right\}_{s=1}^{t}\right)=\prod_{s=1}^{t} Q_{I_{s}}\left(\mathbf{p}_{s}, \mathbf{x}_{s}\right)
$$

Posterior Distribution: $\quad p\left(\theta \mid\left\{\left(\mathbf{p}_{s}, \mathbf{x}_{s}, I_{s}\right)\right\}_{s=1}^{t}\right) \propto \mathbf{L}(\theta) \Pi_{0}(\theta)$

$$
\propto \exp \left(\log \mathbf{L}(\theta)+\log \Pi_{0}(\theta)\right)
$$

Posterior Computation

Langevin Dynamics: for $r=1,2, \cdots, R$

$$
\theta_{r+1, t}=\theta_{r, t}+\epsilon_{t} \nabla_{\theta}\left[\log \mathbf{L}\left(\theta_{r, t}\right)+\log \Pi_{0}\right]+\sqrt{2 \epsilon_{t}} \eta_{r}
$$

$$
\eta_{k} \sim N(0, I)
$$

Posterior Sampling:

$\operatorname{Langevin}\left(\theta_{r, t}\right) \stackrel{R \rightarrow \infty}{\Rightarrow} \exp \left(\log \mathbf{L}(\theta)+\log \Pi_{0}(\theta)\right)$

MCMC method which converges to posterior sampling [WellingYeh'15]

Generally take $\epsilon_{t}=O(1 / t)$

Posterior Computation

Langevin Dynamics: for $r=1,2, \cdots, R$

$$
\theta_{r+1, t}=\theta_{r, t}+\epsilon_{t} \nabla_{\theta}\left[\log \mathbf{L}\left(\theta_{r, t}\right)+\log \Pi_{0}\right]+\sqrt{2 \epsilon_{t}} \eta_{r}
$$

$$
\eta_{k} \sim N(0, I)
$$

Example of 1 product, $\alpha_{1}=1, \beta_{1}=1.25$

1. Very fast updates in PyTorch
2. Take $\epsilon_{k}=O(1 / k)$
3. Need a few dozen steps each iteration

Challenges

1. Optimizing over p and x at the same time is non-convex and high dimensional

$$
\mathbf{p}_{\mathbf{t}}, \mathbf{x}_{\mathbf{t}}=\arg \max _{\mathbf{p}, \mathbf{x}} R_{\theta_{t}}(\mathbf{p}, \mathbf{x})
$$

Solution: Can assume X is finite, find optimal price for each $x \in X$
2. Posterior Computation Π_{t}

Solution: Langevin Dynamics

Our Approach: Thompson Sampling

Input: K products, X promotion set Initialize: Π_{0} as some prior distribution over θ

For $t=1,2,3, \cdots, T$:
1.Sample $\theta_{t} \sim \Pi_{t}$ for $r=1,2, \cdots, R$ Sample $\eta_{r} \sim N(0, I)$ $\theta_{r+1, t}=\theta_{r, t}+\epsilon_{t} \nabla_{\theta} \log \mathbf{L}\left(\theta_{r, t}\right)+\sqrt{2 \epsilon_{t}} \eta_{r}$
2. Set best price/promotion for θ_{t} : for $x \in \mathrm{X}$ find $\mathbf{p}=\arg \max _{\mathbf{p}} R_{\theta_{t, R}}(\mathbf{p}, \mathbf{x})$, take highest
4.Observe $I_{t} \sim Q_{t}\left(\mathbf{p}_{t}, \mathbf{x}_{t}\right)$, collect revenue $p_{t, I_{t}}$
5.Update $\Pi_{t+1}=$ Posterior $\left(\Pi_{t}, \theta_{t+1}\right)$

Regret Guarantees

Theorem: [JLMY] The Bayesian regret of the Thompson Sampling Procedure after a time horizon of T steps is
$\approx K \sqrt{\kappa T}$

$$
\kappa=\frac{1}{\min _{\mathbf{p} \in[\ell, u]^{K}, x \in \mathrm{X}} \dot{Q}(\mathbf{p}, \mathbf{x})}
$$

Empirical Example

- Greedy: Solve the MLE at each time and play the optimal price
-Thompson Sampling: Implemented using Langevin Dynamics

Parameters	Product 1	Product 2	Product 3
α	1	1	1
β	.1	.2	.3
γ	.8	.3	.5
\mathbf{p}_{*}	$\$ 20.50$	$\$ 15.50$	$\$ 13.83$
\mathbf{x}_{*}	1	0	0

Cumulative Regret

Percent of Revenue Recovered

What's going on?

Outline

1. Introduction
2. Adaptively Setting Prices and Promotions
3. Incorporating Context

Incorporating Heterogeneity

- Demand may depend on information about customers
- Past purchases, location, device, etc.
- Demand may depend on environmental conditions
- Time of year, location
- Demand may depend on other firms actions
- Promotions and Prices of other firms

Adaptive Pricing: Protocol

For $t=1,2,3, \cdots, T$
Customer arrives at platform with context $\mathbf{c}_{t} \in \mathbb{R}^{d}$
Firm chooses price $\mathbf{p}_{t} \in[\ell, u]^{K}, \mathbf{x}_{t} \in \mathrm{X}$
Observe purchase decision $I_{t} \in\{0,1, \cdots, K\}$, and collect revenue $p_{I_{t}}$

Incorporating Heterogeneity: Model

- Utility parameters depend on the context

$$
u_{k}(\mathbf{p}, \mathbf{x}, \mathbb{c})=\alpha_{k}(\mathbb{c})-\beta_{k}(\mathbb{c}) p_{k}+\gamma_{k}(\mathbb{c}) x_{k}
$$

$$
\alpha_{k}: \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

$$
\beta_{k}: \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

- Captures user level elasticities in an economically motivated model.

$$
\gamma_{k}: \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

- Easily compute the maximal price and promotion using previous

$$
R_{\theta}(\mathbf{p}, \mathbf{x}, \mathbf{c})=\sum_{k=1}^{K} p_{k} \frac{e^{\alpha_{k}(\mathbf{c})-\beta_{k}(\mathbf{c}) p_{k}+\gamma_{k}(\mathbf{c}) x_{k}}}{1+\sum_{j=1}^{K} e^{\alpha_{j}(\mathbf{c})-\beta_{j}(\mathbf{c}) p_{j}+\gamma_{j}(\mathbf{c}) x_{j}}}
$$ methods.

- Can estimate using MLE

Incorporating Heterogeneity: Linear Case

$$
\begin{aligned}
& u_{i k}(\mathbf{p}, \mathbf{x}, \mathbf{c})=\alpha_{k}(\mathbf{c})-\beta_{k}(\mathbf{c}) p_{k}+\gamma_{k}(\mathbf{c}) x_{k} \\
& \alpha_{k}(\mathbf{c})=\left\langle\alpha_{k}, \mathbf{c}\right\rangle \\
& \beta_{k}(\mathbf{c})=\left\langle\beta_{k}, \mathbf{c}\right\rangle \\
& \gamma_{k}(\mathbf{c})=\left\langle\gamma_{k}, \mathbf{c}\right\rangle \\
& \alpha_{k}, \beta_{k}, \gamma_{k} \in \mathbb{R}^{d} \\
& \text { for all } 1 \leq k \leq K
\end{aligned}
$$

Incorporating Heterogeneity: Linear Case

$$
\begin{array}{ll}
u_{i k}(\mathbf{p}, \mathbf{x}, \mathbf{c})=\alpha_{k}(\mathbf{c})- & \beta_{k}(\mathbf{c}) p_{k}+\gamma_{k}(\mathbf{c}) x_{k} \\
\alpha_{k}(\mathbf{c})=\left\langle\alpha_{k}, \mathbf{c}\right\rangle & \begin{array}{l}
\text {-Ban+Keskin '21, } \\
\text { Javanmard+Nazerzedah '20, }
\end{array} \\
\beta_{k}(\mathbf{c})=\left\langle\beta_{k}, \mathbf{c}\right\rangle & \begin{array}{l}
\text { Javanmard+Nazerzedah+Shao '21, } \\
\text { Qiang+Bayati '16, Dube+Misra '17 }
\end{array} \\
\gamma_{k}(\mathbf{c})=\left\langle\gamma_{k}, \mathbf{c}\right\rangle & \begin{array}{l}
\text { - Forced exploration methods tend to } \\
\text { consider the linear Gaussian case }
\end{array} \\
\alpha_{k}, \beta_{k}, \gamma_{k} \in \mathbb{R}^{d} & \begin{array}{l}
\text { - Require the context distribution to be } \\
\text { fixed and stochastic }
\end{array}
\end{array}
$$

Thompson Sampling

Input: K products, X promotion set
Initialize: Π_{0} as some prior distribution over θ
For $t=1,2,3, \cdots, T$:

1. Receive $\mathrm{c}_{t} \in \mathbb{R}^{d}$
2.Sample $\theta_{t} \sim \Pi_{t}$ for $r=1,2, \cdots, R$

Sample $\eta_{r} \sim N(0, I)$
$\theta_{r+1, t}=\theta_{r, t}+\epsilon_{t} \nabla_{\theta} \log \mathbf{L}\left(\theta_{r, t}\right)+\sqrt{2} \epsilon_{t} \eta_{r}$
3. Set best price/promotion for θ_{t} : for $x \in X$
find $\mathbf{p}=\arg \max _{\mathbf{p}} R_{\theta_{t, R}}\left(\mathbf{p}, \mathbf{x}, \mathrm{c}_{\mathrm{t}}\right)$, take highest
5.Observe $I_{t} \sim Q_{t}\left(\mathbf{p}_{t}, \mathbf{x}_{t}, \mathbf{c}_{t}\right)$, collect revenue $p_{t, I_{t}}$
6.Update $\Pi_{t+1}=\operatorname{Posterior}\left(\Pi_{t}, \theta_{t+1}\right)$

Experiment: Real Life Setting

Considered two large supermarket on the category of ground coffee

- Have access to price/oz of 9 different brands
- Considered a year of data with market share aggregated weekly
- Have price and promotion variables for each brand at a weekly level
- Fit a choice model using Berry Inversion
- Simulated using this data

Experiment: Simulation

$$
\begin{array}{cl}
c=\left(Q_{1}, Q_{2}, Q_{3}, Q_{4}, S 1, S 2\right) & \bullet 40000 \text { Purchase Decisions } \\
\text { Quarter Dummy Variables } & \bullet \text { Split into Four Quarters } \\
& \bullet 65 \% \text { chance of store 1, 35\% from store } 2 \\
& \bullet \text { Compared Thompson Sampling, Greedy, } \\
& \text { M3P (Forced Exploration) }
\end{array}
$$

Experiments: Estimation

Utility Equation

$$
u_{i}\left(\mathbf{p}_{t}, \mathbf{x}_{t}, \mathbf{c}_{t}\right)=\alpha_{i}\left(c_{t}\right)-\beta_{i}\left(c_{t}\right)+\gamma_{i}\left(c_{t}\right) x_{i t}
$$

Where

$$
\begin{aligned}
& \alpha_{i}(\mathbf{c})=\alpha_{i Q_{1}} \mathbb{I}\left(Q_{1}\right)+\alpha_{i Q_{2}} \mathbb{I}\left(Q_{2}\right)+\alpha_{i Q_{3}} \mathbb{I}\left(Q_{3}\right)+\alpha_{i Q_{4}} \mathbb{I}\left(Q_{4}\right)+\alpha_{i S_{1}} \mathbb{I}(\text { store }=1)+\alpha_{i S_{2}} \mathbb{I}(\text { store }=2) \\
& \beta_{i}(\mathbf{c})=\beta_{i Q_{1}} \mathbb{I}\left(Q_{1}\right)+\beta_{i Q_{2}} \mathbb{I}\left(Q_{2}\right)+\beta_{i Q_{3}} \mathbb{I}\left(Q_{3}\right)+\beta_{i Q_{4}} \mathbb{I}\left(Q_{4}\right)+\beta_{i S_{1}} \mathbb{I}(\text { store }=1)+\beta_{i S_{2}} \mathbb{I}(\text { store }=2) \\
& \gamma_{i}(\mathbf{c})=\gamma_{i Q_{1}} \mathbb{I}\left(Q_{1}\right)+\gamma_{i Q_{2}} \mathbb{I}\left(Q_{2}\right)+\gamma_{i Q_{3}} \mathbb{I}\left(Q_{3}\right)+\gamma_{i Q_{4}} \mathbb{I}\left(Q_{4}\right)+\gamma_{i S_{1}} \mathbb{I}(\text { store }=1)+\gamma_{i S_{2}} \mathbb{I}(\text { store }=2) .
\end{aligned}
$$

Experiment: Simulation Results

Model Misspecification

Regret Guarantees in Linear Setting

Theorem: [JLMY] The Bayesian regret of the Thompson Sampling Procedure after a time horizon of T steps is

$$
\approx K d \sqrt{\kappa T}
$$

With no assumption on the context distribution!

Nonlinear Pricing Experiments

$$
u_{i k}(\mathbf{p}, \mathbf{x}, \mathbf{c})=\alpha_{k}(\mathbf{c})-\beta_{k}(\mathbf{c}) p_{k}+\gamma_{k}(\mathbf{c}) x_{k}
$$

What if $\alpha_{k}, \beta_{k}, \gamma_{k}$ are non-linear functions of the context \mathbf{c} ?

- Gradient Boosted Trees
- Neural Networks
- Gaussian Process Methods

Nonlinear Pricing Experiments

$$
u_{i k}(\mathbf{p}, \mathbf{x}, \mathbf{c})=\alpha_{k}(\mathbf{c})-\beta_{k}(\mathbf{c}) p_{k}+\gamma_{k}(\mathbf{c}) x_{k}
$$

What if $\alpha_{k}, \beta_{k}, \gamma_{k}$ are non-linear functions of the context \mathbf{c} ?

- Gradient Boosted Trees
- Neural Networks
- Gaussian Process Methods

How do we adopt Posterior sampling to more general classes?
Answer: Langevin Dynamics as Deep Bayesian Posterior Approximation

Experiment: Clustered Customer Preferences

Context Distribution
$\mathbf{c} \sim \sum_{i=1}^{8} \frac{1}{8} N\left(S_{i}, 1\right) \in \mathbb{R}^{4}$

Utility Parameters

$$
\alpha_{k}, \beta_{k}, \gamma_{k}: \mathbb{R}^{4} \rightarrow \mathbb{R}, k \leq 9
$$

Piecewise constant on each cluster - 27 parameters/cluster

Eg: Mixture of Gaussians, with piecewise constant utility for each cluster

Experiment: Results

Summary

- Introduced the new setting of adaptive pricing with promotions
- Bounded the regret of a Thompson Sampling procedure.
- Extended to settings with context and non-linear utility.
- Demonstrated the viability of this methodology on real-life inspired datasets.

Thank you!! Questions?

