Statistical Issues in the Evaluation of Hospital or Provider Performance
Introduction:  
Clinical indicators of the process of care and specific patient outcomes are increasingly being used to assess the quality of health care delivered by hospitals and by individual physicians.  Performance monitoring is now a component of most quality improvement initiatives.  In this document we focus on surgery and on assessment of hospitals and individual surgeons.  We use the phrase “unit” to refer to the unit of analysis whether this is hospital or surgeon. 
The appropriate interpretation of numerical performance summaries requires caution:

(1) Different providers may be assessed based on a variable number of surgeries and therefore individuals will be summarized with different levels of precision.

(2) Some measure of uncertainty such as a confidence interval should accompany any summary measure.

(3) Crude performance summaries do not account for the mix of cases that were handled by the provider.  Therefore, methods that can adjust for the case-mix are desirable.

Statistical Methods:

We focus on binary indicators of process or outcome.  A key example is the indicator of 30 day mortality.  For each unit the number of successful events is denoted as Y and the total number of surgeries is denoted as N.

Crude analysis methods:  The standard crude analysis method is to report a simple proportion of successful events:  p = Y/N.  If inference on the event rate is desired then exact binomial methods can be used to construct a confidence interval for the event rate (see Rosner, Fundamentals of Biostatistics, 4th Edition, p. 177).  Exact binomial methods can be applied even with a small number of surgeries.  If an expected number of events can be provided then a relative risk may be used as a summary:  RR = Y / E, where E denotes the expected number of events.   Since the relative risk is RR = (Y/N) / (E/N) = p / p0, a confidence interval for the relative risk can be constructed using the exact binomial confidence interval for p divided by the expected rate, p0.  Shahian et al. (2001) correctly note that small sample sizes (ie. small N) make it difficult to obtain statistically significant differences.  Furthermore, if N is small a confidence interval will be wide and therefore provide little narrowing of the plausible values for the unknown rate.
KEY POINTS:

1. The precision of estimation of the rate will be inversely proportional to the number of surgeries, N.  The width of the confidence interval for the rate is given by the normal approximation for large N:  2*1.96*sqrt( p(1-p)/N ).

2. Exact binomial methods can be used to make inference regarding an individual rate or relative risk when using an external reference rate, p0.

Hierarchical Regression Models:  Numerous authors have recognized that variation in outcomes can be partitioned into systematic and random components.  Systematic components included measured characteristics of patients and/or physicians.  Random components are those aspects that are unique to a specific unit and not able to be explained by measured covariates.  Regression methods that allow both fixed and random effects can summarize the components of variation and estimate or predict individual units effects by estimating these so-called random effects.  Models that include fixed and random effects and are applied to data with a nested organizational structure are called “multi-level models” or “hierarchical models”.  The following papers overview hierarchical regression methods for assessing performance:  Burgess et al (2000); Normand, Glickman, and Gatsonis (1997); Spiegelhalter et al. (2002); Shahian et al. (2001).  
The basic regression model is given in terms of:

  
Y(i,j) = outcome for subject j in unit i.


p(i,j) = P[ Y(i,j) = 1 ]


logit p(i,j) = a(i)  + b1*x1(i,j) + …. + bk*xk(i,j)



Stage 1

For example, the response Y(i,j) may represent the death of patient j seen by physician i.  In this regression model the covariates, x1 … xk, can be specific to the individual measurements, j, or to the unit i.  The regression model has an intercept that is specific to physician i.  This implies a unique rate for the physician.  Covariates may be measures of the individual patient or of the physician.     

The next stage of a hierarchical model assumes that the random “unit effects” denoted by a(i) are realizations from a population of units.  Commonly the model will assume that a(i) is normally distributed about some median value, A, with a standard deviation, sigma.  This represents the second stage:


a (i)  are normally distributed with mean A, and variance sigma^2

Stage 2

In this model the standard deviation sigma represents the magnitude of random variation associated with differences among units that can not be explained by the covariates x1, …xk.

When interest lies in the estimation of performance for specific units the regression model given by stage 1 serves to adjust for important patient prognostic factors.  In this regard the regression model is used for case-mix adjustment.  The performance goal is to estimate the so-called random effects, a(i).  The variance component sigma measures the magnitude of unit-to-unit variation in outcome and is an important summary of heterogeneity among units.

Estimation of the random effects, a(i), is usually conducted using Bayesian statistical methods.  The main idea behind estimation of a(i) using these techniques is that information about any unit comes from two sources:

1. The data on subjects for the specific unit:  Y(i,j) for j=1,2,…,n

2. The stage 2 assumption that units represent realizations of random variables from a population of units.  In this regard the estimate of a(i) should not be “too far” from the estimates for other units, where the variance component sigma is used to characterize distance. 

If only maximum likelihood methods are used to estimate the regression model parameters (including the variance component sigma) then estimates of a(i) are called “empirical Bayes estimates” (see Carlin and Louis 1996 for further details).   Alternatively all unknown quantities including the regression coefficients can be considered random variables and full Bayesian methods can be used.  The full Bayesian approach is popular recently due to computational algorithms that allow application in settings where maximum likelihood estimation remains difficult, such as with the mult-level logistic regression model given above.  The main advantage of empirical Bayes estimation is that individual random effects are “shrunk” toward the center of all individual estimates.  This tends to draw extreme crude estimates toward the rest of the individual units.  The degree to which individual estimates are “shrunk” to the central estimate depends on the amount of data for the unit and the magnitude of the variance component sigma.  With a large amount of data for a unit there will be little shrinkage.  With a small variance component there will be large shrinkage as the model suggests that there is little real variation among the individual units.  
In the example section a hierarchical model is applied to the Washington State data and resulting estimates are discussed in context.

KEY POINTS:

1. Multi-level or hierarchical regression models allow estimation of fixed effects (case mix adjustment) in addition to random effects (unit specific deviations).

2. Estimates of unit deviations obtained using Bayes or empirical Bayes methods are different from crude estimates even when no covariates are used.  Empirical Bayes estimates “shrink” individual estimates toward the group mean and thus reduce the range of individual estimates.

3. Regression methods are useful for periodic evaluation of units.  These are not well suited to continuous monitoring.
Continuous Monitoring Methods:  The industrial quality control literature has developed techniques that are appropriate for continuous quality monitoring.  These methods are sometimes referred to as CUSUM methods, or CUSUM plots.  See Gibberd, Pathmeswaran, and  Burtenshaw (2000), or Steiner et al. (2000) for medical applications.  The basic idea behind CUSUM methods is to continuously plot the cumulative difference between the observed number of events and the expected number of events.  Thresholds can be identified to “flag” a unit as warranting attention.  The selection of the threshold is much like the selection of sensitivity and specificity:  a low threshold has a high likelihood of identifying a unit with a true elevated risk (high sensitivity), but will also falsely identify units that do not have a true elevated risk (low specificity).    Poloniecki et al. (1998) illustrate use of these methods for monitoring cardiac surgery.
Some information on appropriate samples necessary:  When crude methods are to be used to assess an individual unit then standard methods can be applied.  Such methods are based on the binomial distribution and simple tools such as the STATA command “sampsi” can be used to determine the necessary sample size.
To help graphically illustrate the necessary sample size we have created Figure 3 which is adapted from Figure 1 of Poloniecki et al. (1998).  One factor that complicates the determination of required sample size is variation in the rate of adverse outcome, or the parameter “p”.  First, in order to display the sample size required for a range of small values of “p” the expected number of events under the null can be used:  E = N*p0, where p0 is the null rate, or the acceptable rate based on external information.  For large N and small p0 the number of events, Y, can be approximated by a Poisson distribution with mean given by E.  Second, the null and alternative rates can be compared using the relative risk:  RR = p1 / p0.  Then, for a given E, and specified RR the power to reject the null hypothesis that the rate is p0 when the true rate is p1 = RR*p0 can be computed.  Figure 3 below plots the power curve as a function of E for different relative risks, RR.  For example, if the expected number of events is 40, and the relative risk is 1.5 then the power to detect a difference is approximately 80%.  The advantage of this display is that the expected number of events can be applied to settings with different event rates:  40 is expected with a rate of p0=0.04 and N=1,000; or with a rate of 0.16 and N=250.  From Figure 3 we can see that a large number of events is required to reliably detect increases represented by relative risks less than 1.5.  For example, the power to detect a relative risk of 1.2  is less than 50% even with an expected number of events equal to 100.  

KEY POINTS:

1. To communicate the necessary sample size for relatively low event rates it is convenient to work in terms of the expected number of events, E, and the relative risk, RR.

2. If relative risks less than 1.5 are of interest then large sample sizes (number of surgeries) will be required to reliably detect an elevated risk.

Example Analysis of Washington State Data
To illustrate the use of hierarchical models for the estimation of performance we apply multi-level logistic regression to hospital level data.  

Data: 

Y = all complications, abdominal surgery, FY2001

N = total number of procedures

X = (expected complications / total number of procedures)

These data were sent to me from Miriam Marcus.  The goal of the analysis is to show that estimation can be done using case mix adjustment and using empirical Bayes methods.

Crude estimates:  


Figure 1 displays the crude rate estimates, p = Y / N, and associated 95% confidence intervals based on the exact binomial method.  The units are ordered by the estimated value.  Note that confidence intervals are quite wide for units with a small procedure volume.  The range of point estimates is from a low of 0.0 to a high of 0.35.
Statistical models:

Unadjusted model:     logit p = a(i)




Stage 1

  a(i) normal ( A,  sigma^2 ) 

Stage 2

Adjusted model:
logit p = a(i)  + b*X



Stage 1

  a(i) normal ( A,  sigma^2 ) 

Stage 2

In the unadjusted regression model we are using only an intercept in the regression model.  The variance component sigma represents the standard deviation among units in the log odds of a complication.  In this sigma measures the magnitude of unexplained hospital to hospital variation.

In the adjusted regression model we are using the expected count to create a case-mix measure specific to the hospital.  This is for illustration only, and further work would be needed for model checking.  The main use of this model is that the random intercepts a(i) now represent random variation that is not explained by the predictor X.  In this regard we can think of a(i) as an estimate of the hospital effect after adjusting for patient mix.

Figure 3 shows three estimates:

a) The crude estimate defined as:  p = Y/N

b) The empirical Bayes estimate defined as:  p = expit[ a(i) ]

c) The adjusted empirical Bayes estimate defined as:  p = expit[ a(i) + Xbar ]

Note that for the adjusted empirical Bayes estimate we have used the hospital specific effects a(i) but have assigned the mean covariate value for each unit.  These estimates therefore adjust for the covariate X.

Comments on results:

1. The estimate of sigma in the unadjusted model is 0.451 (95% CI  0.347, 0.556). 

2. The estimate of sigma in the adjusted model is 0.335 (95% CI 0.247, 0.423).  This shows that by including predictors of the outcome we can reduce the magnitude of unexplained variation.  The reduction in unexplained variation may be summarized by (0.451^2 – 0.335^2)/( 0.451^2 ) = 45% reduction.  The coefficient of X is highly significant.

3. Figure 3 show that empirical Bayes estimates “shrink” the individual estimates to the mean of all estimates.  In addition, those estimates based on small N are shrunk more than other estimates.  For example, the smallest estimates are hospitals with Y=0 and N that ranges from 1 to 32 observations.  These are all estimated to have a higher rate than the hospital with Y=33 and N=523, p=33/523=0.063 which has the smallest empirical Bayes estimate.  Since this is a higher volume hospital the empirical Bayes estimate is only modestly different from the crude estimate.  Note also that the hospitals with the largest crude estimates are not those with the largest empirical Bayes estimates.

4. The variation in the crude estimates is larger than the variation in the empirical Bayes estimates.

5. The estimates that are based on adjustment for the covariate are less disperse than either the crude estimates, or the empirical Bayes estimates that do not adjust for the covariate.

Note that the empirical Bayes estimates using the adjusted model lead to changes in the ranking of the individual units.  Some hospitals have estimates that are larger than the unadjusted estimates, while some have smaller estimates.
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Figure 1:  The observed adverse event proportion for each hospital with 95% confidence intervals using exact binomial methods.  The hospitals are ordered vertically by their estimated proportion defined as (events/surgeries).  The column on the right shows the raw data (events/surgeries) for each hospital.
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Figure 2:  This figure shows the use of empirical Bayes estimation and case-mix adjustment for each hospital.  The observed value displayed on the left is defined as the number of events divided by the total number of surgeries.  The first set of predicted values shown in the center are obtained using “shrinkage” methods known as empirical Bayes estimation.  The empirical Bayes estimates are obtained from a logistic regression where each hospital is assumed to have a random intercept and no covariates are used.  The adjusted predicted estimates shown on the right are obtained using empirical Bayes estimation after also adjusting for the expected event rate based on a “case mix” measure.  


[image: image3.wmf]expected count (null)

power to detect RR

0

20

40

60

80

100

0.0

0.2

0.4

0.6

0.8

1.0

RR = 1.1

RR = 1.2

RR = 1.5

RR = 2

RR = 3

Figure 3:  This plot shows the power to detect an increased event rate.  The expected count under the null is defined as the null adverse event rate, p0, times the number of surgeries, N:  expected count = N * p0.  If the rate increase is defined in terms of the relative risk RR = p1 / p0, then the plot shows the power to detect a significant difference between the null rate p0, and the alternative rate p1 = RR * p0.  
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Appendix 1:   SAS code to fit hierarchical logistic regression models
options linesize=80 pagesize=60;

data hosp;

  infile 'Hospital.data';

  input id nAll yAll expAll rAll nApp yApp expApp rApp; 

run;

data hosp; set hosp;

    pAll = expAll/nAll;

    pApp = expApp/nApp;    

run;

proc genmod data=hosp;

        class id;


model yAll/nAll =  /

                  dist=binomial link=logit;

        repeated subject=id / corrw type=ind;

run;

proc genmod data=hosp;

        class id;


model yAll/nAll = pAll /

                  dist=binomial link=logit;

        repeated subject=id / corrw type=ind;

run;

proc nlmixed data=hosp qpoints=20;

       parms B0=-1.5 sigma=0.25;

       lp = a + B0;

       mu = exp( lp ) / (1 + exp( lp ) );

       model yAll ~ binomial( nAll, mu );

       random a ~ normal( 0, sigma*sigma ) subject=id;

run;

proc nlmixed data=hosp qpoints=20;

       parms B0=-3.35 B1=10.49 sigma=0.25;

       lp = a + B0 + B1*pAll;

       mu = exp( lp ) / (1 + exp( lp ) );

       model yAll ~ binomial( nAll, mu );

       random a ~ normal( 0, sigma*sigma ) subject=id;

run
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