" General Linear Model
for Correlated Data

Objectives:

e Weighted least squares methods
o Moment estimation
o Sandwich variance

e Linear mixed models.
o Models for covariance

o Maximum likelihood and REML

x Empirical Bayes estimation /

186 Heagerty, Bio/Stat 571




/ General Linear Model for Correlated Data \

Example:

e Longitudinal FEV in cystic fibrosis patients.

Example:
e Longitudinal CD4 count in HIV patients.

Example:

e Depression score in a community randomized trial.

Example:

e Lung function, asthma, and air pollution.

\_ /
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/ General Linear Model for Correlated Data \

Consider a sample of N randomly selected units:

where the Y'; are independent vectors and n; may or may not be the

same for all units 7.
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/ General Linear Model for Correlated Data \

Associated with the jth measurement on the 7th unit is a 1 X p vector
of covariates

Xi; = (X, Xijo, .o, Xijp)
(1 x p)
[ X )
X
X@' — ?

\ X..

(ns X p)

In the design matrix X ; the rows correspond to different times of

{neasurement, and the columns are different variables. /
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/Covariates may be: \

1. Cluster specific, time invariant, or between-subject, so that

Xitk = Xiok = ... = Xin,k

for some 1 < k < p. Examples include sex and race in a
longitudinal study, and fixed experimental conditions in a

longitudinal clinical trial.

2. Subject specific, time varying, or within-subject, i.e., covariate k
varies with j so that Xj;; # X;;/%. Examples include time since
baseline, experimental condition in crossover or repeated measures
designs, smoking status or height in a longitudinal study, or
individual characteristics in a clustered sample survey. In some
cases (pure repeated measures designs, or longitudinal studies with
fixed time points), X;x = X, for all 7.

\_ /
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/3. Fixed by design, e.g., treatment group indicator, time since \
baseline, or individual characteristics in a sample survey.

4. Stochastic, e.g., height, current smoking status, or pollution

exposure in a longitudinal survey.

\_ /
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/ General Linear Model \

The model assumes:

1. If X is stochastic, (Y1,X1),...,(Y n,X ) are independently
distributed. If X; is fixed by design, then Y ; are independent.

2. Given X
EY,| X;,) = X3
(i x1)  (nixp) (px1)
COV(Yz' | Xz) = EZ
(7?,7; X nz)

\_ /
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/ General Linear Model \

e (1) simply states that the sample consists of independently selected

units.

e (2) says that given X1, X;2,...,X;n,, the mean of Y;; is linear
and depends on X;;:

E(Yi; | Xi) = Bo+ 1 Xij1 + BaXija + ... + BpXijp

\_ /
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194

= h

The model may not hold with certain stochastic time varying

covariates. The model implies
E(Yi; | X1, X2, ..., Xin,) = E(Yi; | Xij)

but if current outcomes predict future values of the covariates then the
mean of the outcome at a given occasion may depend on future
covariates. For example, if Y;; is a symptom measure, and X;; is an
indicator of drug treatment then past symptoms may influence current

treatment (usually a good idea!).
Formally,

f( X1 | Xij)
f(Yij | Xij)

if f( X1 | Yij, Xi )

£
then f(Yi; | X5, Xij+1) #

\So that the conditional expectation E(Y;; | X;) may not be correct./
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= h

The covariance X; allows for dependencies among measurements on

the same unit. Covariance may vary with covariates, e.g., across
treatment group, or the covariance may be a function of time.
Alternatively, 2J; may depend on 7 only through n;.

\_ /

195 Heagerty, Bio/Stat 571




/ Covariance Matrix \

We will consider two approaches where 33; is unstructured (only for

“balanced” data), and where 3I; has a specified structure.

Define: | A Balanced and complete design means that all subjects

are measured at the same n occasions. Balanced only means that
subjects should be measured at the same occasions, but some subjects
are not observed at all occasions (n; < n).

\_ /
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/ GLMCD using stacked notation \

The GLMCD can be written as:

EY |X) = X3
(an‘XU (an’Xp) (px1)

(1 0 ... 0 )

0 B ... 0
cov(Y | Xi) =

\ 0 0 S,

o If Balanced and complete then ) . n; =n- N.

\_ /
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/ Examples \

* | One sample repeated measures ANOVA

N subjects are measured repeatedly under n different experimental

conditions. The goal is to quantify differences in experimental
conditions.

(10 0\ ()

0O 1 ... 0
EY,;| X;) =

Lo o0 1)\ )
Here X, =1,, 3 =u, and p =n.

\_ /
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/ Example: Repeated Measures ANOVA \

It is often assumed that the covariance of Y; has a compound
symmetric form which arises from the model:
Yij = pj + o + €5

where the «;'s and the ¢;;'s are independent of each other, with

var(a;) = 72 and var(e;;) = o2

\_ /
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/ Example: Repeated Measures ANOVA \

We can use vector notation to represent the model as:
Y, = pt+tol+teg
cov(Y; | X;) = 7211t +0°1,
( o’ + 72 T2 e T2 \
T2 o+ 7% ... T2
\ 72 T2 .. 0?4712 )

\_ /
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/ Examples \

x| One way multivariate ANOVA (MANOVA)

We assume G treatment groups, and n measurements are obtained in
each of N, subjects in treatment group g.

Goal is to test if the mean vector is the same for all G groups, where
we assume the mean model:

E(ng|Xz) = l’l’g g:1,2,...,G
(n x1) (n x1)

\_ /
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/ Example: MANOVA \
( Hq \

Mo

 he

E(Y; | X:) = (0,...,0,1,,0...,0)

The usual MANOVA assumes X; = X is unstructured:

(0'11 012 O1n \
0921 0929 O2n
cov(Y;,) =
\ Onl On2 Onn )

\_ /
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/ Examples

~

* | One group polynomial growth curve model

a polynomial in t;

E(Yy; | X5) = Bo+ Pty + Pat;
(1 & )

1 t, t3

E(Y;|X;) = B

203

\ \ 1 b, 2 )

N subjects are observed at the same times 1,19, ...
group of children from the same cohort is observed yearly at ages 6, 7,
8, ..., 12. A linear model of the average response can be expressed as

,t,,; for example a

Bo
S
2

/
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/One model for XJ; arises from assuming that each subject has his or \

her own growth curve with parameters 3,:
E(Y,|B; X)) = XB,
cov(Y; | B, X;) = o°I,
and
E(ﬂi | Xz) = p
cov(3, | X;) = D
then
EY;|X;,) = Xp
cov(Y; | Xi) = covlE(Y; | B;)] + Elcov(Y; | B;)]
>, = XDX'"+40%I,

\_ /
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/

* | Family studies: Hypertension

Examples

~

205

Here ¢ indexes famaily. For N families the outcome is blood pressure
and the covariates include age, gender, weight, height, physical
activity, diet, smoking, etc. We include all known risk factors in the

mean model, and then study the residual correlation.

>.; may be structured for genetic models as follows:

M
F
Ch
Cs
Cs

[ o
OMF

ocp

ocp

\ ocr

oA

ocp
ocp

ocp

occ

occ

/
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/ Longitudinal Studies \

In many cases the primary focus of a study is the change in the mean

response over time. This can be modelled by X ;3 and then X,
represents parameters of secondary interest (or quite possible nuisance
parameters).

If n; is large and/or the design is inherently unbalanced then it may be
desirable to impose some strucure on XJ;.

Method 1: | Random effects models

Method 2: | Serial correlation models

\_ /
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/Banded:

This implies

\_

is that the correlation only depends on the distance

[ 1

P1 P2
P1 1 P1
= o’ P2 P1 1

\ P(n—1) P(n—2) P(n—3)

var(Y;;) = o7

corr(Ys 5, Yi jtk) pr Vi, k

When measurements are equally spaced one assumption\

P(n—1) \
P(n—2)
P(n—3)

/
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/Autoregressive: For data that arise over time it is often reasonable\
to assume that correlation between measurements that are close in

time is greater than the correlation of measurements that are widely
separated in time. One model is (here for unit spaced observations):

( 1 ol 2 . pD \
,01 1 pl o IO(’I’L—Q)
S = o > o' 1 ... pn3)
\ p(n—l) p(n—2) p(n—3) o 1 )
One construction is given by
var(Yy) = o?
Yij [ Yig = pYij+ei
var(e;;) = o°(1—p*) independent
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/ Cross-sectional versus Longitudinal Effects \

In our simple growth curve model we assumed that all subjects were
measured at the same times, ¢,, and were from the same cohort (i.e.
same age at baseline). This is rarely the case in observational studies.

Individuals enter at different ages, and measurements may be taken at
different times. This design provides the opportunity to obtain
information about differences between cohorts, as well as differences

due to aging.

\_ /
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/ Cross-sectional versus Longitudinal Effects \

Ware et al. (1990) discuss a study of pulmonary function where PF
was measured every three years for baseline and two follow-up visits on
a sample of never-smoking adults. One PF measure is FEV1 (forced
expiratory volume in 1 second). They found:

\_ /
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/ Cross-sectional versus Longitudinal Effects \

Possible reasons:

e Cohort Effects — younger cohorts are exposed to higher levels of
pollution.

e Attrition — we may only see older subjects that are healthy.

\_ /

211 Heagerty, Bio/Stat 571




/ Cross-sectional versus Longitudinal Effects \

We can partition age, X;;, into two components:

o Cross-sectional comparisons:
E(Y1 | X)) = Bo + BeXa
o Longitudinal comparisons:
E(Yi; — Yo | Xi) = Br(Xi; — Xi)
Putting these two models together we have:

EY;; | Xi) = Bo+ BcXi + Br(Xi; — Xi)

N /
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/ Missing Data Issues \

With longitudinal data we must consider the reasons for missing data
since the missing data mechanism (MDM) can impact the validity of

estimates and tests.

Examples:

1. Repeated measures experiment — HIV patients are given an
anti-viral therapy and viral load is measured monthly for 6
months. Some subjects do not comply or drop-out.

2. Validation study — Food frequency questionnaires (FFQ) are
obtained on all subjects; a validation (more costly but accurate
instrument) is obtained for a subset only. We may randomly
sample subjects for validation or select them based on the FFQ

K data. /
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/3. Longitudinal study — Children are measured for FEV through the\
schools. Children may move in and out of study schools.

4. Quality of life study — Many clinical trials now routinely collect
self-reported information on quality of life. Patients may be to ill

to give an evaluation.

\_ /
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/ Missing Data Issues \

To formulate different missing data mechanisms we introduce

additional notation:

R;; =1 if subject ¢ is observed at time j

R;; =0 if subject 7 is not observed at time j

MCAR | Missing completely at random if

This implies that E(Y;; | Ri; = 1, X;) = E(Y;; | X3).

\_ /
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/ Missing Data Issues \

MAR | Missing at random if

FR | Y, YM X;,0) = f(R; | YO, X,;,T)

Here the probability of missing data only depends on the observed
values and not the missing values.

Trouble starts here since this implies
E(Y;; | Rij =1,X;) # E(Y;; | X;) (possibly).

NI | Non-ignorable if

f(R; 1YY, YM X, ) dependson Y/

\_ /
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/ Summary

e GLMCD is flexible.

e Covariate models / issues.

e Covariance models.

e Missing data issues.

o Estimation — semiparametric.

o Estimation — parametric (Maximum likelihood).

217
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/ General Linear Model for Correlated Data \

* | Estimating 3 with known X

Weighted least squares:

In univariate regression, WLS yields estimates of 3 that minimize the

objective function

Q(B) = Z‘wz(Yz — X,;8)?

Analogously, the multivariate version of WLS finds the value of the
parameter B(WW) that minimizes

N

Qw(B) =) (Y- X:8)"W,(Y; - X,0)

\_ /
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/Where W is an (n; x n;) positive definite symmetric matrix. \

It's straight forward to see that

U = 2

N
= aBQW(ﬁ) = —2% X W,(Y;— X0)
1=1

\_ /
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/ GLMCD: WLS \

The solution to the minimization solves U (3) = 0 and yields

BW) = (Z X7 W@-Xz) (Z X?Wm)

=1 1=1

Example 1:
When W; ' = %1, then

N n;

Q(B) =303 (Vi — Xy’

i=1 j=1

and B(I) is the OLS estimator assuming observations are independent
both within and between clusters.

\_ /
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/ GLMCD: WLS \

Example 2:
If X; =X and W,; = W for all i (e.g. complete and balanced
polynomial growth curve data) then,

BW) = (XTWX) - XTW% Yy,

This implies that 3 is the regression of the averages.

(Q: Is it also the average of the regressions?).

\_ /
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/ Properties of 3(1V) \

Given Xl,XQ,...XN and Wl,WQ,...WN

E {,/B\(W)} = (f: XZTWiXi> _ (f: X;FWzE[YzQ

= B

N
var {B(W)} - A <ZX;-F WiEZ-WiXi> A~

1=1

N —1
where A™! :(fowixi)

1=1

\_ /
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W,=1,, =

-1 —1]
var {B(I)] = (ZX;FX1> <ZX;T’22X’L> <ZX?X7J>
W, = E,L_l =

var B(z—l)] = (ZX?Ei1X7;>

\_ /
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([ omms h

var [B(E_l)} < var {B(W)}
Notice that W; = I,,, gives BOLS where all observations are treated
as independent (weighted equally). It follows that E(B,.¢) = 3, but
Bo1.g may not be very efficient.

For maximum efficiency we must estimate ;.
Q: How do we compare “efficiencies” ?

: We compare the ratio

@
"

v

efficiency =

\_
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/ Estimating X \

In general X2; is unknown. With balanced and complete data we can

AN AN —

construct a simple estimator of ¥ and use this to obtain 3(3 ).

Lemma:

Under regularity conditions on the covariate space X;, if W, is a
consistent estimator of W; then 3(W') and 3(W) have the same
asymptotic distribution.

VN (BW)-8) — N(0, Cw)

VN (BW)-8) — N(0, Cw)

\_ /
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— -1 TW.SW.X. | A=1
Cw = lim NAy (ZX WZEZWZXz) Ay
Ay = ) XWX,

\_ /
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/ Estimating X \

In the case where cov(Y;) = X for all ¢, we can construct a consistent

estimator of the optimal weight matrix W,; = ¥~

Bo ) [vi- XA [vi-xB0)

In fact any consistent estimator of 3 will suffice.

Two-step estimator:

Step 1: Obtain B(In) and .

Step 2: Obtain B(i_l)

\_ /
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/ Estimating X \

As we shall show, if these two steps are iterated, with balanced and

~ ~—1 A~
complete data where 3; = 32, then (¥ ) and X are also the MLE's
assuming multivariate normality.

~—1

We can estimate the asymptotic variance of B(E ) using

N
Cy-1 =N (E XI's Xi>
1=1

\_ /
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/ Modelling 3. \

In n is large (ie. n =dim(Y;)) then we estimate a large number of

parameters in 2. In that case we may require large sample sizes, N,

~ ~—1 ~
before the distribution of B(X ) and B(X~") approximately agree.
Q: Can't we adopt some simple structure for .7

. Yes! With small to moderate samples we may use our
substantive knowledge about Y'; and exploratory data analysis to
guide selection of a covariance model. This permits X to be modeled

in terms of @, a smaller number of parameters.

\_ /
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4 Modelling 3.

~

For example, we may use the compound symmetric covariance model:

var(Y;;) = 61
cov(Yi;, Yie) = 0

_ 1 L1

0= N3 (Y- XuB)

. 1 & 1

0, = — (v;
2 N;n(n—l); g

230

\Q: What if it's not really compound symmetric?

and we may use simple moment estimators to obtain estimates

zgﬁ> ( ik — sz)

/
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(92 — 9;

231

\_

(91 — 01‘—

1
n(n —1)

2 ik

j#k

These are simple moment estimators and therefore a (general) WLLN
implies that these will converge to their limit mean.

/
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/ Modelling 3. \

Again, we obtain asymptotic normality for the WLS estimator that
uses W,; = X(0)~ 1.

Again, there is no difference (asymptotically) between use of W, and
W, = 2(9*)_1

Again, in general the asymptotic covariance of ,@(W@) is given in

“sandwich” form:

Ay =

By =

\_ /
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/ Another Empirical Sandwich! \

We can use the independent replication across subjects to estimate the

matrix B .
N -1 -1
By = Y X]¥ var(Y)Z] X,
1=1
By =
Note:

e The key property of this estmator is consistency — requires large
number of subjects (V).

\_ /
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/ Testing Hypotheses

Finally, consider testing hypotheses of the form:

H() . QTIB = 0
(gxp)(px1) (gx1)

Under the null hypothesis we have (asymptotically):
VNQTB(W) ~ N(0, Q"CwQ)
So that we can use
NQTB(W) (QTCwQ)

as a general Wald statistic.

234

\_

BOVTQ ~ 2 (g)

/
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/ General Linear Model \

Comments:

1. The theory sketched here can be considered semi-parametric in
the sense that estimation and inference for a parameter 3 can be
achieved based solely on specification of the mean.

2. DHLZ (2002) call W; ' the “working covariance model” since
inference using the sandwich variance estimator doesn't require
W, = Ez-_l. The matrix W is used to improve efficiency.

3. It is possible to allow X; to depend on 7 — we'll see examples.

4. The estimates of 3 and the variance of B outlined above are
special cases of GEE.

5. DHLZ take a slightly different approach to specifying 3(0) by
\ assuming var(Y;; | X;) = o2 and then cov(Y; | X;) = 0°R(0) /
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/ Efficiency and WLS \

Q: | If using W = X! is optimal for WLS estimation of 3, then how
suboptimal is ,@OLS?
Recall:
~1
) = (Txrwix)
var(Bors) = A7 <Z X?Zin') A
~1
where A™' = <Z X;'FXz)
\See: Bloomfield and Watson (1975); Watson (1967) /
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/ Comment on notation here: \

Y,
Y = stack(Y;) = _
\ v, /
[ X1
X
X = stack(X;) =

\_ /
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/ Comment on notation here:

238

/
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/ Efficiency of OLS estimators \

Y ~N(XB,%)

Theorem:

Let C'3 be an estimable function for the linear model
Y = X03+¢€
where E(€) = 0, and E(ee’) = X. Then
SIM(X) = M(X)

implies that the BLUE and LS estimators of C3 are equivalent.

Note: M (X)) denotes the column space of X.

\Proof: Watson (1967) /
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/

Efficiency of OLS

Example 1:

240

N = 10

n = 5

t, = (-2,-1,0,1,2)
E(Y;;) = [Bo+ bit;

X = {1 -pI+pJ}

/
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/Then,

Y =

AN

Therefore, BOLS = B(X).

241

\_

o {(1—-p)I+pJ} x
o*(1—=p) x4+ pnz-1
a-x+0b0-1

/
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/ Efficiency of OLS \

Theorem: | Rao (1965)

-1 —1
(XTz—lx) X7y = (XTX) x7
if and only if
>»=XIrXx'+zez! +%1
where Z1' X =0, and T, ©, 62 are arbitrary.

This result implies that for any balanced random effects model (with

conditional independence) we will have BOLS = ,@(E)

\_ /

242 Heagerty, Bio/Stat 571




/

Efficiency of OLS

~

Example 2:

consider the same mean model as in Example 1 but now

assume AR(1) errors:

243

(1 p 2 PP pt

1 p p* p°

% = 1L p p
L p

\ 1

)

/

/

Heagerty, Bio/Stat 571



/some algebra yields \

3 Viin 0
var(Borg) = o7
0 Va
Vii = 0.004(5+ 8p + 6p> + 4p> + 2p)
3 0.01(5 — 8p + 3p?) ! 0
var[3(3)] = o” -
0 0.005(5 — 4p + p?)

- p
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/...and for certain values of p we obtain: \

p 01 02 03 04 05
e(B) 0.998 0.992 0.983 0.973 0.963
e(3) 0.997 0989 00980 00970 0.962

p 06 07 08 09  0.99
(%) 0.955 0.952 0.956 0.970 0.996
e(81) 0.952 0.955 0.952 0.955 0.961

Comparisons of this kind (and earlier results) suggest that in many
circumstances the OLS estimator is satisfactory. This is not always the

{ase. Consider... /
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/ Efficiency of OLS

treatment paths in equals numbers:

AAA
AAB
ABA
ABB

This is a form of “crossover” design.

246

\_

Example 3: | again, assume that we have AR(1) errors and now
assume n = 3 and that subjects crossover from treatment A to
treatment B (and from B to A). Assume that subjects have observed

BAA
BAB
BBA
BBB

/
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/ Efficiency of OLS: Example 3 \

Now assume that the predictor of interest is treatment group,

iz = ].(TXZ = B, at time ])

EY; | Xi) = Bo+ b1 xij

\_ /
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Discuss:

248

\_

/...now for certain values of p we obtain:

P 01 02 03 04

0.5

e(%) 0.993 0.974 0.946 0.914
e(8;) 0.987 00947 0.883 0.797

0.880
0.692

0 06 07 08 009

0.99

e(%) 0.846 0.815 0.788 0.766
e(8;) 0571 0438 0.297 0.150

Why the efficiency difference now?

0.751
0.015

/
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/ EDA and Covariance Models \

Q: What are the appropriate EDA techniques for longitudinal data?
e Lines plot (spaghetti plot)
e Average & distribution plots (boxplot, quantiles)
e Empirical covariance
e Residual “pairs’ plot
e Standard deviation plot

e Variogram

\_ /
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/

EDA and Covariance Models

~

250

Q: What are some parametric covariance models?

Mixed model (62T + XDX")
Nested models (b; + b;; + €ijk)
Autoregressive models

Moving average models

General isotropic correlation models

Combined Random effects and Serial (Diggle 1988)

/
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/ Example: | (DLZ Example 1.1) CD4+ Cell Counts \

e HIV attacks CD4+ cells.

e Data from the MACS study.
e N = 369 infected men — incident cases.

e Analysis focuses on characterizing the process. CD4+ cell counts
are used to monitor patient status, and characteristics of the
longitudinal process within a patient are thought to be predictive of
clinical course. More recently HIV research has focused on longitudinal
measures of viral load.

\_ /
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/Descriptives: \

time cd4 age packs
Min. :=-2.9900 Min. : 10.0 Min. :-11.290 Min. :0.0000
1st Qu.:-0.3922 1st Qu.: 482.8 1st Qu.: -2.760 1st Qu.:0.0000
Median : 0.7296 Median : 701.5 Median : 1.510 Median :0.0000
Mean : 0.8284 Mean : 765.1 Mean : 2.636 Mean :0.9891
3rd Qu.: 2.1920 3rd Qu.: 964.0 3rd Qu.: 6.950 3rd Qu.:2.0000
Max. : 5.4590 Max. :3184.0 Max. : 29.080 Max. :4.0000
drugs partners cesd id
Min. :0.0000 Min. :-5.00000 Min. : -7.000 Min. :10000
1st Qu.:1.0000 1st Qu.:-3.00000 1st Qu.: -5.000 1st Qu.:11200
Median :1.0000 Median :-1.00000 Median : 0.000 Median :30050
Mean :0.7559 Mean :-0.03409 Mean : 2.496 Mean 126190
3rd Qu.:1.0000 3rd Qu.: 5.00000 3rd Qu.: 6.000 3rd Qu. :40360
Max. :1.0000 Max. : 5.00000 Max. : 49.000 Max. :41840
Number of subjects = 369
Number of observations = 2376
Number of subjects with a given observations-per-subject:
1 2 3 4 5 6 7 8 9 10 11 12

\\\\i24 25 47 43 52 40 41 38 21 23 10 4’///
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/ Exploring the Covariance Structure \

* | Remove covariate effects first.

H#tHH##
##### covariance summaries
H#tHH#
#
fit <- Im( cd4 ~ ns( year, knots=c(-2,0,2,4) ), data=cd4 )
resids <- cd4$cd4 - fitted( fit )
#
nobs <- length( cd4$cd4d )
nsubjects <- length( table( cd4$id ) )
rmat <- matrix( NA, nsubjects, 7 )
ycat <- c( -2, -1, 0, 1, 2, 3, 4, )
nj <- unlist( lapply( split( cd4$id, cd4$id ), length ) )
for( j in 1:7 ){
legal <- ( cd4$year >= ycat[jl-0.5 )&( cd4$year < ycat[j]+0.5 )
jtime <- cd4$year + 0.0l*rnorm(nobs)
t0 <- unlist( lapply(
split( abs(jtime - ycat[jl) , cd4$id ), min ) )

tj <- rep( t0, nj )
\\\\¥ keep <- ( abs( jtime - ycat[j] )==tj )&( legal ) 4’///
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////7 yj <- rep( NA, nobs ) ‘\\\\

yj [keep] <- resids[keep]
yj <- unlist( lapply( split( yj, cd4$id ), min, na.rm=T ) )
rmat[ , j 1 <- yj
}
#
##### covariance matrix
#
cmat <- matrix( O, 7, 7 )
nmat <- matrix( 0, 7, 7 )
#
for( j in 1:7 ){
for( k in j:7 ){
njk <- sum( !is.na( rmat[,jl*rmat[,k] ) )
sjk <- sum( rmat[,jl*rmat[,k], na.rm=T )/njk
cmat[j,k] <- sjk
nmat[j,k] <- njk
}
+
print( round( cmat, 2 ) )
vvec <- diag(cmat)
cormat <- cmat/( outer( sqrt(vvec), sqrt(vvec) ) )
print( round( cormat, 2 ) )

\\;iiint( nmat ) 4’///

257 Heagerty, Bio/Stat 571




///;;variance Matrix ‘\\\\

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 195082.2 110392.5 77600.36 66198.26 40901.60 51093.11 117827.90
[2,] 0.0 167084.1 72191.32 61440.78 51217.72 71398.74 63482.42
[3,] 0.0 0.0 140413.48 42555.74 48802.46 41045.85 ©59231.54
[4,] 0.0 0.0 0.00 80023.49 57418.04 48018.62 54503.60
(5,1 0.0 0.0 0.00 0.00 96497.45 72253.31 63654.61
[6,] 0.0 0.0 0.00 0.00 0.00 90569.13 72262.10
[7,] 0.0 0.0 0.00 0.00 0.00 0.00 101639.49

Correlation Matrix

[,11 [,21 [,3] [,4] [,5]1 [,6]1 [,7]
[1,] 1 0.61 0.47 0.53 0.30 0.38 0.84
[2,] 0 1.00 0.47 0.53 0.40 0.58 0.49
[3,] 0 0.00 1.00 0.40 0.42 0.36 0.50
[4,] 0 0.00 0.00 1.00 0.65 0.56 0.60
[5,] 0 0.00 0.00 0.00 1.00 0.77 0.64
[6,] 0 0.00 0.00 0.00 0.00 1.00 0.75
[7,] 0 0.00 0.00 0.00 0.00 0.00 1.00

\_ /
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/Number of observations

[1,] 133 106 91 85

[2,] 0 211 171 157
[3,] 0 0 307 236
[4,] 0 0 0 279
[5,] 0 0 0 0
[6,] 0 0 0 0
[7,] 0 0 0 0

259

73
121
192
195
226

0
0

35
80
144
149
142
167
0

[,11 [,2] [,3] [,4]1 [,8] [,6] [,7]

9
46
99
98
89
97

109

/
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/ A General Serial Covariance Model \

Diggle (1988) proposed the following model
Yij = X8+ ai + Witij) + €ij
This model contains three sources of random variation:
random intercept Q;
serial process Wi(ti;)
measurement error ¢€;;

If we further assume

var(a;) = v?
cov[W(s), W(t)] = o”p(ls —t)
var(e;;) = T°

Qhen we can use the variogram for EDA. /
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/

Variogram \

O

useful plot. The variogram is defined as:

This function directly relates to the autocorrelation function:

Note: For the Diggle (1988) model we obtain

262

\_

For models that have a constant variance the variogram is a

Yw) = 5B [{Y (¢t +u) = Y (1))

p*(u) = corrlY(t),Y(t+ u)]
Ugl'otal = var[Y (t)]
Y(w) = oTgpa 11— P (u)}

y(w) = o’ {1-pu)}+7°

/
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/ EDA for Covariance Structure \

Numerical Summaries

e Empirical covariance & correlation

Variogram

Define:
Rij = Yi; — X8
= bio+ Wilty) + ey

\_ /
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 Note: N

Plot:

1
5(Rij — Rik)2 versus |t;; — tig|

\_ /
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CD4 residual variogram
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/ Variogram

#

##### Variogram estimation

#

source("variogram.q")

#

out <- lda.variogram( id=cd4$id, y=resids, x=cd4$year )
dr <- out$delta.y

dt <- out$delta.x

#

var.est <- var( resids )

#

postscript( file="cd4_eda_variogram.ps", horiz=T )
plot( dt, dr, pch=".", ylim=c(0, 1.2%var.est) )
lines( smooth.spline( dt, dr, df=5 ), 1lwd=3 )
abline( h=var.est, lty=2, lwd=2 )

title("CD4 residual variogram")

graphics.off ()
#

266
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variogram.q

lda.variogram <- function( id, y, x ){

INPUT: id = (nobs x 1) id vector
y = (nobs x 1) response (residual) vector
x = (nobs x 1) covariate (time) vector

RETURN: delta.y = vec( 0.5%(y_ij - y_ik)~2 )
delta.x = vec( abs( x_ij - x_ik ) )

H H HHFHHFEHH

uid <- unique( id )
m <- length( uid )
delta.y <- NULL
delta.x <- NULL
did <- NULL
for( i in 1:m ){
yi <= y[ id==uid[i] ]
xi <- x[ id==uidl[i] ]
n <- length(yi)
expand.j <- rep( c(1:n), n )
expand.k <- rep( c(1:n), rep(n,n) )
keep <- expand.j > expand.k
if ( sum(keep)>0 ){
expand.j <- expand.j[keep]
expand.k <- expand.k[keep]
delta.yi <- 0.5%( yil[expand.j] - yilexpand.k] )~2
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delta.xi <- abs( xil[expand.j] - xilexpand.k] )
didi <- rep( uid[i], length(delta.yi) )
delta.y <- c( delta.y, delta.yi )
delta.x <- c( delta.x, delta.xi )
did <- c( did, didi )
}
}
out <- list( id = did, delta.y = delta.y, delta.x = delta.x )
out
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/ Summary \

Basic Data Summaries

e Number of subjects; Number of observations / subject
e Univariate summaries for each variable

EDA for Systematic Variation

e Mean response by covariates
e ( Covariate between- and within- variation )

EDA for Random Variation
e Individual plots

e Empirical covariance & correlation

e Variogram if constant variance

\_ /
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