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Appendices
A Other Modeling Frameworks
We use a fixed-effects ordered logit model to estimate the effect of the star-rating of a user on the
preference ranking that s/he receives. We now explain why two other commonly used approaches,
(1) rank-ordered logit with fixed effects and (2) regression discontinuity method, are not appropriate
for our setting.

A.1 Rank-Ordered Logit

The rank-ordered logit model is specified from the perspective of the “rank-giver”. As before,
the dependent variable in this case is also the preference-ranking, pref ijt, which denotes the
preference-ranking that player j gives to mate i at game t.

Let uijt be the latent utility that user j expects to receive from being matched with i. Following
Allison and Christakis (1994), we can write uijt as a sum of two components such that:

uijt = µijt + εijt, (A.1)

where εijt is an idiosyncratic preference shock and µijt is a linear function of user i’s observed
characteristics to j and us, i’s unobserved characteristics to us (ηi), and user j’s characteristics, such
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that:
µijt = βstarit + γzi + ηi + θXit + αzj + ηj. (A.2)

Assume that user j is ranking two potential mates i and k. Although uijts are unobserved, we
assume that player j gives i a higher preference-ranking than mate k whenever uijt > ukjt. Under
the assumption that εijts are IID drawn from a type I extreme value distribution, we can write:

Pr(uijt > ukjt) =
exp(µijt)

exp(µijt) + exp(µkjt)

=
exp(βstarit + γzi + ηi)

exp(βstarit + γzi + ηi) + exp(βstarkt + γzk + ηk)
. (A.3)

Note that user j’s characteristics are canceled out in Equation (A.3). However, the fixed effects for
the rank-receivers (ηi and ηk) are not cancelled.

Similarly, when user j ranks four potential mates {i, k, l,m} in game t and s/he gives preference-
rankings of {4,3,2,1} (without loss of generality), we can infer that uijt > ukjt > uljt > umjt and
write:

Pr(uijt > ukjt > uljt > umjt) =
exp(µijt)

exp(µijt) + exp(µkjt) + exp(µljt) + exp(µmjt)

× exp(µkjt)

exp(µkjt) + exp(µljt) + exp(µmjt)

× exp(µljt)

exp(µljt) + exp(µmjt)
. (A.4)

Similar to Equation (A.3), if we expand equation (A.4), we will have four receivers’ fixed effects
(ηi, ηk, ηl, and ηm). We can write the likelihood of user j giving preference-rankings to his or her
potential matches in game t as:

Ljt =
4∏
i=1

exp(µijt)∑4
k=1 δijtkexp(µkjt)

(A.5)

where

δijtk =

1, if prefijt > prefkjt

0, else.
(A.6)
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Now, we can write the log-likelihood of the preference-rankings observed in the data as:

LL(β, γ, η1, ..., ηN) =
N∑
j=1

Tj∑
t=1

ln[Ljt]

=
N∑
j=1

Tj∑
t=1

4∑
i=1

(βstarit + γzi + ηi)

−
N∑
j=1

Tj∑
t=1

4∑
i=1

ln[
4∑

k=1

δijtkexp(βstarit + γzi + ηi)]. (A.7)

Notice that unlike the ordered logit model, here we cannot condition out the rank-receivers’ fixed
effects (ηi)s using CML-style estimators. So there is no way to consistently estimate the effect of
the receiver’s star-ratings in the rank-ordered logit specification.

A.2 Regression Discontinuity Design (RDD)

We now briefly explain the main idea behind a Regression Discontinuity Design (RDD) and then
discuss why our setting does not satisfy the main assumptions necessary for RDD. In RDD, treatment
is determined by comparing the value of an observed running variable to a known threshold. In a
valid RD design, treatment effect is identifiable if: (1) individuals just below the threshold are similar
to those just above it, and (2) individuals are unable to precisely control their running variable near
the threshold Lee and Lemieux (2010). These assumptions provide local randomization around
the threshold. So any jump in the outcome variable below and above the threshold represents the
treatment effect.

In our setting, popularityit can play the role of the running variable. A user i receives the three-
star treatment in game t if her popularityit is equal to or above three, and the two-star treatment if
popularityit lies between two and three (see Figure 3). A RD design would typically focus on a
sample of observations where the running variable lies within a small bandwidth just above and
below the threshold. Here, we focus on a sample of observations where popularityit lies within a
small bandwidth around the cutoff three, e.g., [2.95, 3.05]. Although we can claim that users cannot
precisely manipulate the running variable (popularityit), we cannot claim that the observations on
the two sides of the cut-off are similar because of two reasons. First, there is a lot of fluctuation
in a user’s star-rating in their first few games. The same individual can fall on different sides of
the bandwidth at different times. However, as a user plays more games, her/his star-rating starts
converging to a stable number. Because the threshold does not distinguish players based on the
number of prior games, it will pool players who played a few games and received a popularity in the
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range of [2.95, 3.05] with those who played many games and have a stable popularity in that range.
Therefore, we cannot argue that the observations just below and above the threshold are comparable.
Second, the running variable popularityit is calculated based on the previous values of the outcome
variable (prefijt ), which are influenced by the user’s previous star-ratings. This contamination
violates the randomization around the threshold i.e., users around the threshold can differ in their
history of prior treatments, which can have a systematic effect on their current star-rating. Thus, the
first condition of RDD to identify the treatment effect (similarity of the observations around the
threshold) is not satisfied.

B Appendix for Robustness Checks

B.1 Effect of Stars on Preference-Rankings - Linear Model

We consider the following linear model:

prefijt = β1star1it + β2star3it + γzi + ηi + εijt (A.8)

The main difference between these coefficients and those discussed in §6.1 is that these coefficients
directly relate to the observed outcome instead of the latent variable pref ∗. Hence, even though we
use the same variable names for expositional convenience, the interpretation of the coefficients in
the two models is different. In short, the magnitude of the coefficients from the two models cannot
be directly compared.

There are three possible estimation strategies here: (1) pooled OLS, that only includes star-
ratings variables as the independent variables but ignores the problem of correlated unobservables,
(2) a slightly more elaborate pooled OLS that includes all user-specific control variables (zi), and
(3) fixed-effects model, which addressed the omitted variable bias due to ηi by employing a “within”
transformation to subtract out the time-invariant user-specific variables.

A pooled OLS estimation strategy consists of pooling all the data across games and users, and
running a regression on this data. The results from pooled OLS models are shown in Models A1
and A2 in Table A1.The results from model A1 and A2 are substantively similar to those in model
M1 and M2 in Table 4.

Next, we discuss the fixed-effects estimation approach. Here, we start with the following
averaging equation for each user i:

pref i = β1star1i + β2star3i + γzi + ηi + εi, (A.9)

where pref i =
∑Ti

t=1

∑
j pref ijt

4×Ti , star1i =
∑Ti

t=1 star1it
Ti

, star3i =
∑Ti

t=1 star3it
Ti

, and εi =
∑Ti

t=1

∑
j εijt

4×Ti .

iv



(A1) (A2) (A3)
(OLS) (OLS) (FE)

star1it -0.08946∗∗∗ -0.08001∗∗∗ 0.01776
(0.01422) (0.01412) (0.01126)

star3it 0.03779∗∗∗ 0.04241∗∗∗ -0.03100∗∗∗

(0.00971) (0.01171) (0.00913)

Controls (zi) X

Constant 2.50031∗∗∗ 2.50558∗∗∗ 2.50006∗∗∗

(0.00113) (0.00740) (0.00034)
Individuals 24393 16461 3494
Observations 2980148 2339168 630160
R-Squared 0.00003 0.00254 0.00002
Standard errors (in parentheses) are clustered at the user level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Controls in Model A2 include: agei, collegei, graduatei,
pic scorei, num pici, employmenti, and bioi.

Table A1: Pooled OLS and fixed-effects estimates of the effect of user’s star-rating on preference-
rankings received.

zi, ηi are constant across time periods, and hence their averages are the same as the variables
themselves. Next, we subtract Equation (A.9) from Equation (A.8) as follows:

pref ijt − pref i = β1
(
star1it − star1i

)
+ β2

(
star3it − star3i

)
+ (εijt − εi) (A.10)

Note that all the time-invariant user-specific variables are now subtracted out and the new error
term, εijt − εi, is no longer correlated with the star-ratings variables. The fixed-effects estimator is
essentially a pooled OLS estimator for Equation (A.10) and it gives us consistent estimates of β1
and β2 under the linearity assumption. The results from this model are shown in model A3 in Table
A1. Note that to keep the comparisons consistent, we only use the first 100 games of users who
saw at least one star change during the observation period. Hence, model A3 in analogous to model
M3 in Table 4. The results from model A3 are substantively similar to those in model M3. This
suggests that our main results were not an artefact of the parametric specification of the model.

B.2 Estimation Sample

We present validation checks to confirm that our results in model M3, Table 4, are not driven by
the estimation sample (which consists of users who experienced at least one star change during the
observation period).
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B.2.1 Pooled ordered logit on users who went through star change

First, we run the pooled ordered logit model for rankings on the subset of users who experienced
at least one star change during the observation period (sample used in model M3). As shown in
Table A2, the magnitude and direction of the estimates in Model A4 are similar to those for the full
population model M1.

(A4)
star1it -0.13888***

(0.02369)

star3it 0.05136***
(0.01590)

µ2 -1.09054***
(0.00456)

µ3 -0.00036
(0.00420)

µ4 1.09067***
(0.00446)

Individuals 3494
Observations 630160
Standard errors (in parentheses) are clustered at the user level.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table A2: Ordered logit estimates of the effect of star-rating on preference-rankings received
(without fixed-effects), on the sample used in model M3.

B.2.2 Variation in Popularity Scores and Star-Ratings over Time

Next, we find that users who experience at least one star change are more likely to be new users
who joined the app recently and a vast majority of them had not played any games at the start of
the observation period. In contrast, users who do not see a star change are users who had played a
large number of games in the past. It is important to note that this difference between new and old
users does not reflect inherent differences in users, i.e., differences on user characteristics. Rather,
it captures the dynamics of star-ratings. As users play more games, the marginal impact of a new
game on their average popularity score is small. Thus, users who have played more games are less
likely to experience a star change compared to new users.

We illustrate this point using Figure A1, which shows how the change in users’ popularity score
in a given game (∆popularityit) varies as a function of the number of games played (total gameit ).
Here, ∆popularityit is the absolute value of change and equals to |popularityit − popularityit−1|.
Recall that popularity score (popularityit) is simply the average of preference-rankings received

vi



by i in all her/his prior t− 1 games. For the average user, the expected change in popularity score
reduces to 0.03 after fifteen games. This is simply due to the Law of Large Numbers – for any user i
with a set of characteristics zi, ηi, the popularity score (popularityit) starts converging to a constant
value after a few games (i.e., the marginal effect of each new ranking decreases). Thus, the variation
in the number of star-changes a user experiences in the observation period is largely a function of
whether s/he is new to the app or not.
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Figure A1: Absolute change in popularity score as a function of number of games played for all the
users in our data for the observation period.

B.2.3 Comparison of User-specific Observables for New Users

Of the 3,494 users who experience a star change in our observation period, 3,439 (98%) of them
are new users who joined in the observation period (initial gamei = 0). We now compare the
user-specific observables of these 3,439 new users (who went through a star-change) with those
of new users who did not go through a star-change during our observation period (3,680 users).
The results from this comparison are presented in Table A3.1 Overall, there is sufficient empirical
evidence to suggest that new users who experience at least one star change and those who experience
no star changes are largely similar. Thus, we expect that the findings from the fixed-effects model
to be applicable to the full population of users in the app.

B.2.4 Estimates from the Model M3 on the Sample Used in Model M7

Model M3 included all users who experienced a star-change and model M7 included observations
where the user experienced a star-change and also initiated a message. Below, we re-estimate model

1For each variable, we only include observations where users reported some value for it. That is why, the size of the
observations varies across variables.
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Variables Star Change Mean Std. Dev Size Pr(|T | > |t|)
agei No 21.950 7.393 2300 0.449

Yes 22.113 7.563 2538

bioi No 56.909 168.424 2715 0.368
Yes 53.045 152.914 2920

educationi No 1.737 0.512 2420 0.083
Yes 1.712 0.510 2595

employmenti No 1.777 1.295 1614 0.758
Yes 1.791 1.333 1727

num pici No 5.355 1.393 2629 0.665
Yes 5.338 1.426 2828

pic scorei (Male) No -0.092 0.635 1246 0.296
Yes -0.066 0.643 1296

pic scorei (Female) No -0.021 0.682 1066 0.077
Yes 0.031 0.737 1246

Table A3: Comparison of attributes between new users who experienced no star change and new
users who experienced at least one star change.

M3 with the sample used in model M7. We find that the results from this exercise are qualitatively
similar to those presented in model M3 (see Table A4 in Appendix §B.2).

(A5)
star1it 0.06800

(0.09577)

star3it -0.16914***
(0.06463)

Individuals 383
Observations 21696
Standard errors (in parentheses) are clustered at the user level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A4: Ordered logit fixed-effects estimates of the effect of star-rating on preference-rankings
received, on the sample used in model M7.
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B.3 Within Game Correlation

(A6)
star1it -0.01546

(0.02713)

star3it -0.07380***
(0.02135)

Individuals 3430
Observations 248,944
Standard errors (in parentheses) are clustered at the user level.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table A5: Ordered logit fixed-effects estimates of the effect of star-rating on preference-rankings
received, for a subset of games with one competitor who experienced a star change.

B.4 Star Configuration of the Competitors in a Game

For the set of users in the estimation sample, we calculate the probability of being in a game with
a specific configuration of competitors and present these probabilities in Table A6.2 The first row
considers observations where user i has a one-star rating (starit = 1). In this case, the probability
that s/he is competing with three users (i.e., the three other players of the same gender as i in game
t) who all have two stars is 94.17%. Next, in observations where a user i is shown with two stars
(starit = 2), the probability of competing with three two-star players is 96.77%. And, when user i
is shown with three stars (starit = 3), this probability is 94.11%. Therefore, regardless of when a
given user i decides to play a game, s/he is almost always competing with a similar configuration of
players. In particular, s/he is being compared to other two-star users in over 94% of the cases. Thus,
the data doesn’t show any evidence that users are self-selecting entry time to avoid/obtain certain
types of competitors.

2In Table A6, we only consider observations for users (i) who went through at least one star-change in the observation
period (to keep it consistent with our estimation sample in the fixed-effects model M3). Further, we only consider
games where all four competitors are shown with a star-rating. Users are not shown with any star-rating in their first
game. Further, sometimes, a user may compete with other players who are not shown with any star-rating. Therefore,
the total number of observations in Table A6 is smaller than the total number of observations in model M3 in Table 4.
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Total number of competitors with two stars
starit Observations (ijt) 3 2 1 0

1 10,708 10,084 (94.17%) 616 (5.75%) 8 (0.07%) 0
2 583,328 564,512 (96.77%) 18,444 (3.16%) 360 (0.06%) 12 (0.00%)
3 17,644 16,604 (94.11%) 984 (5.58%) 56 (0.32%) 0

Total 611,680

Table A6: Number of observations and probability distribution of the number of two-star competitors
that a focal user i faces. (The set of users is the same as the estimation sample, i.e., users who went
through at least one star-change (starit)).

C Conditional Log Likelihood for the Fixed-effects Logit Model
To study the relationship between the users’ likelihood of receiving messages and their star-ratings,
we consider the following fixed-effects logit formulations:

yijt =

1, y∗ijt > 0

0, else

where yijt is a binary variable and it can refer to firstijt or replyijt , and y∗ijt is the corresponding
latent variable as follows:

y∗ijt = β1star1it + β2star3it + γzi + ηi + εijt, (A.11)

We allow for ηi to be arbitarily correlated to star1it and star3it. Further, we assume that star1it,
star3it and ηi are independent of εijt since users are randomly assigned to games. Assuming that
εijts are IID and drawn from an Extreme Value Type I distribution, we can write:

Pr(yijt = 1|star1it, star3it, zi, ηi, β1, β2) =
exp(β1star1it + β2star3it + γzi + ηi)

1 + exp(β1star1it + β2star3it + γzi + ηi)
(A.12)

We can now write the log-likelihoods of yijt (the first messages or replies) observed in the data as:

LL(β1, β2, γ) =
N∑
i=1

Ti∑
t=1

1∑
k=0

ln
[
Pr(yijt = k | star1it, star3it, zi, ηi, β1, β2)I(yijt=k)

]
(A.13)

where N is the total number of users and Ti is the total number of games played by user i. Treating
the ηi’s as parameters and maximizing this log-likelihood via Maximum Likelihood Estimator
(MLE) is inconsistent with large N and finite T due to the well-known incidental parameters
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problem (Neyman and Scott, 1948). As a result, the estimate of β1, β2 from this approach will
be inconsistent. However, Chamberlain (1980) proposes a method to maximize a Conditional
Log-Likelihood which gives consistent estimates. Following Chamberlain (1980), we denote si as
the sum of all received messages (first messages or reply messages) by user i from his/her matches
over time, that is:

si =

Ti∑
t=1

(yijt |matchijt = 1) (A.14)

and, we denote Bi as the set of all possible vectors of length Ti with si elements equal to 1, and
Ti − si elements equal to 0, i.e. all possible ways that user i could receive si messages in total over
Ti games, that is:

Bi = {d ∈ {0, 1}Ti |
Ti∑
t=1

(djt = si |matchijt = 1)} (A.15)

For example, if user i plays three games (Ti = 3), and receives only one message in total (si = 1),
Bi will be equal to {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Now, we can write the conditional probability of
yi given si as:

Pr (yi | star1it, star3it, si, β1, β2) =
exp (yi. (β1star1it + β2star3it))∑
d∈Bi

exp (d. (β1star1it + β2star3it))
(A.16)

Note that this conditional probability does not depend on ηi’s, i.e. si is a sufficient statistic for ηi.
Thus, we can now specify a Conditional Log-Likelihood that is independent of ηis as shown below:

CLL(β1, β2) =
N∑
i=1

Ti∑
t=1

ln [Pr(yi | star1it, star3it, si, β1, β2)] (A.17)

D Validation Check: Truthfulness Assumption
In §9.2, we assumed that users state their preference-rankings truthfully during the game in As-
sumption 1. This assumption ensures that the relationship between users’ latent expected utilities
for any pair of potential partners is consistent with their stated preference-ranking over them, i.e.,
if EUijt > EUi′jt, then j should rank i and i′ such that pref ijt > pref i′jt. We now present some
background for this assumption and empirically validate it.

In our setting, the ranking game resembles a one-to-one marriage SMP, where: (1) agents have
to state their strict preference-rankings (i.e., no indifference rankings), (2) agents cannot truncate
their list of preference-rankings (i.e., they cannot strategically choose to only rank their top few
choices and refuse to rank their bottom choices), (3) agents cannot collude with each other, (4)
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State true 1st and 2nd 2nd and 3rd

Match with preferences preference misrepresentation preference misrepresentation
Assuming stated preferences are true preferences

true 1st choice 49.24 28.23 49.27
true 2nd choice 28.25 49.28 14.90
true 3rd choice 15.00 14.99 28.33
true 4th choice 7.51 7.50 7.50

Assuming true preferences are random
true 1st choice 49.48 28.15 49.47
true 2nd choice 28.17 49.54 14.86
true 3rd choice 14.90 14.89 28.21
true 4th choice 7.45 7.42 7.46

Table A7: Match results if users misrepresent their preferences.

agents’ preferences are private (i.e,. users know their own preferences but not those of others’).
Under such circumstances, it has been shown that, when a men-optimal stable matching mechanism
is used, it is the dominant strategy for each man to state his true preferences, and any strategy
for a woman is dominated if her stated first choice is not her true first choice; and vice-versa for
women-optimal stable matching mechanism (Roth, 1989).3 However, it has been shown that the
incentive to manipulate true preferences is negligible for both sides in most real, large markets
(Demange et al., 1987; Pittel, 1989; Lee and Yariv, 2018; Lee, 2016).

Our platform does not use either a men-optimal or a women-optimal matching mechanism.
Instead, as discussed in §3.2.3, it calculates the set of all possible stable matches and picks the
matching with the highest average match-level. Under these conditions, there are no theoretical
guarantees on truth-telling for any side of the market. Nonetheless, there are no obvious reasons for
users to deviate from truth-telling in our setting. While we cannot theoretically prove this, we now
empirically establish that, on average, users cannot gain by mis-representing their preferences in
our setting.

We now present two types of deviation checks. In the top panel of Table A7, we start with
the assumption that a player’s stated preferences are her/his true preferences. The second column
represents the average probability of a player being matched with her/his true first, second, third,
and fourth choices if the player ranks truthfully (based on the preference-rankings and match levels
observed in the data). We find that truthful revelation leads to being paired with the first choice
49.24% of the times, the second choice 28.25% of the times, the third choice 15.00% of the times,
and the last choice 7.51% of the times. Next, we consider the following deviation: suppose that in
game t, everyone except a focal player j plays the same strategy as that observed in the data, and j

3The kind of stability studied in the case of incomplete information is ex-post stability, i.e. a stable matching would
remain stable even if all the preferences were to become common knowledge (Roth, 1989; Roth and Sotomayor, 1990).
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swaps her/his first and second choices. We then calculate which of her/his true preferences j will be
matched with. Then, we aggregate the match outcomes over all players and all games to obtain the
average probability of being matched with one’s true first choice under this deviation as:

Pr(true first choice) =

∑T
t=1

∑
j∈t I(match leveljt = true first choice|pref 12

jt , pref −jt)

8T
, (A.18)

where pref 12
jt denotes a strategy where player j swaps her true first and second choices, and pref −jt

denotes the preference-rankings observed in the data (i.e., other users’ strategies). Similarly, we
also calculate the average probabilities of being matched with one’s true second, third, and fourth
choices.

The results from this simulation exercise are shown in the third column. Notice that misrep-
resenting preferences makes players strictly worse off. When a player ranks her true first choice
as second, the probability of being matched with the true first choice drops to 28.23%. In the
fourth column, we show the results from an analogous exercise, when a player misrepresents by
swapping her second and third choices, i.e., plays pref 23

jt . Again, note that misrepresenting the
preferences makes a player strictly worse off compared to truth-telling. Using similar simulations,
it is possible to show that all other deviations also make players strictly worse off, compared to
truthful revelation.

One possible critique of the above exercise could be that we started with the assumption that
players stated-preferences are their true preferences. Therefore, we also present results from a
general case, where the player’s true preferences are drawn randomly (see the bottom panel of Table
A7). Again, we find that deviating from truth-telling makes users strictly worse off. In sum, all our
tests confirm the validity of the truth-telling assumption in our setting.

Finally, note that there is no need to make any additional assumption on truth-telling for both
first and reply messages since they are both single-agent decisions, and there is no game involved.
Therefore, each player only has to follow her/his expected utilities and doesn’t have to worry about
the strategic behavior of other players. So, by definition, a player’s revealed preferences reflect
her/his expected utility.

E Conversation History
We now examine the heterogeneous effects of star-ratings based on rank-giver’s conversation history,
and provide more evidence to show that the negative effect of three-star ratings during the game
stems from rejection concerns. We start by defining conversationjt as the average number of
successful conversations that user j experienced before game t. A successful conversation from j’s
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(A7)
star1it 0.0410055

(0.0256374)

star3it -0.0865357∗∗∗

(0.0192754)

successful jt 0.0000904
(0.0053202)

star1it × successful jt -0.0344794
(0.0366443)

star3it × successful jt 0.0736327∗∗∗

(0.0270534)

Fixed Effects (ηi) X

Individuals 3494
Observations 619065
Standard errors (in parentheses) are clustered at the user level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A8: Heterogeneous effect of star-ratings based on the rank-giver’s conversation history (using
ordered logit fixed-effects model).

perspective is defined as one where j either received a first message from the matched partner, or
received a reply to a message that s/he had initiated with the match.

Next, we stratify users (rank-givers) based on their conversation history. In our data, a median
user experiences an average of 0.016 successful conversations in her/his prior games. Based on
this value, we define the binary variable successful jt as one if conversationjt > 0.016 and zero
otherwise. Next, we add this binary variable and its interactions with receiver’s star-rating to
Equation (3), and re-estimate the model. The results from this exercise are shown under model A7
in Table A8. The main effect of star3it (when successful jt = 0) stays negative and significant. This
indicates that when a user is shown with three stars, s/he receives lower preference-rankings from
the rank-givers who have not had successful conversations in the past. However, the interaction
effect of star3it × successful jt is positive and significant, i.e., three stars users receives higher
preference-rankings from rank-givers who experienced more successful conversations in the past.
This suggests that rank-givers with a successful conversation history are less rejection-averse when
they are ranking a popular user.
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F Physical Attractiveness
In this section, we examine the heterogeneous effects of star-ratings based on users’ physical
attractiveness, and provide additional evidence for strategic shading.

We start by stratifying users (rank-givers) based on their physical attractiveness. As summarized
in Table 1, the median user has a standardized pic score of -0.09. Based on this value, we define
the binary variable attractivej which equals one if pic scorej > −0.9 and zero otherwise. Next,
we add this binary variable and its interactions with receiver’s star-rating to Equation (3) and
re-estimate the model. The estimation results are shown in model A8, Table A9. The main effect of
star3it (when attractivej = 0) stays negative and significant and the interaction effect of star3it
with attractivej is not statistically significant. This suggests that there is no difference in how
rank-givers (attractive or unattractive) rank three-star users.

Next, we further stratify the data based on the physical attractiveness of the rank-receivers. We
re-run the analysis separately for attractive receivers (attractivei = 1) in model A9, and unattractive
receivers (attractivei = 0) in model A10. In model A9, we find that the main effect of star3it is
negative and significant. The main effect (when attractivej = 0) suggests that unattractive users
give lower preference-rankings to attractive receivers. We also find that the interaction effect of
star3it with attractivej is positive and significant. The interaction effect (when attractivej = 1)
implies that the attractive users give higher preference-rankings to attractive receivers. This suggests
that only unattractive users avoid attractive popular users. This is consistent with our hypothesis of
strategic shading due to rejection concerns since we expect unattractive users to be more concerned
about being rejected, especially when they are ranking attractive users.

Next, in model A10, we re-run the analysis for unattractive receivers (attractivei = 0). However,
we find no significant results.4 Thus, we find no evidence showing that users are concerned about
being rejected when ranking an unattractive user.

4The number of individuals (rank-receivers i) in model A8 is greater than the total number of individuals in model A9
and A10 combined. This is because we do not have the attractiveness score for all rank-receivers.



(A8) (A9) (A10)
All Attractive Unattractive

Rank-Receivers Rank-Receivers Rank-Receivers
star1it 0.02746 -0.04517 0.02777

(0.02686) (0.05061) (0.03848)

star3it -0.07573∗∗∗ -0.06781∗∗ -0.05612
(0.02093) (0.03122) (0.03492)

attractivej -0.01350∗∗∗ -0.01949∗∗ -0.01036
(0.00496) (0.00779) (0.00727)

star1it × attractivej -0.02466 -0.05755 -0.02964
(0.03788) (0.07384) (0.05652)

star3it × attractivej 0.04578 0.10459∗∗ 0.02747
(0.02924) (0.04332) (0.05100)

Fixed Effects (ηi) X X X

Individuals 3477 1233 1354
Observations 544161 223108 246059
Standard errors (in parentheses) are clustered at the user level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A9: Heterogeneous effect of star-ratings based on users’ physical attractiveness (using ordered
logit fixed-effects model).
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