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Summary. Using standard correlation bounds, we show that in generalized estimation equa-
tions (GEEs) the so-called ‘working correlation matrix’ R.α/ for analysing binary data cannot
in general be the true correlation matrix of the data.Methods for estimating the correlation param-
eter in current GEE software for binary responses disregard these bounds. To show that the
GEE applied on binary data has high efficiency, we use a multivariate binary model so that the
covariance matrix from estimating equation theory can be compared with the inverse Fisher
information matrix. But R.α/ should be viewed as the weight matrix, and it should not be con-
fused with the correlation matrix of the binary responses. We also do a comparison with more
general weighted estimating equations by using a matrix Cauchy–Schwarz inequality. Our anal-
ysis leads to simple rules for the choice of α in an exchangeable or autoregressive AR(1) weight
matrix R.α/, based on the strength of dependence between the binary variables. An example
is given to illustrate the assessment of dependence and choice of α.

Keywords: Generalized estimating equations; Multivariate binary data; Odds ratio;
Quasi-least squares; Repeated measurements

1. Introduction

The theoretical study of the method of generalized estimating equations (GEEs) for binary
response data is inadequate partly because of the confusing meaning of the term ‘working cor-
relation matrix’ that was introduced by Liang and Zeger (1986) in their seminal paper. Crowder
(1995) pointed out that this matrix lacks a proper definition when the true correlation is mis-
specified, thus causing a breakdown of the asymptotic properties of the estimation procedure.
Liang and Zeger (1986) have assumed that the working correlation matrix is the correlation
matrix of the response vector y, which is constant over the possible covariate vectors x. How-
ever, for a non-normal random vector, in particular a binary random vector, this may be
impossible. For dependent non-normal random variables, the range of correlation depends
on the univariate marginals. The lower and upper bounds on the correlation come from maxi-
mal negative and positive dependence: the Fréchet bounds. Bernoulli random variables can be
strongly positively dependent without the correlation coefficient being very high (Joe (1997),
chapter 7).

Owing to the violation of the correlation bounds, Sutradhar and Das (1999) have invalid
values for the efficiencies of GEEs applied to binary data under a misspecification of the
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correlation structures. Moreover, comparisons of efficiency between GEE and maximum likeli-
hood methods for binary responses have used likelihoods that are based on questionable assump-
tions. For example, Lipsitz et al. (1995), pages 563–564, considered likelihood for the binary
responses based on the Bahadur representation with the rth-order parameters to be constant
depending on r, whereas Liang et al. (1992), page 14, assumed that all the third- and higher
order parameters are equal and constant. Diggle et al. (2002), page 145, acknowledged that

‘if we assume that the marginal means (for binary responses) depend on covariates, x, it may not be
correct to assume that the correlations and higher-order moments are independent of x, as would be
convenient’.

In this paper we use a latent variable multivariate binary model for efficiency calculations. Such
direct comparisons of efficiency have not previously been made in the literature. The score equa-
tions for the latent variable binary model do not look like the GEE, and analytically it is difficult
to assess the efficiency of GEEs for this model. We use simulations to make the comparisons of
efficiency.

The efficiency calculations show that the GEE method with the so-called working correlation
matrix R.α/ does have good efficiency relative to a likelihood approach using a multivariate
probit model. We believe that this result, in favour of the GEE, is new. However, R.α/ should
be considered as a weight matrix in which the parameter α should be chosen to be larger if there
is stronger dependence in the binary data. Considering a set of estimating equations based on
more general weight matrices than those employed in GEEs, we use a matrix Cauchy–Schwarz
inequality to determine the optimal weight matrices. The best choice of a constant R.α/ matrix,
to approximate the efficiency from the optimal weight matrices, is one that roughly approximates
the average correlation matrix over the data y1, . . . , yn.

Our efficiency calculations suggest simple rules for choosing α for using GEEs with binary
responses. In particular, it is not necessary to use an estimating equation for α. Existing methods
for estimating α sometimes run into problems as there is no guarantee that the estimated value
ensures that R.α/ is positive definite (Chaganty, 1997a; Shults and Chaganty, 1998).

In Section 2 we present the correlation bounds, and in Section 3 we study the asymptotic
covariance matrices of estimators from various sets of weighted estimating equations. A mul-
tivariate binary model is presented in Section 4. In Section 5 we discuss our simulation model
and results. Several comparisons of efficiency in the literature that show that GEEs are better
than independent estimating equations (IEEs) or vice versa are incomplete because there has
not been a check on how the efficiency varies as a function of the regression coefficients. As part
of our analysis (Section 6) we show when IEEs can have poor efficiency. Section 7 has some
simple guidelines on the choice of α for applying GEEs to binary data and Section 8 has an
example. We conclude the paper with some discussion.

2. Correlation bounds for binary variables

If y = .y1, . . . , yd/′ is a Bernoulli random vector with marginal probabilities pj with qj =1−pj

for j =1, . . . , d, and constant correlation ρ between any two pairs, then
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These inequalities are well known; see McDonald (1993), page 393, for example. If pj.x/ is a
function of a covariate vector x, then a constant correlation matrix over all x would imply that
the constant correlation must lie in the interval
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Inequality (2) shows that the constraints on ρ will depend on the covariates. These restrictions
are necessary, but current GEE software ignores them. When the range of x is wide, the interval
in inequality (2) can be quite narrow. For example, when x is normally distributed, as assumed
by some researchers for comparisons of efficiency (e.g. Sutradhar and Das (2000), equation
(2.1)), the interval for ρ given by inequality (2) reduces to a single point 0, thus defeating the
purpose of modelling correlated binary data. Hence the assumption of a constant correlation
over covariates is unreasonable for dependent binary variables. A proper analysis of the effi-
ciency of GEEs applied to binary responses involves the correlation of each pair of yis, which
cannot be assumed to be constant over covariates for a proper model with a wide range of
dependence.

3. Weighted estimating equations

Suppose that n independent binary vectors yi = .yi1, . . . , yid/′ are observed, with yij distributed
as Bernoulli.µij/, µij =F.β′xij/, where F is the latent variable distribution; for example, F is the
standard normal cumulative distribution function for a probit model, and a standard logistic
cumulative distribution function for a logit model. Suppose that the dimension of β and xij

is p× 1 (the intercept terms with xi1 = 1 could be included). If yi1, . . . , yid are independent for
each i, then the log-likelihood is

l.β/=
n∑

i=1

d∑
j=1

{yij log.µij/+ .1−yij/ log.1−µij/},

and the likelihood equations are
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where µi = .µi1, . . . , µid/′ and Ai = diag{µi1.1 −µi1/, . . . , µid.1 −µid/}. We refer to equations
(3) as IEEs. With f =F ′, expression (3) reduces to

@l.β/

@β
=

n∑
i=1

X′
i∆iA−1

i .yi −µi/=0, .4/

since @µ′
i=@β=X′

i∆i where X′
i = .xi1, . . . , xid/ and ∆i =diag{f.β′xi1/, . . . , f.β′xid/}. Further-

more, if F is the standard logistic cumulative distribution function we have ∆i =Ai and equation
(4) reduces to

@l.β/

@β
=

n∑
i=1

X′
i.yi −µi/=0:

The idea in Liang and Zeger (1986) is that this set of estimating equations or generalized ver-
sions of them can be used to estimate β, even for dependent data. The GEEs for dependent data
are obtained by replacing Ai in expression (3) with a symmetric weight matrix Wi which has the
same diagonal elements. The GEE method uses specific forms for the Wi.
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Consider the weighted estimating equations

ψ=
n∑

i=1

@µ′
i

@β
W−1

i .yi −µi/=0: .5/

These are unbiased estimating equations for any set of Wi since E.yi/ =µi. If β̂ is the solu-
tion of equation (5) then from the theory of estimating equations (Godambe, 1991) we have
β̂ is AN.β, V/ where V = .−D−1

ψ
/Mψ.−D−1

ψ
/′, Mψ = cov.ψ/ and Dψ = E.@ψ=@β′/. Here AN

denotes ‘asymptotically normal’. Suppose that cov.yi/=Σi; then
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since only one of the three derivative terms has a non-zero expectation. Chaganty’s (1997b)
matrix Cauchy–Schwarz inequality is that

(
n∑

i=1
B′

iCi

)−1 (
n∑

i=1
B′

iΣiBi

)(
n∑

i=1
C′

iBi

)−1

−
(

n∑
i=1

C′
iΣ

−1
i Ci

)−1

.6/

is non-negative definite for any Bi and Ci of appropriate dimensions. With Ci = @µi=@β′, Bi =
W−1

i @µi=@β′, the first term in expression (6) is V and the second term is
(
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so the optimal choice of Wi is Σi. This choice of Wi depends on the unknown β and on the
dependence parameters. With a given multivariate binary model such as the probit model,Σi can
be easily computed from bivariate marginal probabilities. For GEEs, consider weight matrices
of the form Wi = A1=2

i R.α/A1=2
i where R.α/ is an exchangeable or autoregressive AR(1) cor-

relation matrix. A conjecture based on the above inequality (6) would be that the best choice
in this class is with the value of α and a structured correlation matrix R.α/ that is close to the
average correlation matrix over the yis, i.e.

R.α/≈ 1
n

n∑
i=1

A−1=2
i ΣiA

−1=2
i : .7/

Approximation (7) is loose, as there is no reason to expect it to be equally good for all elements
of the matrix. Indeed the right-hand side of approximation (7) may not resemble a structured
correlation matrix. We can compare V for various choices of Wi with different R.α/ and also
compare V with the optimal choice of Wi. To understand the effect of α in R.α/ and the optimal
Wi, we compute V for these various cases as well as the inverse Fisher information matrix (the
asymptotic covariance matrix for the maximum likelihood estimator). For calculating Σi and
the information matrix, we need a multivariate binary model, such as the model that is given in
the next section.

4. Likelihood approach for correlated binary data

We choose the multivariate probit model for comparisons of efficiency because it is a commonly
used model for multivariate binary data. It is widely used in psychometrics as a latent variable
model (Muthén, 1978; Maydeu-Olivares, 2001); in genetics (Mendell and Elston, 1974; Szudek
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et al., 2002), the latent correlations are of primary interest for genetic hypotheses. Suppose
that y = .y1, . . . , yd/′ is a multivariate binary vector with covariate matrix X = .x1, . . . , xd/′.
The multivariate probit model (Ashford and Sowden (1970) and Joe (1997), chapter 7) has the
stochastic representation

yj = I.zj �νj =β′xj/, j =1, . . . , d,

where I is the indicator function and Z = .z1, . . . , zd/′ is a latent variable distributed as mul-
tivariate normal with mean 0 and covariance matrix Ω.γ/, where γ is the latent correlation.
For an AR(1) probit model, Ω.γ/ = .γ|j−k|/ and, for an exchangeable probit model, Ω.γ/ =
.1 − γ/I + γJ where I is the identity and J is a matrix of 1s. If Φ2.ω1, ω2;γ/ and Φ.ω/ denote
the standardized bivariate normal with correlation γ and the univariate standard normal dis-
tribution functions respectively, then

corr.yj, yk/= Φ2.νj, νk;γ/−Φ.νj/ Φ.νk/

[Φ.νj/{1−Φ.νj/} Φ.νk/{1−Φ.νk/}]1=2 : .8/

When β= 0, we have νj = 0 for all j and equation (8) reduces to 2 sin−1.γ/=π, independent of
j and k; in general, 2 sin−1.γ/=π is an upper bound on the correlation. This relationship could
be used as a guideline between the correlation of the binary variables and the latent correlation
γ. The correlation between the binary variables is always less than the latent correlation γ in
the range .0, 1/; for γ =0:1, 0.3, 0.5, 0.7, 0.9, the values of 2sin−1.γ/=π are 0.064, 0.194, 0.333,
0.494 and 0.713 respectively. Let

πd.y; X,β/=Pr.Y =y; X,β/, y ∈{0, 1}d ,

be the probabilities based on the multivariate probit model. Calculation of these probabilities
involve multivariate normal rectangle probabilities, which can be reduced to one-dimensional
numerical integrals when Ω.γ/ is an exchangeable correlation matrix and 0<γ <1; see page 134
of Kotz et al. (2000). When γ is known, on the basis of a sample of n observations yi and covari-
ates Xi, the maximum likelihood estimate β̂L is obtained by maximizing the likelihood function

L.β/=
n∏

i=1
πd.yi; Xi,β/

with respect to β. For known γ, the Fisher information matrix is calculated from a sample of n

observations by using the formula

I =
n∑

i=1

∑
y

@πd.y; Xi,β/

@β

@πd.y; Xi,β/

@β′
/
πd.y; Xi,β/

where the inner sum is taken over the 2d possible vectors y. The inverse of I gives the asymp-
totic covariance matrix of β̂L (Lehmann (1998), page 545). The extension is straightforward
when γ is unknown or when Ω.γ/ is AR(1) or an unknown unstructured correlation matrix.
Plackett’s identity (Kotz et al. (2000), page 259) is useful to derive the Fisher information for
the correlation parameters when the unstructured correlation matrix Ω is estimated along with
the regression parameter β by maximum likelihood.

5. Findings on efficiency

For studying the performance of GEEs, we took p = 2, xij = .1, xij/′ where xij are taken as
uniform random variables in the interval [−1, 1]. We selected values for β= .β0, β1/′ to obtain
a range of slopes and average marginal probabilities. We chose β0 = 0, 0.42, 1.1 for marginal
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Table 1. Diagonal elements scaled by n and effici-
encies of the inverse Fisher information matrix for the
exchangeable probit model and of V with optimal weights
and exchangeable R.α/ for αD0.0, 0.1, 0.2, . . . , 0.9†

Method n V (β0) n V (β1)

Maximum likelihood 0.735 (1.000) 0.807 (1.000)
Optimal 0.739 (0.994) 0.828 (0.974)
α=0:0 0.739 (0.994) 1.033 (0.781)
α=0:1 0.739 (0.994) 0.884 (0.912)
α=0:2 0.739 (0.994) 0.839 (0.962)
α=0:3 0.739 (0.994) 0.829 (0.974)
α=0:4 0.740 (0.994) 0.832 (0.969)
α=0:5 0.740 (0.993) 0.841 (0.959)
α=0:6 0.741 (0.992) 0.852 (0.947)
α=0:7 0.743 (0.989) 0.863 (0.936)
α=0:8 0.751 (0.979) 0.873 (0.924)
α=0:9 0.801 (0.918) 0.883 (0.914)

†The parameter values are d =5, γ =0:5, β0 =0:0, β1 =0:5
and n=500; efficiencies are given in parentheses.

Table 2. Diagonal elements scaled by n and effici-
encies of the inverse Fisher information matrix for the
exchangeable probit model and of V with optimal weights
and exchangeable R.α/ for αD0.0, 0.1, 0.2,. . . , 0.9†

Method n V (β0) n V (β1)

Maximum likelihood 1.423 (1.000) 1.355 (1.000)
Optimal 1.427 (0.997) 1.405 (0.964)
α=0:0 1.428 (0.997) 2.581 (0.525)
α=0:1 1.428 (0.997) 2.258 (0.600)
α=0:2 1.427 (0.997) 1.987 (0.682)
α=0:3 1.427 (0.997) 1.768 (0.766)
α=0:4 1.427 (0.997) 1.602 (0.846)
α=0:5 1.427 (0.997) 1.487 (0.911)
α=0:6 1.427 (0.997) 1.423 (0.952)
α=0:7 1.427 (0.997) 1.411 (0.960)
α=0:8 1.427 (0.997) 1.450 (0.935)
α=0:9 1.428 (0.997) 1.539 (0.880)

†The parameter values are d =2, γ =0:9, β0 =0:42, β1 =0:25
and n=500; efficiencies are given in parentheses.

‘average’ probabilities of 0.5, 0.7 and 0.9 (the results are symmetric for probabilities that are less
than 0.5), β1 =0:25, 0.5, 2.5 for a range of variation in marginal probabilities as xij vary, γ =0:1,
0.5, 0.9 for a range of exchangeable or AR(1) dependence and d = 2, . . . , 5. If n is sufficiently
large, the efficiencies will not depend much on the random xij. Some typical results are shown
in Tables 1 and 2. Conclusions from the computations in the above design are the following.

(a) For exchangeable and AR(1) probit models with the corresponding form for R.α/ in Wi,
the best α-value, with maximum efficiency, increases as the latent correlation γ increases.
The best α-value is in the range 0–0.1 for γ = 0:1, 0.2–0.3 for γ = 0:5 and 0.4–0.7 for
γ =0:9.
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(b) Small latent correlation means that the IEE method (α=0) does about as well as optimal
weight matrices. The value α should be larger for stronger dependence.

(c) The best choice α in a family that is AR(1) or exchangeable is such that R.α/ is close to
the average correlation matrix (see approximation (7)) over the yis.

(d) The use of optimal weight matrices in (5) is almost as good as maximum likelihood.
(e) The diagonal elements of V are roughly constant near their minimum values (interval of

α of lengths 0.2 or more), but not necessarily the same interval for different regression
coefficients, i.e. the efficiency function is quite flat near the ‘optimal’ α.

(f) A bad choice of α in R.α/ can lead to low efficiency. The worse choices for β1 are small
α near 0 for strong dependence, and large α near 1 for weak dependence. In particular,
the choice of α=0 is bad if there is stronger dependence and the regression coefficient β1
is small relative to the range of the xijs. This result is explained theoretically in the next
section. The worse choice for β0 is generally a large α such as α> 0:9.

6. Analysis of when independent estimating equations do poorly

In this section we use the Fréchet upper bound to give an indication of when IEEs can be
expected to do poorly relative to maximum likelihood and the proper use of GEEs improves
efficiency for strongly dependent binary data.

Suppose that the range of the xij is a fixed interval such as [−1, 1]. As β1 →0, the IEE
method becomes inefficient for strong dependence. This follows from the case of β1 = 0, with
the Fréchet upper bound. In this case, since the covariate value has no effect, the marginal
Bernoulli probability is Φ.β0/ for j =1, . . . , d. The Fréchet upper bound assigns total probability
to the two vectors .0, . . . , 0/ and .1, . . . , 1/. Thus, we could observe yi1 = . . . = yid for all i and
conclude that β1 = 0 from maximum likelihood estimation. But, with IEEs, the dependence
information is ignored.

As an example to illustrate this point, consider the set-up in Section 5, with d = 5, γ = 0:95,
β0 = 1:1, β1 = 0:01 and n = 500 observations with the xijs uniform in [−1, 1]. In one compu-
tation, the diagonals (scaled by n) of the inverse Fisher information matrix, V with R.α=0:8/

and V with IEEs, are (1.8828, 0.4297), (2.0078, 0.4321) and (2.0078, 1.4994) respectively. Note
that the V-matrix with a good α-value is not far from the inverse Fisher information matrix,
but the variance of the slope that is obtained by using IEEs is much larger and therefore less
efficient.

7. Guidelines for selecting R(α) for binary data

The efficiency calculations for GEEs using binary data, compared with the inverse Fisher infor-
mation matrix, show that the best choice R.α/ in an exchangeable or AR(1) family is one for
which α is such that R.α/ approximates the average correlation matrix given in equation (7)
of the binary random vectors yi. Because of the bounds on the correlation, the α for the best
approximating matrix of form R.α/ cannot be large if β′xij varies greatly. This is quite different
from the case of a continuous response variable. Therefore, we suggest the following procedure
for selecting R.α/ and α.

An initial data analysis with tabulations and odds ratios can be used to assess the strength
of dependence. If the covariate vectors have just a few values, then an initial analysis consists
of tabulating the frequencies of the d-dimensional binary vectors for each case of the covariate
vector, and computing empirical odds ratios and correlations for each bivariate margin. The
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tabulation can also be done for the combined case (ignoring covariate information). If all or most
d-dimensional binary vectors occur, then the dependence is not strong; the strongest dependence
is indicated if the frequencies concentrate near the vectors of all 0s and all 1s. Otherwise the
odds ratios and correlations will suggest whether the dependence is weak or moderate, and
whether an exchangeable or AR(1) structure is better for the weight matrix. If odds ratios are
used, then a latent correlation of γ =0:3 is about the same as an odds ratio of 2.5 in Plackett’s
copula (Joe (1997), pages 143–144, Table 5.2); similarly γ =0:5 is about the same as odds ratios
of 5, and γ = 0:7 corresponds to odds ratios greater than 12. Thus a value of the odds ratio
between 1 and 3 is considered weak, between 3 and 10 is an indication of moderate depen-
dence and a value exceeding 10 might be considered as strong dependence. If there are many
possible values for the covariate vectors or if the covariates are continuous, then the covariate
vectors can be categorized into a few cases to do the initial data analysis that was mentioned
above.

Generally we can use an exchangeable matrix R.α/ for cluster-type samples, and an AR(1)
matrix for longitudinal data; choose α≈0 or use IEEs for weakly dependent binary data, and α
in the range 0.2–0.3 for moderately dependent binary data, and α in the range 0.4–0.7 for strongly
dependent binary data. The estimates of the regression parameters could be obtained easily by
using existing GEE software, since they allow a user-specified correlation matrix. Alternatively,
apply IEEs first, and then check the bounds in inequality (2) for each pair from {1, . . . , d} and
decide on an appropriate value for α in the midrange of the bounds. We emphasize that α should
be regarded simply as a parameter to determine the weights in equations (5).

With these simple rules, there is no need to estimate α for binary data on the basis of the
procedures that are described in Liang and Zeger (1986), GEE1 in Prentice (1988) and related
methods. Since for multivariate binary distributions the correlation between the binary variables
is not a constant, the assumption of constancy that is used in most of these α estimation proce-
dures is invalid.

8. An example

In this section we give an example to illustrate the methods that we proposed in choosing R.α/

and α. Consider a subset of the data from the six cities study, a longitudinal study on the health
effects of air pollution, that has previously been analysed by Fitzmaurice and Laird (1993) and
others. The data that are given in Table 1 of Fitzmaurice and Laird (1993) contain repeated
binary measures on the wheezing status (yes, 1; no, 0) for each of 537 children from Steuben-
ville, Ohio, at ages 7, 8, 9 and 10 years. The goal was to model the probability of wheezing status
as a function of the child’s age and a binary variable representing the mother’s smoking habit
during the first year of study.

An examination of the data reveals that all 16 binary quadruple vectors occur with a non-
zero frequency and the dependence does not appear to be strong. For both levels of maternal
smoking, the pairwise odds ratios for the various time points are in the range 5.5–11.4 with the
strongest dependence for ages 8 and 9 years; the correlations are in the range 0.29–0.46. The
pattern of dependence is closer to exchangeable than to AR(1). Since the overall dependence is
moderate, the choice will be an exchangeable R.α/ with α=0:3.

We also model the marginal probability of wheeze status over time as a probit model using
the covariates age recentred at 9, maternal smoking (0 or 1) and their interaction. Table 3 con-
tains estimates, standard errors and p-values for the regression parameters by using GEEs with
α=0:3 and the results of fitting a multivariate probit model with latent correlation γ =0:6. The
results are very similar. Furthermore, the conclusions are also similar to the results of fitting a
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Table 3. Six cities study: regression analysis of the wheezing status using GEEs with
exchangeable R.α/ and a multivariate probit model with exchangeable Ω.γ/

Parameter Results from the GEE Results from the multivariate
method (α=0.3) probit model (γ =0.6)

Estimate Standard p-value Estimate Standard p-value
error error

Intercept −1.126 0.063 0.0 −1.119 0.061 0.0
Age −0.077 0.031 0.014 −0.078 0.030 0.010
Maternal 0.171 0.103 0.097 0.161 0.100 0.109
Age Å Maternal 0.037 0.049 0.450 0.038 0.049 0.435

saturated multivariate probit model to each level of maternal smoking; there is a slight maternal
smoking effect on the rate of wheezing and the age effect is a little clearer for the category of no
maternal smoking.

9. Discussion

A routine use of the currently available GEE software for binary data could lead to incorrect
analysis, because there is no check on the dependence of the correlation range as a function
of the covariates. In this paper, we have done a more detailed analysis of GEEs for binary
responses with the so-called working correlation matrix R.α/. Identifying R.α/ as the weight
matrix, our efficiency analysis shows that GEEs with an appropriate α have good efficiency for
binary responses when compared with a proper likelihood model. We gave simple rules for the
choice of the weight matrix R.α/ and the parameter α.

A similar analysis can be done for count data, and, as with the binary case, ignoring the
correlation bounds could give misleading results. With continuous data, the efficiency analysis
for GEE and related methods are not in error like they are for binary data. An efficient and
robust estimate of R.α/ in the GEE method for continuous responses is the (bias-corrected)
quasi-least-squares estimate that was described in Chaganty and Shults (1999). See Chaganty
(2003), for large sample and robust properties of the quasi-least-squares correlation parameter
estimates.
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