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Problem: Setting Prices and Promotion

Firm needs to  

• set prices 

• decide what items to 
promote
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Problem: Setting Prices and Promotion

Firm needs to  

• set prices 

• decide what items to 
promote 

• by how much given a budget.
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Why study this problem?

Amazon changes it’s prices hourly, and can change a product’s price as 
frequently as once every 10 minutes!

How can an online retailer jointly decide how to set prices and promotions 
in order to maximize profit?

If the demand curve for each consumer/product was known - we could 
jointly optimize.

But in practice, the demand is rarely known and can depend on the 
customer segment.
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Traditional Approaches for Pricing

Exploiting Historical Data 

• Lack of Exogenous Variation 

• “Greedy method” - no exploration 

Existing Approaches Suffer from a Lack of Strategic Exploration

Structural Demand Estimation: 

Berry+Levinson+Pakes ’95, Guadagni+Little ’83, Hitsch ’06, and 
more…
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Traditional Approaches for Pricing
Existing Approaches Suffer from a Lack of Strategic Exploration

Pricing Experiments (A/B tests) 

• Potentially High Opportunity cost 

• Extremely large action space with 
many products

Literature: 

Aghnion et al ’91, Dube and Misra ’17, …
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Adaptive Pricing: Protocol

For  

Customer(s) arrives at platform 

Firm chooses price   

    and promotion  

Observe purchase decision(s) , and collect revenue 

t = 1,2,3,⋯, T

pt = (p1t, ⋯, pKt) ∈ [ℓ, u]K

xt = (x1t, ⋯, xKt) ∈ 𝖷 ⊂ [0,1]K,

It ∈ {0,1,⋯, K} pIt

Assume K products and one outside option 

*Easily extended to the batched setting8



Adaptive Pricing: Minimize Regret

R(p, x) =
K

∑
k=1

ℙ(I = k |p, x)(pk − mk)

Expected Profit
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Adaptive Pricing: Minimize Regret

RegT =
T

∑
t=1

R(p⋆, x⋆) − R(pt, xt)

Goal: Minimize Regret

R(p, x) =
K

∑
k=1

ℙ(I = k |p, x)(pk − mk)

Expected Profit

We want to minimize our opportunity cost of learning the 
optimal price and promotion. Ideally RegT /T → 0

p⋆, x⋆ = arg max
p∈[ℓ,u]K,x∈𝖷

R(p, x)

Optimal Price/Promotion
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•A/B/n Testing: 

$2.40 $2.50

•Necessarily  regret!O(T)

$2.30

confidence interval ∝
1

# pulls

Review of Single Product Pricing: A/B/N testing
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0

•UCB Approach: Multi-Armed-Bandits on discrete set of prices  
                           [KleinbergLeighton ’03, MisraSchwarzAbernethy’19]

$2 $2.10 $2.20 $2.40 $2.50$2.30

Pull arm with 
highest UCB each 
round

Review of Single Product Pricing: A/B/N testing
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•UCB Approach: Multi-Armed-Bandits on discrete set of prices  
                           [KleinbergLeighton ’03, MisraSchwarzAbernethy’19]

Review of Single Product Pricing: A/B/N testing
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$2 $2.10 $2.20
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$3.90 $4.00$2.10

•Can guarantee  in general  

•If profit function is “strongly concave” can choose  so regret is  

O( DT + ϵT)

D O( T)

•UCB Approach: Multi-Armed-Bandits on discrete set of prices  
                           [KleinbergLeighton ’03, MisraSchwarzAbernethy’19]

Review of Single Product Pricing: A/B/N testing
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Extending to Multiple Products
•Natural Approach: Multi-Armed-Bandits on a discrete set of prices

•Number of price combinations grows exponentially with number of products!

$2.00 $2.10 $2.20 $2.30

$3.10

$3.20

$3.30

$3.40

$3.50
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Shortfalls of Discretized Approaches

•Number of price combinations grows exponentially with number of products! 

•Difficult to add promotions to the model 

•Can’t handle customer heterogeneity 

•Not exploiting the “smoothness” of the problem

Fundamentally, a totally non-parametric approach is difficult to scale!*
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Outline

1. Introduction 

2. Adaptively Setting Prices and Promotions 

3. Incorporating Context
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Adaptive Pricing: Our Approach
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Adaptive Pricing: Our Approach

• Strategic Exploration 

• Explore to learn the demand curve while Exploiting current information
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Adaptive Pricing: Our Approach

• Strategic Exploration 

• Explore to learn the demand curve while Exploiting current information

• Exploit demand curve to reduce experimentation cost 

• Random utility choice model

• Flexible 

• Can accommodate both prices and promotions 

• Can incorporate customer heterogeneity
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Model (McFadden ’77)

 products, marginal costs K m ∈ ℝK
≥0

utk(p, x) = αk − βkpk + γkxk + ϵtk

Promotion Variable ∈ [0,1]

Model Parameters 
θ = [(αk, βk, γk)]K

k=1 ∈ ℝ3K
Product  utility for user tk

Price Variable ∈ [ℓ, u]

18

Type-1 GEV
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 products, marginal costs K m ∈ ℝK
≥0

utk(p, x) = αk − βkpk + γkxk + ϵtk

Promotion Variable ∈ [0,1]

Model Parameters 
θ = [(αk, βk, γk)]K

k=1 ∈ ℝ3K
Product  utility for user tk

Qk(p, x) := ℙθ(I = k |p, x) =
euk(pk,xk)

1 + ∑K
j=1 euj(pj,xj)

Demand

Rθ(p, x) =
K

∑
k=1

(pk − mk)Qk(p, x)

Expected Profit

Price Variable ∈ [ℓ, u]

18

Type-1 GEV



Model: Bayesian Approach

Qk(p, x) := ℙθ(choose	k |p, x) =
euk(pk,xk)

1 + ∑K
j=1 euj(pj,xj)

Bayesian Approach

RegT = 𝔼θ∼Π0 [
T

∑
t=1

Rθ(p⋆, x⋆) − Rθ(pt, xt)]

Objective: Minimize Bayesian Regret 
Let  be the optimal price and promotion.p⋆, x⋆

Rθ(p, x) :=
K

∑
k=1

(pk − mk)Qk(p, x)

Assume a prior , and Π0 θ ∼ Π0

19



Dynamic Pricing Literature

• Parametric Generalized Linear Settings: [KeskinZeevi’14],[BoerZwart’14], …  

• Non-Parametric: [BesbesZeevi’09],…, [MisraSchwarzAbernethy’19] 

• Choice Models: [JavanmardNazerzedahShao’19, MiaoChao’21] 

• Assortment Selection: in retail settings, impossible to know choice set.

Our work is the first to consider: 

a) Choice Models 

b) Promotion variables 

c) Consumer Heterogeneity 
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Existing Work: Forced Exploration

K s − 3 K s − 2 K s − 1

Pure Exploration Phases:

Epoch: s = 1,2,⋯

Play  random prices, MLE estimate K ̂θs

Pure Exploitation Phases: Play p̂s = arg max
p

R ̂θs
(p)

K s
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Our Approach: Thompson/Posterior Sampling

Input:  products,  promotion set 
Initialize:  as some prior distribution over  

For : 
1.Sample  
2.Set best price/promotion for :  
                        

4.Observe , collect revenue  

5.Update 

K 𝖷
Π0 θ

t = 1,2,3,⋯, T
θt ∼ Πt

θt
pt, xt = arg max

p,x
Rθt

(p, x)

It ∼ Qt(pt, xt) pt,It

Πt+1 = Posterior(Πt, θt+1)

Model Based Exploration

Model Based Optimization

22



Our Approach: Thompson Sampling

• Model Based Exploration and Pricing: Exploration is driven by the 
model, not by playing random prices 

• Computational Advantages: Easily implemented if you can sample from 
the posterior. Maintaining the posterior is impossible in many settings, 
but sampling is straightforward. 

• Easily Extended: Can easily incorporate additional features to the model
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Thompson Sampling: Intuition

α

β

α

β

α

β

α

β

α

β

α

β
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Implementation Challenges

1. Optimizing over  and  at the same time is non-convex and high 
dimensional 
 

2. Posterior Computation  

p x

Πt

pt, xt = arg max
p,x

Rθt
(p, x)

25



Optimize Prices with Fixed Promotions

Rθ(p, x) =
K

∑
k=1

(pk − mk)
eαk−βk pk+γkxk

1 + ∑K
j=1 eαk−βk pk+γkxk

Revenue

Unfortunately non-convex in p

pt, xt = arg max
p,x

Rθt
(p, x)

• A fairly fast binary search procedure works well

Lemma (Aydin & Ryan ’00)  For a fixed value of , x

p*,i =
1
βi

+ R R =
K

∑
i=1

1
βi

e−(1+βiR)eαi+γixi

26



Optimizing Promotion at a Fixed Price

Easy Setting:  finite and combinatorial 

- e.g.  - we can promote at most one item

𝖷
𝖷 = {e1, ⋯, eK}
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Optimizing Promotion at a Fixed Price

Easy Setting:  finite and combinatorial 

- e.g.  - we can promote at most one item 

- e.g.  - we can promote a subset of items

𝖷
𝖷 = {e1, ⋯, eK}
𝖷 = {0,1}K

28

But discrete settings don’t capture magnitude of the promotion.



Optimize Promotions Fixing Prices

Simplex Constraint: 𝖷 = ΔK := {x ∈ ℝK
≥0 :

K

∑
i=1

xi = 1}

Choosing amount of budget each item gets: 
- e.g. some items get a larger amount of screen space

29



Optimize Promotions Fixing Prices

Optimal Promotion Lemma. The optimal promotion is a vertex of : 

1. :        

2. :   

 

The optimal marketing mix is an all or nothing strategy!

𝖷
𝖷 = ΔK x⋆ ∈ {e1, ⋯, eK}
𝖷 = [0,1]K x⋆ ∈ {0,1}K

30



Optimal Promotion: Intuition

Rθ(p, x) =
K

∑
k=1

(pk − mk)
eαk−βk pk+γkxk

1 + ∑K
j=1 eαj−βjpj+γjxj

However, optimal promotion may not 
always align with the highest price item! 
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Challenges

1. Optimizing over  and  at the same time is non-convex and high 
dimensional 
 
 
Solution: Can assume  is finite, find optimal price for each   

2. Posterior Computation  

p x

𝖷 x ∈ 𝖷

Πt

pt, xt = arg max
p,x

Rθt
(p, x)

32



Posterior Computation

L(θ) := L(θ |{(ps, xs, Is)}t
s=1) =

t

∏
s=1

QIs
(ps, xs)Likelihood Function:

̂θt = arg max
θ

ℒ(θ, {(pt, xt, It)}t
s=1)̂θt = arg max

θ
ℒ(θ, {(pt, xt, It)}t

s=1)

Posterior Distribution:
∝ exp(log L(θ) + log Π0(θ))

p(θ |{(ps, xs, Is)}t
s=1) ∝ L(θ)Π0(θ)

33

p(θ |{(ps, xs, Is)}t
s=1) ∝ p({(ps, xs, Is)}t

s=1 |θ)Π0(θ)



Posterior Computation

̂θt = arg max
θ

ℒ(θ, {(pt, xt, It)}t
s=1)̂θt = arg max

θ
ℒ(θ, {(pt, xt, It)}t

s=1)

Posterior Sampling:

Langevin Dynamics:

ηk ∼ N(0,I)

MCMC method which converges to posterior sampling 
[WellingYeh’15]

Langevin(θr,t)
R→∞
⇒ exp(log L(θ) + log Π0(θ))

for r = 1,2,⋯, R

Generally take ϵt = O(1/t)

θr+1,t = θr,t+ϵt ∇θ[log L(θr,t) + log Π0] + 2ϵtηr

34



Posterior Computation

1. Very fast updates in PyTorch 

2. Take  

3. Need a few dozen steps each iteration 

ϵk = O(1/k)

Example of 1 product,  α1 = 1,β1 = 1.25 Exact Posterior Langevin Dynamics

Langevin Dynamics:
θr+1,t = θr,t+ϵt ∇θ[log L(θr,t) + log Π0] + 2ϵtηr

ηk ∼ N(0,I)

for r = 1,2,⋯, R
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Challenges

1. Optimizing over  and  at the same time is non-convex and high 
dimensional 
 
 
Solution: Can assume  is finite, find optimal price for each   

2. Posterior Computation  
 
Solution: Langevin Dynamics

p x

𝖷 x ∈ 𝖷

Πt

pt, xt = arg max
p,x

Rθt
(p, x)
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Our Approach: Thompson Sampling
Input:  products,  promotion set 
Initialize:  as some prior distribution over  

For : 
1.Sample   
for  

               Sample  
                 

2.Set best price/promotion for :  
 for   
         find , take highest       

4.Observe , collect revenue  

5.Update 

K 𝖷
Π0 θ

t = 1,2,3,⋯, T
θt ∼ Πt

r = 1,2,⋯, R
ηr ∼ N(0,I)

θr+1,t = θr,t+ϵt ∇θlog L(θr,t) + 2ϵtηr

θt
x ∈ 𝖷

p = arg max
p

Rθt,R
(p, x)

It ∼ Qt(pt, xt) pt,It

Πt+1 = Posterior(Πt, θt+1)
37



Regret Guarantees

Theorem: [JLMY] The Bayesian regret of the Thompson Sampling Procedure 
after a time horizon of  steps isT

≈ K κT

κ =
1

minp∈[ℓ,u]K,x∈𝖷
·Q(p, x)

38



Empirical Example

• Greedy: Solve the MLE at each time and play 
the optimal price 

•Thompson Sampling: Implemented using 
Langevin Dynamics

40 MC repeats

Cumulative Regret Percent of Revenue Recovered

5% gap over 
all time!
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What’s going on?

T ≤ 2000 10,000 ≤ T ≤ 20,000 40,000 ≤ T ≤ 50,000
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1. Introduction 

2. Adaptively Setting Prices and Promotions 

3. Incorporating Context

Outline
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Incorporating Heterogeneity

42

• Demand may depend on information about customers 

• Past purchases, location, device, etc. 

• Demand may depend on environmental conditions 

• Time of year, location 

• Demand may depend on other firms actions 

• Promotions and Prices of other firms



Adaptive Pricing: Protocol
For  

Customer arrives at platform with context  

Firm chooses price  

Observe purchase decision , and collect revenue 

t = 1,2,3,⋯, T

ct ∈ ℝd

pt ∈ [ℓ, u]K, xt ∈ 𝖷

It ∈ {0,1,⋯, K} pIt
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Incorporating Heterogeneity: Model

44

uk(p, x, c) = αk(c) − βk(c)pk + γk(c)xk

Rθ(p, x, c) =
K

∑
k=1

pk
eαk(c)−βk(c)pk+γk(c)xk

1 + ∑K
j=1 eαj(c)−βj(c)pj+γj(c)xj

•Utility parameters depend on the context

• Captures user level elasticities in an 
economically motivated model. 

• Easily compute the maximal price 
and promotion using previous 
methods.  

• Can estimate using MLE 

αk : ℝd → ℝ
βk : ℝd → ℝ
γk : ℝd → ℝ



Incorporating Heterogeneity: Linear Case

45

uik(p, x, c) = αk(c) − βk(c)pk + γk(c)xk

αk(c) = ⟨αk, c⟩

βk(c) = ⟨βk, c⟩

γk(c) = ⟨γk, c⟩

αk, βk, γk ∈ ℝd

 for all 1 ≤ k ≤ K



Incorporating Heterogeneity: Linear Case

45

uik(p, x, c) = αk(c) − βk(c)pk + γk(c)xk

αk(c) = ⟨αk, c⟩

βk(c) = ⟨βk, c⟩

γk(c) = ⟨γk, c⟩

•Ban+Keskin ’21, 
Javanmard+Nazerzedah ’20, 
Javanmard+Nazerzedah+Shao ’21, 
Qiang+Bayati ’16, Dube+Misra ’17 

• Forced exploration methods tend to 
consider the linear Gaussian case 

• Require the context distribution to be 
fixed and stochastic 

αk, βk, γk ∈ ℝd

 for all 1 ≤ k ≤ K



Thompson Sampling

46

Input:  products,  promotion set 
Initialize:  as some prior distribution over  

For : 
1. Receive  
2.Sample   
for  

               Sample  
                

3.Set best price/promotion for :  
 for   
         find , take highest       

5.Observe , collect revenue  

6.Update 

K 𝖷
Π0 θ

t = 1,2,3,⋯, T
ct ∈ ℝd

θt ∼ Πt
r = 1,2,⋯, R

ηr ∼ N(0,I)
θr+1,t = θr,t + ϵt ∇θlog L(θr,t) + 2ϵtηr

θt
x ∈ 𝖷

p = arg max
p

Rθt,R
(p, x, ct)

It ∼ Qt(pt, xt, ct) pt,It

Πt+1 = Posterior(Πt, θt+1)



Experiment: Real Life Setting

Considered two large supermarket on the category of ground coffee 

• Have access to price/oz of 9 different brands 

• Considered a year of data with market share aggregated weekly 

• Have price and promotion variables for each brand at a weekly level 

• Fit a choice model using Berry Inversion 

• Simulated using this data

47



Experiment: Simulation

48

c = (Q1, Q2, Q3, Q4, S1,S2)

Quarter Dummy Variables

Store Dummy Variables

• 40000 Purchase Decisions 

• Split into Four Quarters 

• 65% chance of store 1, 35% from store 2 

• Compared Thompson Sampling, Greedy, 
M3P (Forced Exploration)



Experiments: Estimation

ui(pt, xt, ct) = αi(ct) − βi(ct) + γi(ct)xit

Utility Equation

Where

49



Experiment: Simulation Results
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Model Misspecification
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Regret Guarantees in Linear Setting

Theorem: [JLMY] The Bayesian regret of the Thompson Sampling Procedure 
after a time horizon of  steps isT

≈ Kd κT

With no assumption on the context distribution!

52



Nonlinear Pricing Experiments

53

uik(p, x, c) = αk(c) − βk(c)pk + γk(c)xk

What if  are non-linear functions of the context ? 

- Gradient Boosted Trees 

- Neural Networks 

- Gaussian Process Methods

αk, βk, γk c



Nonlinear Pricing Experiments

53

uik(p, x, c) = αk(c) − βk(c)pk + γk(c)xk

What if  are non-linear functions of the context ? 

- Gradient Boosted Trees 

- Neural Networks 

- Gaussian Process Methods

αk, βk, γk c

How do we adopt Posterior sampling to more general classes?

Answer: Langevin Dynamics as Deep Bayesian Posterior Approximation



Experiment: Clustered Customer Preferences

54

c ∼
8

∑
i=1

1
8

N(Si,1) ∈ ℝ4

Context Distribution Utility Parameters

Eg: Mixture of Gaussians, with piecewise 
constant utility for each cluster 

αk, βk, γk : ℝ4 → ℝ, k ≤ 9

Piecewise constant on each 
cluster - 27 parameters/cluster



α̂1(c)

̂β1(c)

̂γ1(c)

Non-Shared Hidden Layer
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Shared Hidden Layer α̂1(c)

̂β1(c)

̂γ1(c)

α̂1(c)

̂β1(c)

̂γ1(c)

Non-Shared Hidden Layer

55



Experiment: Results
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Summary

57

• Introduced the new setting of adaptive pricing with promotions 

• Bounded the regret of a Thompson Sampling procedure.  

• Extended to settings with context and non-linear utility. 

• Demonstrated the viability of this methodology on real-life inspired datasets.



Thank you!! Questions?
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