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SUMMARY

The term ‘repeated measures’ refers to data with multiple observations on the same sampling unit. In most
cases, the multiple observations are taken over time, but they could be over space. It is usually plausible to
assume that observations on the same unit are correlated. Hence, statistical analysis of repeated measures data
must address the issue of covariation between measures on the same unit. Until recently, analysis techniques
available in computer software only o�ered the user limited and inadequate choices. One choice was to ignore
covariance structure and make invalid assumptions. Another was to avoid the covariance structure issue by
analysing transformed data or making adjustments to otherwise inadequate analyses. Ignoring covariance
structure may result in erroneous inference, and avoiding it may result in ine�cient inference. Recently
available mixed model methodology permits the covariance structure to be incorporated into the statistical
model. The MIXED procedure of the SASJ System provides a rich selection of covariance structures through
the RANDOM and REPEATED statements. Modelling the covariance structure is a major hurdle in the use
of PROC MIXED. However, once the covariance structure is modelled, inference about �xed e�ects proceeds
essentially as when using PROC GLM. An example from the pharmaceutical industry is used to illustrate how
to choose a covariance structure. The example also illustrates the e�ects of choice of covariance structure
on tests and estimates of �xed e�ects. In many situations, estimates of linear combinations are invariant
with respect to covariance structure, yet standard errors of the estimates may still depend on the covariance
structure. Copyright ? 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

Statistical linear mixed models state that observed data consist of two parts, �xed e�ects and
random e�ects. Fixed e�ects de�ne the expected values of the observations, and random e�ects
de�ne the variance and covariances of the observations. In typical comparative experiments with
repeated measures, subjects are randomly assigned to treatment groups, and observations are made
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at multiple time points on each subject. Basically, there are two �xed e�ect factors, treatment and
time. Random e�ects result from variation between subjects and from variation within subjects.
Measures on the same subject at di�erent times almost always are correlated, with measures
taken close together in time being more highly correlated than measures taken far apart in time.
Observations on di�erent subjects are often assumed independent, although the validity of this
assumption depends on the study design. Mixed linear models are used with repeated measures data
to accommodate the �xed e�ects of treatment and time and the covariation between observations
on the same subject at di�erent times. Cnaan et al. [1] extensively discussed the use of the general
linear mixed model for analysis of repeated measures and longitudinal data. They presented two
example analyses, one using BMDP 5V [2] and the other using PROC MIXED of the SAS System
[3]. Although Cnaan et al. discussed statistical analyses in the context of unbalanced data sets,
their description of modelling covariance structure also applies to balanced data sets.
The objectives of repeated measures studies usually are to make inferences about the expected

values of the observations, that is, about the means of the populations from which subjects are
sampled. This is done in terms of treatment and time e�ects in the model. For example, it might be
of interest to test or estimate di�erences between treatment means at particular times, or di�erences
between means at di�erent times for the same treatment. These are inferences about the �xed e�ects
in the model.
Implementation of mixed models ordinarily occurs in stages. Di�erent data analysts may use

di�erent sequences of stages. Ideally, di�erent data sets would be used to choose model form
and to estimate parameters, but this is usually not possible in practice. Here we present the more
realistic situation of choosing model form using data to be analysed. We prefer a four stage
approach, which is similar to recommendations of others, such as Diggle [4] and Wol�nger [5].
The �rst stage is to model the mean structure in su�cient generality to ensure unbiasedness of
the �xed e�ect estimates. This usually entails a saturated parameter speci�cation for �xed e�ects,
often in the form of e�ects for treatment, time, treatment-by-time interaction, and other relevant
covariables. The second stage is to specify a model for the covariance structure of the data. This
involves modelling variation between subjects, and also covariation between measures at di�erent
times on the same subject. In the third stage, generalized least squares methods are used to �t
the mean portion of the model. In the fourth stage the �xed e�ects portion may be made more
parsimonious, such as by �tting polynomial curves over time. Then, statistical inferences are drawn
based on �tting this �nal model.
In the present paper, we illustrate the four-stage process, but the major focus is on the second

stage, modelling the covariance structure. If the true underlying covariance structure were known,
the generalized least squares �xed e�ects estimates would be the best linear unbiased estimates
(BLUE). When it is unknown, our goal is to estimate it as closely as possible, thus providing more
e�cient estimates of the �xed e�ects parameters. The MIXED procedure in the SASJ system [3]
provides a rich selection of covariance structures from which to choose. In addition to selecting
a covariance structure, we examine the e�ects of choice of covariance structure on tests of �xed
e�ects, estimates of di�erences between treatment means, and on standard errors of the di�erences
between means.

2. EXAMPLE DATA SET

A pharmaceutical example experiment will be used to illustrate the methodology. Objectives of
the study were to compare e�ects of two drugs (A and B) and a placebo (P) on a measure of
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Figure 1. FEV1 repeated measures for each patient.

Table I. REML covariance and correlation estimates for FEV1 repeated measures data.

Unstructured
Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8

0.226 0.216 0.211 0.204 0.175 0.163 0.128 0.168

0.893 0.259 0.233 0.243 0.220 0.181 0.156 0.195

0.880 0.908 0.254 0.252 0.219 0.191 0.168 0.204

0.784 0.892 0.915 0.299 0.240 0.204 0.190 0.226

0.688 0.807 0.813 0.822 0.286 0.232 0.204 0.247

0.675 0.698 0.745 0.735 0.855 0.258 0.214 0.245

0.516 0.590 0.643 0.670 0.733 0.812 0.270 0.233

0.642 0.701 0.742 0.755 0.845 0.882 0.820 0.299

Variances on diagonal, covariances above diagonal, correlations below diagonal.

respiratory ability, called FEV1. Twenty-four patients were assigned to each of the three treatment
groups, and FEV1 was measured at baseline (immediately prior to administration of the drugs),
and at hourly intervals thereafter for eight hours. Data were analysed using PROC MIXED of the
SAS System, using baseline FEV1 as a covariable. An SAS data set, named FEV1UN1, contained
data with variables DRUG, PATIENT, HR (hour), BASEFEV1 and FEV1. Data for individual
patients are plotted versus HR in Figure 1 for the three treatment groups. The drug curves appear
to follow a classic pharmacokinetic pattern and thus might be analysed using a non-linear mean
model. However, we will restrict our attention to models of the mean function which are linear in
the parameters. Estimates of between-patient variances within drug group at each hour are printed

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:1793–1819



1796 R. C. LITTELL, J. PENDERGAST AND R. NATARAJAN

Figure 2. FEV1 repeated measures means for each drug.

in the diagonal of the matrix of Table I. It appears from these plots and variance estimates that
variances between patients within drug groups are approximately equal across times. Therefore, an
assumption of equal variances seems reasonable.
Treatment means are plotted versus HR in Figure 2. The graph shows that means for the three

treatment groups are essentially the same at HR=0 (baseline). At HR=1 the mean for drug B
is larger than the mean for drug A, and both of the drug means are much larger than the placebo
mean. Means for drugs A and B continue to be larger than the placebo means for subsequent
hours, but the magnitudes of the di�erences decrease sharply with time. It is of interest to estimate
di�erences between the treatment group means at various times, and to estimate di�erences between
means for the same treatment at di�erent times.
Covariances and correlations are printed above and below the diagonal, respectively, of the

matrix in Table I. The correlations between FEV1 at HR=1 and later times are in the �rst
column of the matrix. Correlations generally decrease from 0.893 between FEV1 at HR=1 and
HR=2 down to 0.642 between FEV1 at HR=1 and HR=8. Similar decreases are found between
FEV1 at HR=2 and later times, between FEV1 at HR=3 and later times etc. In short, correlations
between pairs of FEV1 measurements decrease with the number of hours between the times at
which the measurements were obtained. This is a common phenomenon with repeated measures
data. Moreover, magnitudes of correlations between FEV1 repeated measures are similar for pairs
of hours with the same interval between hours. Scatter plots of FEV1 for each hour versus FEV1
at each other hour are presented in Figure 3. These are similar to the ‘draftsman’s’ plots as
described by Dawson et al. [6]. The trends of decreasing correlations with increasing interval
between measurement times is apparent in the plots. That is, points are more tightly packed in
plots for two measures close in time than for measures far apart in time.
As a consequence of the patterns of correlations, a standard analysis of variance as prescribed in

Milliken and Johnson [7] is likely not appropriate for this data set. Thus, another type of analysis
must be used.
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Figure 3. Scatter plots of FEV1 repeated measures at each hour versus each other hour.

3. LINEAR MIXED MODEL FOR REPEATED MEASURES

In this section we develop the general linear mixed model to a minimally su�cient level that will
allow the reader to e�ectively begin using PROC MIXED of the SAS System. The development
here is consistent and somewhat overlapping with that of Cnann et al. [2], but is needed for
completeness. We assume a completely randomized design for patients in g treatment groups, with
ni subjects assigned to group i. Thus, we assume data on di�erent subjects are independent. For
simplicity, we assume there are t measurements at the same equally spaced times on each subject.
We choose to work in this nicely balanced situation so that we can illustrate the basic issues of
modelling covariance structure without complications introduced by unbalanced data.
Let Yijk denote the value of the response measured at time k on subject j in group i; i=1; : : : ; g;

j=1; : : : ; ni, and k =1; : : : ; t. Throughout this paper, we assume all random e�ects are normally
distributed. The �xed e�ect portion of the general linear mixed model speci�es the expected
value of Yijk to be E(Yijk)= �ijk . The expected value, �ijk , usually is modelled as a function
of treatment, time, and other �xed e�ects covariates. The random e�ect portion of the model
speci�es the covariance structure of the observations. We assume that observations on di�erent
subjects are independent, which is legitimate as a result of the completely randomized design. Thus,
cov(Yijk ; Yi′j′l)= 0 if i 6= i′ or j 6= j′. Also, we assume that variances and covariances of measures
on a single subject are the same within each of the groups. However, we allow for the possibility
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that variances are not homogeneous at all times, and that covariance between observations at
di�erent times on the same subject are not the same at all pairs of times. A general covariance
structure is denoted as cov(Yijk ; Yijl)= �k;l, where �k;l is the covariance between measures at times
k and l on the same subject, and �k;k = �2k denotes the variance at time k. This is sometimes called
‘unstructured’ covariance, because there are no mathematical structural conditions on the variances
and covariances.
Let Yij =(Yij1; Yij2; : : : ; Yijt)′ denote the vector of data at times 1; 2; : : : ; t on subject j in group

i. Then, in matrix notation, the model can be written

Yij = �ij + �ij

where �ij =(�ij1; �ij2; : : : ; �ijt)′ is the vector of means and �ij =(�ij1; �ij2; : : : ; �ijt)′ is the vector of
errors, respectively, for subject j in group i. Matrix representations of the expectation and variance
of Yij are E(Yij)= �ij and V (Yij)=Vij, where Vij is the t× t matrix with �k;l in row k, column
l. We assume that Vij is the same for all subjects (that is, for all i and j), but we continue to use
the subscripts ij to emphasize that we are referring to the covariance matrix for a single subject.
We represent the vector of data for all subjects as Y=(Y′

11; : : : ;Y
′
1n;Y

′
21; : : : ;Y

′
2n; : : : ;Y

′
g1; : : : ;

Y′
gn)

′, and similarly for the vectors of expected values and errors to get E(Y)= �=(�′11; : : : ; �
′
1n;

�′21; : : : ; �
′
2n; : : : ; �

′
g1; : : : ; �

′
gn)

′ and �=(�′11; : : : ; �
′
1n; �

′
21; : : : ; �

′
2n; : : : ; �

′
g1; : : : ; �

′
gn)

′. Then we have the
model

Y= � + � (1)

and

V (Y)=V=diag{Vij}
where diag{Vij} refers to a block-diagonal matrix with Vij in each block.
A univariate linear mixed model for the FEV1 repeated measures data is

Yijk = � + �xij + �i + dij + �k + (��)ik + eijk (2)

where � is a constant common to all observations, � is a �xed coe�cient on the covariate
xij =BASEFEV1 for patient j in drug group i; �i is a parameter corresponding to drug i; �k is
a parameter corresponding to hour k, and (��)ik is an interaction parameter corresponding to drug
i and hour k;dij is a normally distributed random variable with mean zero and variance �2d cor-
responding to patient j in drug group i, and eijk is a normally distributed random variable with
mean zero and variance �2e , independent of dij, corresponding to patient j in drug group i at hour
k. Then

E(Yijk) = �ijk = � + �xij + �i + �k + (��ik)

V (Yijk) = �2d + �
2
e (3)

and

cov(Yijk ; Yijl)= �2d + cov(eijk ; eijl)

The model (2), written in matrix rotation, is

Y=X� + ZU + e (4)
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where X is a matrix of known coe�cients of the �xed e�ect parameters �; �; �i; �k ; and (��ik); � is
the vector of �xed e�ect parameters, Z is a matrix of coe�cients (zeros and ones) of the random
patient e�ects dij;U is the vector of random e�ects dij, and e is the vector of the errors eijk . In
relation to model (1), �=X� and �=ZU + e.
Model (4) for the FEV1 data is a special case of the general linear mixed model

Y=X� + ZU + e (5)

in which no restrictions are necessarily imposed on the structures of G=V (U) and R=V (e). We
assume only that U and e are independent, and obtain

V (Y)=ZGZ′ + R: (6)

Equation (6) expresses the structure of V (Y) as a function of G and R. In many repeated measures
applications, ZGZ′ represents the between-patient portion of the covariance structure, and R rep-
resents the within-patient portion. By way of notation, sub-matrices of X;Z;R and e corresponding
to subject j in drug group i will be denoted by Xij ;Zij ;Rij and eij, respectively.
More details on implementation of the model for statistical inference are presented in the

Appendix.
In order to apply the general linear mixed model (5) using PROC MIXED in the SAS System,

the user must specify the three parts of the model: X�;ZU and e. Specifying X� is done in
the same manner as with PROC GLM, and presents no new challenges to PROC MIXED users
who are familiar with GLM. However, specifying ZU and e entails de�ning covariance structures,
which may be less familiar concepts. Several covariance structures are discussed in Section 4.

4. COVARIANCE STRUCTURES FOR REPEATED MEASURES

Modelling covariance structure refers to representing V (Y) in (6) as a function of a relatively
small number of parameters. Functional speci�cation of the covariance structure for the mixed
model is done through G and R of (5), often only in terms of Rij. We present six covariance
structures that will be �tted to the FEV1 data. Since observations on di�erent patients are assumed
independent, the structure refers to the covariance pattern of measurements on the same subject.
For most of these structures, the covariance between two observations on the same subject depends
only on the length of the time interval between measurements (called the lag), and the variance is
constant over time. We assume the repeated measurements are equally spaced so we may de�ne
the lag for the observations Yijk and Yijl to be the absolute value of k − l, that is |k − l|. For
these structures, the covariance can be characterized in terms of the variance and the correlations
expressed as a function of the lag. We generically denote the correlation function corrXXX(lag),
where XXX is an abbreviation for the name of a covariance structure.

4.1. Simple (SIM)

cov(Yijk ; Yijl)= 0 if k 6= l; V (Yijk)= �2SIM

Simple structure speci�es that the observations are independent, even on the same patient, and
have homogeneous variance V (Yijk)= �2SIM. The correlation function is corrSIM(lag)= 0. Simple
structure is not realistic for most repeated measures data because it speci�es that observations on
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the same patient are independent. In terms of model (5), G= 0 and Rij = �2SIMI, where I is an
identity matrix. For the model (3), simple structure would be obtained with dij =0 (equivalently,
�2d=0), cov(eijk ; eijl)= 0 for k 6= l, and V (eijk)= �2SIM:

4.2. Compound Symmetric (CS)

cov(Yijk ; Yijl)= �2CS;b if k 6= l; V (Yijk)= �2CS;b + �
2
CS;w

Compound symmetric structure speci�es that observations on the same patient have homogeneous
covariance �2CS;b, and homogeneous variance V (Yijk)= �

2
CS;b + �

2
CS;w. The correlation function is

corrCS(lag)= �2CS;b=(�
2
CS;b + �

2
CS;w)

Notice that the correlation does not depend on the value of lag, in the sense that the correlations
between two observations are equal for all pairs of observations on the same subject. Compound
symmetric structure is sometimes called ‘variance components’ structure, because the two param-
eters �2CS;b and �

2
CS;w represent between-subjects and within-subjects variances, respectively. This

mix of between- and within-subject variances logically motivates the form of V (Yij) in many sit-
uations and implies a non-negative correlation between pairs of within-subject observations. It can
be speci�ed in one of two ways through G and R in (5). One way is to de�ne G= �2CS;bI; and
R= �2CS;wI. In terms of the univariate model (3), we would have �

2
d= �

2
CS;d, cov(eijk ; eijl)= 0 for

k 6= l, and V (eijk)= �2CS;w. The other way to specify compound symmetric structure is to de�ne
G= 0, and de�ne Rij to be compound symmetric; for example, Rij = �2CS;wI+�

2
CS;bJ, where J is a

matrix of ones. In terms of the univariate model (3), we would have �2d=0; cov(eijk ; eijl)= �
2
CS;b

for k 6= l, and V (eijk)= �2CS;b + �2CS;w. The second formulation using only the R matrix is more
general, since it can be de�ned with negative within-subject correlation as well.

4.3. Autoregressive, order 1 (AR(1))

cov(Yijk ; Yijl)= �2AR(1)�
|k−l|
AR(1)

Autoregressive (order 1) covariance structure speci�es homogeneous variance V (Yijk)= �2AR(1). It
also speci�es that covariances between observations on the same patient are not equal, but decrease
toward zero with increasing lag. The correlation between the measurements at times k and l is
given by the exponential function

corrAR(1)(lag)= �
lag
AR(1)

Thus, observations on the same patient far apart in time would be essentially independent, which
may not be realistic. Autoregressive structure is de�ned in model (5) entirely in terms of R, with
G= 0. The element in row k, column l of Rij is denoted to be �2AR(1)�

|k−l|
AR(1). In terms of the

univariate model (3), we would have �2d=0, and cov(eijk ; eijl)= �
2
AR(1)�

|k−l|
AR(1).

4.4. Autoregressive with random e�ect for patient (AR(1)+RE)

cov(Yijk ; Yijl)= �2AR(1)+RE;b + �
2
AR(1)+RE;w�

|k−l|
AR(1)+RE
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Autoregressive with random e�ect for patient covariance structure speci�es homogeneous variance
V (Yijk)= �2AR(1)+RE;b + �

2
AR(1)+RE;w. The correlation function is

corrAR(1)+RE(lag)= (�2AR(1)+RE;b + �
2
AR(1)+RE;w�

lag
AR(1)+RE)=(�

2
AR(1)+RE;b + �

2
AR(1)+RE;w)

Autoregressive plus random e�ects structure speci�es that covariance between observations on the
same patient comes from two sources. First, any two observations share a common contribution
simply because they are on the same subject. This is the �2AR(1)+RE;b portion of the covariance, and
results from de�ning a random e�ect for patients. Second, the covariance between observations
decreases exponentially with lag, but decreases only to �2AR(1)+RE;b. This is the autoregressive
contribution to the covariance, �2AR(1)+RE;w�

|k−l|. In terms of model (5), AR(1)+RE is represented
with G= �2AR(1)+RE;bI and autoregressive Rij. In terms of the univariate model (3), we would
have �2d= �

2
AR(1)+RE;b, and cov(eijk ; eijl)= �

2
AR(1)+RE;w�

|k−l|. The AR(1)+RE covariance structure
actually results from a special case of the model proposed by Diggle [4].

4.5. Toeplitz (TOEP)

cov(Yijk ; Yijl)= �TOEP; |k−l|; V (Yijk)= �2TOEP

Toeplitz structure, sometimes called ‘banded’, speci�es that covariance depends only on lag, but
not as a mathematical function with a smaller number of parameters. The correlation function
is corr(lag)= �TOEP; |lag|=�2TOEP. In terms of model (5), TOEP structure is given with G= 0. The
elements of the main diagonal of R are �2TOEP. All elements in a sub-diagonal |k − l|= lag are
�TOEP; |k−l|, where k is the row number and l is the column number.

4.6. Unstructured (UN)

cov(Yijk ; Yijl)= �UN; kl

The ‘unstructured’ structure speci�es no patterns in the covariance matrix, and is completely gen-
eral, but the generality brings the disadvantage of having a very large number of parameters. In
terms of model (5), it is given with G= 0 and a completely general Rij.

5. USING THE MIXED PROCEDURE TO FIT LINEAR MIXED MODELS

We now turn to PROC MIXED for analyses of the FEV1 data which �t the mean model (3) and
accommodate structures de�ned on the covariance matrix. We assume the reader has some famil-
iarity with the SAS System, and knows how to construct SAS data sets and call SAS procedures.
The general linear mixed model (5) may be �t by using the MODEL, CLASS, RANDOM and

REPEATED statements in the MIXED procedure. The MODEL statement consists of an equation
which speci�es the response variable on the left side of the equal sign and terms on the right side to
specify the �xed e�ects portion of the model, X�. Readers familiar with the GLM procedure
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in SAS will recognize the RANDOM and REPEATED statements as being available in GLM,
but their purposes are quite di�erent in MIXED. The RANDOM statement in MIXED is used to
specify the random e�ects portion, ZU, including the structure of V (U)=G. The REPEATED
statement in MIXED is used to specify the structure of V (e)=R. Also, the MODEL statement in
MIXED contains only �xed e�ects, but in GLM it contains both �xed and random e�ects. The
CLASS statement, however, has a similar purpose in MIXED as in GLM, which is to specify
classi�cation variables, that is, variables for which indicator variables are needed in either X or
Z. The CLASS statement in MIXED also is used to identify grouping variables, for example,
variables that delineate the submatrices of block diagonal G or R.
In the FEV1 data, PATIENT and DRUG are clearly classi�cation variables, and must be listed

in the CLASS statement. The variable HR (hour) could be treated as either a continuous or a
classi�cation variable. In the �rst stage of implementing the linear mixed model, the mean structure
E(Y)=X� usually should be fully parameterized, as emphasized by Diggle [4]. Underspecifying
the mean structure can result in biased estimates of the variance and covariance parameters, and
thus lead to an incorrect assessment of covariance structure. Therefore, unless there are a very
large number of levels of the repeated measures factor, we usually specify the repeated measures
factor as a classi�cation variable. Thus, we include the variable HR in the CLASS statement

class drug patient hr;

On the right side of the MODEL statement, we list terms to specify the mean structure (3)

model fev1=basefev1 drug hr drug ∗ hr

Executing the statements

proc mixed data= fev1uni;

class drug patient hr; (7)

model fev1=basefev1 drug hr drug ∗ hr;

would provide an ordinary least squares �t of the model (3). Results would be equivalent to those
obtained by executing the CLASS and MODEL statements in (7) using PROC GLM. All tests of
hypotheses, standard errors, and con�dence intervals for estimable functions would be computed
with an implicit assumption that V (Y)= �2I, that is, that G= 0 and that R= �2I.
Specifying the MODEL statement in (7) is basically stage 1 of our four-stage process. Stage 2 is

to select an appropriate covariance structure. The covariance structures described in
Section 3 may be implemented in PROC MIXED by using RANDOM and=or REPEATED state-
ments in conjunction with the statements (7). These statements cause PROC MIXED to com-
pute REsidual Maximum Likelihood (REML, also known as restricted maximum likelihood)
or Maximum Likelihood (ML) (Searle et al. reference [8], chapter 6) estimates of covariance
parameters for the speci�ed structures.
Several options are available with the REPEATED and RANDOM statements, and would be

speci�ed following a slash (=). Following is a list of some of the options, and a brief description
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of their functions:

TYPE= structure type. Speci�es the type of structure for G or R. Structure op-
tions are given in SAS Institute Inc. [3].

R and RCORR (REPEATED). Requests printing of R matrix in covariance or correlation
form.

G and GCORR (RANDOM). Requests printing of G matrix in covariance or correlation
form.

V and VCORR (RANDOM). Requests printing of V=ZGZ′ + R matrix in covariance
or correlation form

SUBJECT= variable name. Speci�es variables whose levels are used to identify block
diagonal structure in G or R. When used in conjunction
with R, RCORR, G, GCORR, V, or VCORR options, only
a sub-matrix for a single value of the variable is printed.

We now present statements to produce each of the covariance structures of Section 3. Basic output
from these statements would include a table of estimates of parameters in the speci�ed covariance
structure and a table of tests of �xed e�ects, similar to an analysis of variance table. In each of the
REPEATED statements, there is a designation ‘SUBJECT=PATIENT (DRUG)’. This speci�es
that R is a block diagonal matrix with a sub-matrix for each patient. In this example, it is necessary
to designate PATIENT (DRUG) because patients are numbered 1–24 in each drug. If patients were
numbered 1–72, with no common numberings in di�erent drugs, it would be su�cient to designate
only ‘PATIENT’. The options R and RCORR are used with the REPEATED statement and V and
VCORR are used with the RANDOM statement to request printing of covariance and correlation
matrices.

5.1. Simple

This is the default structure when no RANDOM or REPEATED statement is used, as in statements
(7), or when no TYPE option is speci�ed in a RANDOM or REPEATED statement. It can be
speci�ed explicitly with a REPEATED statement using a TYPE option:

proc mixed data = fev1uni; class drug patient hr;

model fev1=basefev1 drug hr drug ∗ hr; (8)

repeated=type= vc subject= patient(drug) r corr;

Note that in SAS version 6.12, the option ‘simple’ can replace ‘vc’ in the REPEATED statement.

5.2. Compound Symmetric

As noted in the previous section, compound symmetric covariance structure can be speci�ed two
di�erent ways using G or R. Correspondingly, it can be implemented two di�erent ways in the
MIXED procedure, which would give identical results for non-negative within-subject correlation,
except for labelling. The �rst way, setting G= �2CS;bI and R= �

2
CS;wI, is implemented with the

RANDOM statement:

proc mixed data = fev1uni; class drug patient hr;

model fev1=basefev1 drug hr drug ∗ hr; (9)

random patient(drug);
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The RANDOM statement de�nes G= �2CS;bI and the absence of a REPEATED statement (by
default) de�nes R= �2CS;wI. The second way, setting G= 0 and Rij = �

2
CS;wI + �

2
CS;bJ, is im-

plemented with a REPEATED statement using a SUBJECT and TYPE options. The following
statements would specify compound symmetric structure for each individual patient, and print the
Rij submatrix for one patient in both covariance and correlation forms:

proc mixed data = fev1uni; class drug patient hr;
model fev1=basefev1 drug hr drug ∗ hr; (10)
repeated=type= cs subject = patient(drug) r rcorr;

The PROC MIXED output from statements (10) is shown in Figure 4, so that the reader can relate
it to the parts we summarize in tables.

5.3. Autoregressive, order 1

This covariance structure would be speci�ed for each patient using a REPEATED statement:

proc mixed data = fev1uni; class drug patient hr;
model fev1=basefev1 drug hr drug ∗ hr; (11)
repeated=type= ar(1) subject = patient(drug) r rcorr;

5.4. Autoregressive with random e�ect for patient

This covariance structure involves both G and R, and therefore requires both a RANDOM and a
REPEATED statement:

proc mixed data = fev1uni; class drug patient hr;
model fev1=basefev1 drug hr drug ∗ hr;
random patient(drug); (12)
repeated=type= ar(1) subject = patient(drug);

The RANDOM statement de�nes G= �2AR(1)+RE:bI; and the REPEATED statement de�nes Rij to
be autoregressive, with parameters �2AR(1)+RE;w and �AR(1)+RE.
Notice that we have no R and RCORR options in the REPEATED statement in (12). Covariance

and correlation estimates that would be printed by R and RCORR options in (12) would not be
directly comparable with the other covariances and correlations for other structures that are de�ned
by REPEATED statements without a RANDOM statement. Covariance and correlation estimates
that would be printed by R and RCORR options in the REPEATED statement in (12) would pertain
only to the R matrix. Estimates for AR(1)+RE structure which are comparable to covariances and
correlations for other structures must be based on covariances of the observation vector Y, that is,
on V (Y)=ZGZ′ + R. This could be printed by using V and VCORR options in the RANDOM
statement in (12). However, the entire ZGZ′ + R matrix, of dimension 576× 576, would be
printed. Alternatively, the statements (13) could be used, which are the same as (12) except for
the RANDOM statement, but would print only ZijGZ

′
ij + Rij, of dimension 8× 8.

proc mixed data = fev1uni; class drug patient hr;
model fev1=basefev1 drug hr drug ∗ hr;
random int=subject = patient(drug) v vcorr; (13)
repeated=type= ar(1) subject = patient(drug);
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Figure 4. Basic PROC MIXED output for compound symmetric covariance structure.

Executing statements (13) results in the covariance and corresponding correlation estimates for
AR(1)+RE structure shown in Table II. The RANDOM statement in (13) de�nes ZU in (5)
equivalent to the RANDOM statement in (12), but from an ‘individual subject’ perspective rather
than a ‘sample of subjects’ perspective. The RANDOM statement in (12) basically de�nes columns
of Z as indicator variables for di�erent patients. The RANDOM statement in (13), with the
‘int=sub=patient(drug)’ designation, de�nes a set of ones as ‘intercept’ coe�cients for each
patient.
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Table II. REML variance, covariance and correlation estimates for �ve covariance structures
for FEV1 repeated measures.

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8

1. Simple
0.267 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2. Compound Symmetric
0.269 0.206 0.206 0.206 0.206 0.206 0.206 0.206
1.0 0.766 0.766 0.766 0.766 0.766 0.766 0.766

3. Autoregressive (1)
0.266 0.228 0.195 0.167 0.143 0.123 0.105 0.090
1.0 0.856 0.733 0.629 0.538 0.461 0.394 0.338

4. Autoregressive (1) with random e�ect for patient
0.268 0.230 0.209 0.198 0.192 0.189 0.187 0.186
1.0 0.858 0.780 0.739 0.716 0.705 0.698 0.694

5. Toeplitz (banded)
0.266 0.228 0.216 0.207 0.191 0.183 0.169 0.158
1.0 0.858 0.811 0.777 0.716 0.686 0.635 0.593

Variances and covariances in top line; correlations in bottom line.

5.5. Toeplitz

This structure can be speci�ed in terms of R with G= 0, and therefore requires only a REPEATED
statement:

proc mixed data = fev1uni; class drug patient hr;

model fev1=basefev1 drug hr drug ∗ hr; (14)

repeated=type= toep subject = patient(drug) r rcorr;

5.6. Unstructured

This structure can be speci�ed in terms of R with G= 0, and therefore requires only a REPEATED
statement:

proc mixed data = fev1uni; class drug patient hr;

model fev1=basefev1 drug hr drug ∗ hr; (15)

repeated=type= un subject = patient(drug) r rcorr;

Parameter estimates in the covariance and correlation matrices for the various structures (excepting
‘unstructured’) are:

SIM �̂2SIM =0:267
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CS �̂2CS;b = 0:206
�̂2CS;w =0:063

AR(1) �̂2AR(1) = 0:266
�̂�̂AR(1) = 0:856

AR(1) + RE �̂2AR(1)+RE;b = 0:185
�̂2AR(1)+RE;w =0:083
�̂AR(1)+RE = 0:540

TOEP �̂2TOEP = 0:266
�̂TOEP;1 = 0:228
�̂TOEP;2 = 0:216
�̂TOEP;3 = 0:207
�̂TOEP;4 = 0:191
�̂TOEP;5 = 0:183
�̂TOEP;6 = 0:169
�̂TOEP;7 = 0:158

UN (parameter estimates shown in Table I):

The covariance and correlation matrices resulting from statements (8), (10), (11), (13) and (14) are
summarized in Table II. Rather than printing the entire matrices, covariances and correlations are
displayed as a function of lag for SIM, CS, AR(1), AR(1)+RE and TOEP structures. Covariances
and correlations resulting from (15) are printed in Table I.

6. COMPARISON OF FITS OF COVARIANCE STRUCTURES

We discuss covariance and correlation estimates in Table II for the structured covariances in
comparison with those in Table I for the unstructured covariances. First, simple and compound
symmetric estimates in Table II clearly do not reect the trends in Table I. Autoregressive estimates
in Table II show the general trend of correlations decreasing with length of time interval, but the
values of the correlations in the autoregressive structure are too small, especially for long intervals.
Thus, none of SIM, CS or AR(1) structures appears to adequately model the correlation pattern of
the data. The AR(1)+RE correlations in Table II show good agreement with TOEP estimates in
Table II and UN estimates in Table I. Generally, we prefer a covariance model which provides a
good �t to the UN estimates, and has a small number of parameters. On this principle, AR(1)+RE
is preferable.
The correlogram (Cressie, reference [9], p. 67) is a graphical device for assessing correla-

tion structure. It is basically a plot of the correlation function. Correlation plots are shown in
Figure 5 based on estimates assuming UN, CS, AR(1), AR(1)+RE and TOEP structures. Plots
for CS, AR(1), AR(1)+RE and TOEP may be considered correlogram estimates assuming these
structures. Of these correlations which are a function only of lag, the TOEP structure is the most
general, and thus is used as the reference type in Figure 5. These plots clearly show that the �t
of the AR(1)+RE structure agrees with TOEP and is superior to the �ts of CS and AR(1).
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Figure 5. Plots of correlation estimates and correlograms.

Akaike’s information criterion (AIC) [10] and Schwarz’s Bayesian criterion (SBC) [11] are
indices of relative goodness-of-�t and may be used to compare models with the same �xed e�ects
but di�erent covariance structures. Both of these criteria apply rather generally for purposes of
model selection and hypothesis testing. For instance, Kass and Wassermann [12] have shown that
the SBC provides an approximate Bayes factor in large samples. Formulae for their computation
are

AIC= L(�̂)− q
SBC= L(�̂)− (q=2) log(N ∗)
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Table III. Akaike’s information criterion (AIC) and Schwarz’s Bayesian criterion
(SBC) for six covariance structures.

Structure name AIC SBC

1. Simple −459:5 −461:6
2. Compound symmetric −175:6 −179:9
3. Autoregressive (1) −139:5 −143:8
4. Autogressive (1) with random e�ect for patients −126:5 −132:9
5. Toeplitz (banded) −121:9 −139:2
6. Unstructured −110:1 −187:7

where L(�̂) is the maximized log-likelihood or restricted log-likelihood (REML), q is the number
of parameters in the covariance matrix, p is the number of �xed e�ect parameters and N ∗ is
the total number of ‘observations’ (N for ML and N − p for REML, where N is the number of
subjects).
Models with large AIC or SBC values indicate a better �t. However, it is important to note that

the SBC criterion penalizes models more severely for the number of estimated parameters than
does AIC. Hence the two criteria will not always agree on the choice of ‘best’ model. Since our
objective is parsimonious modelling of the covariance structure, we will rely more on the SBC
than the AIC criterion.
AIC and SBC values for the six covariance structures are shown in Table III. ‘Unstructured’,

has the largest AIC, but AR(1)+RE, ‘autoregressive with random e�ect for patient’, has the largest
SBC. Toeplitz ranks second in both AIC and SBC. The discrepancy between AIC and SBC for the
UN structure reects the penalty for the large number of parameters in the UN covariance matrix.
Based on inspection of the correlation estimates in Tables I and III, the graphs of Figure 5, and
the relative values of SBC, we conclude that AR(1)+RE, ‘autoregressive with random e�ect for
patient’, is the best choice of covariance structure.

7. EFFECTS OF COVARIANCE STRUCTURE ON TESTS OF FIXED EFFECTS,
ESTIMATES OF FIXED EFFECTS AND STANDARD ERRORS OF

ESTIMATES

In Section 6 we compared the correlation and covariance matrices produced by �ve choices of
covariance structure. In this section we examine the e�ects of choices of covariance structure on
tests and estimates of �xed e�ects. First, we examine the table of tests for �xed e�ects speci�ed
in the MODEL statements. Then we select a set of 15 comparisons among means and use the ES-
TIMATE statement to illustrate e�ects of covariance structure on estimates of linear combinations
of �xed e�ects.
Table IV contains values of F tests for �xed e�ects that are computed by the MIXED procedure

for each of the covariance structures speci�ed in (8), (10), (11), (13), (14) and (15). The F
values di�er substantially for SIM, CS and AR(1) structures. These are the structures that did not
provide good �ts in Section 6. Failure of SIM to recognize between-patient variation results in the
excessively large F values for BASEFEV1 and DRUG, which are between patient e�ects. Using
CS structure produces essentially the same results that would be obtained by using a univariate
split-plot type analysis of variance (Milliken and Johnson, reference [7], chapter 26). It results
in excessively large F values for HR and DRUG ∗HR. This is a well-known phenomenon of
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Table IV. Values of F tests for �xed e�ects for six covariance structures.

Structure name BaseFEV1 DRUG HR DRUG ∗HR
1. Simple 490.76 46.50 9.20 1.69
2. Compound symmetric 76.42 7.24 38.86 7.11
3. Autoregressive (1) 90.39 8.40 7.39 2.46
4. Autoregressive (1) with random e�ect for patient 75.93 7.28 17.10 3.94
5. Toeplitz (banded) 76.31 7.30 13.75 3.82
6. Unstructured 92.58 7.25 13.72 4.06

performing univariate analysis of variance when CS (actually, Hyunh–Feldt [13]) assumptions are
not met. It is basically the reason for making the so-called Hyunh–Feldt [13] and Greenhouse–
Geisser [14] adjustments to ANOVA p-values as done by the REPEATED statement in PROC
GLM [15]. F values for tests of HR and DRUG ∗HR using AR(1) structure are excessively small
due to the fact that AR(1) underestimates covariances between observations far apart in time, and
thereby overestimates variances of di�erences between these observations. Results of F tests based
on AR(1)+RE, TOEP and UN covariance are similar for all �xed e�ects. All of these structures
are adequate for modelling the covariance, and therefore produce valid estimates of error.
Now, we investigate e�ects of covariance structure on 15 linear combinations of �xed e�ects,

which are comparisons of means. The �rst seven comparisons are di�erences between hour 1 and
subsequent hours in drug A; these are within-subject comparisons. In terms of the univariate model
(2), they are estimates of

�A:1 − �A:k = �1 − �k + (��)A1 − (��)Ak (16)

for k =2; : : : ; 8.
The next eight comparisons are di�erences between drugs A and B at hours 1 to 8; these are

between-subject comparisons at particular times. In terms of the univariate model (3), they are
estimates of

�A:k − �B:k = �( �XA − �XB) + �A − �B + (��)Ak − (��)Bk (17)

for k =1; : : : ; 8.
The ESTIMATE statement in the MIXED procedure can be used to compute estimates of linear

combinations of �xed e�ect parameters. It is used for this purpose in essentially the same manner
as with the GLM procedure. With MIXED, the ESTIMATE statement can be used for the more
general purpose of computing estimates of linear combinations of �xed and random e�ectes, known
as Best Linear Unbiased Predictors (BLUPs) [16].
The following ESTIMATE statements in (18) can be run in conjunction with the PROC MIXED

statements (7)–(15) to obtain estimates of the di�erences (16). Coe�cients following ‘hr’ in (18)
specify coe�cients of �k parameters in (16), and coe�cients following ‘drug ∗ hr’ in (18) specify
coe�cients of (��)ik parameters in (16):

estimate ‘hr1–hr2 drgA’ hr 1 − 1 0 0 0 0 0 0 drug ∗ hr 1 − 1 0 0 0 0 0 0;
estimate ‘hr1–hr3 drgA’ hr 1 0 − 1 0 0 0 0 0 drug ∗ hr 1 0 − 1 0 0 0 0 0;
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Table V. Estimates and standard errors for six covariance structures: within-subject comparisons across time.

Standard errors

Parameter Estimate∗ Simple CS AR(1) AR(1)+RE Toeplitz (banded) Unstructured

hr1–hr2 drug A 0.0767 0.1491 0.0725 0.0564 0.0564 0.0562 0.0470
hr1–hr3 drug A 0.2896 0.1491 0.0725 0.0769 0.0700 0.0647 0.0492
hr1–hr4 drug A 0.4271 0.1491 0.0725 0.0908 0.0764 0.0704 0.0698
hr1–hr5 drug A 0.4200 0.1491 0.0725 0.1012 0.0796 0.0794 0.0822
hr1–hr6 drug A 0.4942 0.1491 0.0725 0.1093 0.0813 0.0836 0.0811
hr1–hr7 drug A 0.6050 0.1491 0.0725 0.1158 0.0822 0.0900 0.1002
hr1–hr8 drug A 0.6154 0.1491 0.0725 0.1211 0.0827 0.0951 0.0888

∗Parameter estimates are the same regardless of variance structure for these contrasts.

estimate ‘hr1–hr4 drgA’ hr 1 0 0 − 1 0 0 0 0 drug ∗ hr 1 0 0 − 1 0 0 0 0;
estimate ‘hr1–hr8 drgA’ hr 1 0 0 0 − 1 0 0 0 drug ∗ hr 1 0 0 0 − 1 0 0 0;
estimate ‘hr1–hr5 drgA’ hr 1 0 0 0 0 − 1 0 0 drug ∗ hr 1 0 0 0 0 − 1 0 0;
estimate ‘hr1–hr6 drgA’ hr 1 0 0 0 0 0 − 1 0 drug ∗ hr 1 0 0 0 0 0 − 1 0;
estimate ‘hr1–hr7 drgA’ hr 1 0 0 0 0 0 0 − 1 drug ∗ hr 1 0 0 0 0 0 0 − 1;

(18)

Results from running these ESTIMATE statements with each of the six covariance structures in
(18) appear in Table V. The estimates obtained from (18) are simply di�erences between the two
drug A means for each pair of hours, that is, the estimate labelled ‘hr1-hrk drgA’ is �YA:1 − �YA:k ,
or in terms of the model (2), �1− �k + (��)A1− (��)Ak + �eA:1− �eA:k , for k = 2; : : : ; 8. Because the
covariable BASEFEV1 is a subject-level covariate, it cancels in this comparison. Consequently, the
estimates are all the same for any covariance structure due to the equivalence of generalized least
squares (GLS) and ordinary least squares (OLS) in this setting. This will not happen in all cases,
such as when the data are unbalanced, when the covariate is time-varying, or when polynomial
trends are used to model time e�ects. In this example, the data are balanced and hour is treated
as a discrete factor. See Puntanen and Styan [17] for general conditions when GLS estimates are
equal to OLS estimates.
Even though all estimates of di�erences from statements (18) are equal, each of the six co-

variance structures results in a di�erent standard error estimate (Table V). Note that the ‘simple’
standard error estimates are always larger than those from the mixed model. The general expression
for the variance of the standard error estimate is

V (YA:1 − YA:k) = [�1;1 + �k; k − 2�1; k ]=24 (19)

where �k; l = cov(Yijk ; Yijl). For structured covariances, �k; l will be a function of k; l, and a small
number of parameters.
Standard error estimates printed by PROC MIXED are square roots of (19), with �k; l expressions

replaced by their respective estimates, assuming a particular covariance structure. We now discuss
e�ects of the assumed covariance structure on the standard error estimates.
Structure number 1, ‘simple’, treats the data as if all observations are independent with the same

variance. This results in equal standard error estimates of

0:14909825 = (2 �̂2SIM=24)
1=2

= (2(0:267=24))1=2
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for all di�erences between time means in the same drug. These are incorrect because SIM structure
clearly is inappropriate for two reasons. First, the SIM structure does not accommodate between-
patient variation, and second, it does not recognize that measures close together in time are more
highly correlated than measures far apart in time.
Structure number 2, ‘compound symmetric’, acknowledges variation as coming from two sources,

between- and within-patient. This results in standard error estimates of

0:07252978 = (2 �̂2CS;w=24)
1=2

= (2(0:063=24))1=2

being functions only of the within-patient varience component estimate. However, compound sym-
metry does not accommodate di�erent standard errors of di�erences between times as being de-
pendent on the length of the time interval. Consequently, the standard error estimates based on
the compound symmetric structure also are invalid.
Structure number 3, ‘autoregressive’, results in standard errors of estimates of di�erences between

times which depend on the length of the time interval. For example, the standard error estimate
for the di�erence between hours 1 and 8 (lag=7) is

0:121 = (2 �̂2AR(1)(1− �̂7AR(1))=24))1=2
= (2(0:266(1− 0:8567)=24))1=2

and similarly for other lags. The standard error estimates are 0.121 for the di�erence between
hours 1 and 8 etc., down to 0.056 for the di�erence between hours 1 and 2. If the autoregressive
structure were correct, then these estimates of standard errors should be in good agreement with
those produced by TOEP covariance. The TOEP standard error estimates range from 0.095 for the
di�erence between hours 1 and 8 down to 0.056 for the di�erence between hours 1 and 2. Thus
the autoregressive estimates are too large by approximately 30 per cent for long time intervals (for
example, hours 1 to 8). This is because the autoregressive structure underestimates the correlation
between observations far apart in time by forcing the correlation to decrease exponentially toward
zero.
Next, we examine the standard errors provided by structure 4, ‘autoregressive with random e�ect

for patient’. The standard error estimate for the di�erence between hours 1 and 8 (lag = 7) is

0:083 = (2(�̂2AR(1)+RE;w(1− �̂7AR(1)+RE)=24))1=2
= (2(0:083(1− 0:5407)=24))1=2

and similarly for other lags. We see that these standard error estimates generally provide good
agreement with the TOEP and UN standard error estimates. These three structures (TOEP, UN and
AR(1)+RE) are all potential candidates, because they accommodate between-subject variance and
decreasing correlation as the lag increases. The intuitive advantage of the AR(1)+RE estimates
over the TOEP and UN estimates in this setting is that the standard errors of the AR(1)+RE
estimates follow a smooth trend as a function of lag, whereas the TOEP and UN standard error
estimates are more erratic, particularly so for the UN estimates. In all three strucutres, the standard
errors for the larger time lags are larger than those for the smaller lags, reecting the pattern seen
in the data.
The following ESTIMATE statements can be run in conjunction with PROC MIXED statements

(7)–(15) to obtain estimates of the di�erences between drugs A and B at each hour, de�ned
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Table VI. Estimates and standard errors for six covariance structures: between-subject comparisons.

Parameter Simple CS AR(1) AR(1)+RE Toeplitz Unstructured
(Banded)

Estimates
drg B–drg A hr1 0.2184 0.2184 0.2179 0.2182 0.2180 0.2188
drg B–drg A hr2 0.2305 0.2305 0.2300 0.2303 0.2301 0.2308
drg B–drg A hr3 0.3943 0.3943 0.3938 0.3941 0.3939 0.3946
drg B–drg A hr4 0.3980 0.3981 0.3975 0.3978 0.3976 0.3984
drg B–drg A hr5 0.1968 0.1968 0.1963 0.1966 0.1964 0.1971
drg B–drg A hr6 0.1068 0.1068 0.1063 0.1066 0.1064 0.1071
drg B–drg A hr7 0.1093 0.1093 0.1088 0.1091 0.1088 0.1096
drg B–drg A hr8 0.1530 0.1530 0.1525 0.1528 0.1526 0.1534

Standard errors
drg B–drg A hr1 0.1491 0.1499 0.1489 0.1494 0.1490 0.1374
drg B–drg A hr2 0.1491 0.1499 0.1489 0.1494 0.1490 0.1471
drg B–drg A hr3 0.1491 0.1499 0.1489 0.1494 0.1490 0.1454
drg B–drg A hr4 0.1491 0.1499 0.1489 0.1494 0.1490 0.1578
drg B–drg A hr5 0.1491 0.1499 0.1489 0.1494 0.1490 0.1544
drg B–drg A hr6 0.1491 0.1499 0.1489 0.1494 0.1490 0.1465
drg B–drg A hr7 0.1491 0.1499 0.1489 0.1494 0.1490 0.1501
drg B–drg A hr8 0.1491 0.1499 0.1489 0.1494 0.1490 0.1579

in (17):

estimate ‘drgA–drgB hr1’ drug 1 −1 0 drug ∗ hr 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0;
estimate ‘drgA–drgB hr2’ drug 1 −1 0 drug ∗ hr 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0;
estimate ‘drgA–drgB hr3’ drug 1 −1 0 drug ∗ hr 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0;
estimate ‘drgA–drgB hr4’ drug 1 −1 0 drug ∗ hr 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0;
estimate ‘drgA–drgB hr5’ drug 1 −1 0 drug ∗ hr 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0;
estimate ‘drgA–drgB hr6’ drug 1 −1 0 drug ∗ hr 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0;
estimate ‘drgA–drgB hr7’ drug 1 −1 0 drug ∗ hr 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0;
estimate ‘drgA–drgB hr8’ drug 1 −1 0 drug ∗ hr 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1;

(20)

Results appear in Table VI. These estimates are the same for structures SIM and CS. They are
simply di�erences between ordinary least squares means, adjusted for the covariable BASEFEV1.
However, a simple expression for the variance of the estimates is not easily available. The standard
errors di�er for the two covariance structures, because simple structure does not recognize between-
patient variation.
Estimates of drug di�erences for the four covariance structures other than ‘Simple’ and ‘Com-

pound symmetric’ are all numerically di�erent, though similar. Also, standard errors of the drug
di�erences are not the same for covariance structures AR(1), AR(1)+RE, TOEP and UN, but the
standard errors for the AR(1)+RE and TOEP structure are constant over the hours. This is de-
sirable, because data variance are homogeneous over hours, and the adjustment for the covariable
BASEFEV1 would be the same at each hour. However, the standard errors of drug di�erences for
UN covariance vacillate between 0.137 and 0.158, a range of approximately 16 per cent. The stan-
dard errors are not constant because UN does not assume homogeneous variances. In the present
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example, it is reasonable to assume homogeneous variances, and this should be exploited. Not
doing so results in variable and ine�cient standard error estimates.
The purpose of this section was to illustrate the practical e�ects of choosing a covariance

structure. The results show that SIM, CS and AR(1) covariance structures are inadequate for the
example data. These structure models basically provide ill-�tting estimates of the true covariance
matrix of the data. In turn, the ill-�tting estimates of data covariance result in poor estimates of
standard errors of certain di�erences between means, even if estimates of di�erences between means
are equal across covariance structures. The structures AR(1)+RE, TOEP and UN are adequate, in
the sense that they provide good �ts to the data covariance. (This is always true of UN because
there are no constraints to impose lack of �t.) These adequate structures incorporate the two
essential features of the data covariance. One, observations on the same patient are correlated,
and two, observations on the same patient taken close in time are more highly correlated than
observations taken far apart in time. As a result, standard error estimates based on assumptions of
AR(1)+RE, TOEP or UN covariance structures are valid, but because UN imposes no constraints
or patterns, the standard error estimates are somewhat unstable.

8. MODELLING POLYNOMIAL TRENDS OVER TIME

Previous analyses have treated hour as a classi�cation variable and not modelled FEV1 trends as a
continuous function of hour. In Section 6, we �tted six covariance structures to the FEV1 data, and
determined that AR(1)+RE provided the best �t. In Section 7, we examined e�ects of covariance
structure on estimates of �xed e�ect parameters and standard errors. In this section, we treat hour
as a continuous variable and model hour e�ects in polynomials to re�ne the �xed e�ects portion
of the model. Then we use the polynomial model to compute estimates of di�erences analogous
to those in Section 7.
Statements (21) �t the general linear mixed model using AR(1)+RE covariance structure to

model random e�ects and third degree polynomials to model �xed e�ects of drug and hour. A
previous analysis (not shown) that �tted fourth degree polynomials using PROC MIXED showed
no signi�cant evidence of fourth degree terms.

proc mixed data= fev1uni; class drug patient;

model fev1=basefev1 drug drug ∗ hr drug ∗ hr ∗ hr drug ∗ hr ∗ hr ∗ hr/htype=1 3
solution noint;

random patient(drug);

repeated/type= ar(1) sub=patient(drug);

(21)

The MODEL statement in (21) is speci�ed so that parameter estimates obtained from the SOLU-
TION option directly provide the coe�cients of the third degree polynomials for each drug. The
�tted polynomial equations, after inserting the overall average value of 2.6493 for BASEFEV1,
are

A: FEV1=3:6187− 0:1475 HR + 0:0034 HR2 + 0:0004 HR3
B: FEV1=3:5793 + 0:1806 HR − 0:0802 HR2 + 0:0061 HR3
P: FEV1=2:7355 + 0:1214 HR − 0:0289 HR2 + 0:0017 HR3
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Figure 6. Plots of polynomial trends over hours for each drug.

The polynomial curves for the drugs are plotted in Figure 6.
Estimates of di�erences between hour 1 and subsequent hours in drug A based on the �tted

polynomials may be obtained from the ESTIMATE statements (22):

estimate ‘hr1–hr2 drga’drug ∗ hr −1 drug ∗ hr ∗ hr −03 drug ∗ hr ∗ hr ∗ hr −007;
estimate ‘hr1–hr3 drga’drug ∗ hr −2 drug ∗ hr ∗ hr −08 drug ∗ hr ∗ hr ∗ hr −026;
estimate ‘hr1–hr4 drga’drug ∗ hr −3 drug ∗ hr ∗ hr −15 drug ∗ hr ∗ hr ∗ hr −063;
estimate ‘hr1–hr5 drga’drug ∗ hr −4 drug ∗ hr ∗ hr −24 drug ∗ hr ∗ hr ∗ hr −124;
estimate ‘hr1–hr6 drga’drug ∗ hr −5 drug ∗ hr ∗ hr −35 drug ∗ hr ∗ hr ∗ hr −215;
estimate ‘hr1–hr7 drga’drug ∗ hr −6 drug ∗ hr ∗ hr −48 drug ∗ hr ∗ hr ∗ hr −342;
estimate ‘hr1–hr8 drga’drug ∗ hr −7 drug ∗ hr ∗ hr −63 drug ∗ hr ∗ hr ∗ hr −511;

(22)

Results from statements (22) appear in Table VII.
We see that standard errors of di�erences between hour 1 and subsequent hours in drug A using

AR(1)+RE covariance and polynomial trends for hour are smaller than corresponding standard
errors in Table V using AR(1)+RE covariance and hour as a classi�cation variable. This is due to
the use of the polynomial model which exploits the continuous trend over hours. If the polynomial
model yields very di�erent results, one would conclude it does not adequately represent the trend
over time.
Estimates of di�erences between drugs A and B at each hour may be obtained from the ESTI-

MATE statements (23):

estimate ‘drga− drgb hr1’ drug 1 − 1 0
drug ∗ hr 1 − 1 0 drug ∗ hr ∗ hr 1 − 1 0 drug ∗ hr ∗ hr ∗ hr 1 − 1 0;

estimate ‘drga− drgb hr2’ drug 1 − 1 0
drug ∗ hr 2 − 2 0 drug ∗ hr ∗ hr 4 − 4 0 drug ∗ hr ∗ hr ∗ hr 8 − 8 0;
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Table VII. Estimates and standard errors for AR(1) + RE covariance
structure and third degree polynomial model for hour.m

Parameter Estimate Standard error

Within-subject comparisons
hr1–hr2 drug A 0.1346 0.0453
hr1–hr3 drug A 0.2577 0.0634
hr1–hr4 drug A 0.3669 0.0686
hr1–hr5 drug A 0.4599 0.0720
hr1–hr6 drug A 0.5344 0.0754
hr1–hr7 drug A 0.5880 0.0753
hr1–hr8 drug A 0.6183 0.0828

Between-subject comparisons
drg B–drg A hr1 0.2108 0.1494
drg B–drg A hr2 0.3280 0.1429
drg B–drg A hr3 0.3463 0.1434
drg B–drg A hr4 0.2998 0.1408
drg B–drg A hr5 0.2228 0.1408
drg B–drg A hr6 0.1492 0.1434
drg B–drg A hr7 0.1132 0.1429
drg B–drg A hr8 0.1489 0.1494

estimate ‘drga− drgb hr3’ drug 1 − 1 0
drug ∗ hr 3 − 3 0 drug ∗ hr ∗ hr 9 − 9 0 drug ∗ hr ∗ hr ∗ hr 27 − 27 0;

estimate ‘drga− drgb hr4’ drug 1 − 1 0
drug ∗ hr 4 − 4 0 drug ∗ hr ∗ hr 16 − 16 0 drug ∗ hr ∗ hr ∗ hr 64 − 64 0;

estimate ‘drga− drgb hr5’ drug 1 − 1 0
drug ∗ hr 5 − 5 0 drug ∗ hr ∗ hr 25 − 25 0 drug ∗ hr ∗ hr ∗ hr 125 − 125 0;

estimate ‘drga− drgb hr6’ drug 1 − 1 0
drug ∗ hr 6 − 6 0 drug ∗ hr ∗ hr 36 − 36 0 drug ∗ hr ∗ hr ∗ hr 216 − 216 0;

estimate ‘drga− drgb hr7’ drug 1 − 1 0
drug ∗ hr 7 − 7 0 drug ∗ hr ∗ hr 49 − 49 0 drug ∗ hr ∗ hr ∗ hr 343 − 343 0;

estimate ‘drga− drgb hr8’ drug 1 − 1 0
drug ∗ hr 8 − 8 0 drug ∗ hr ∗ hr 64 − 64 0 drug ∗ hr ∗ hr ∗ hr 512 − 512 0;

(23)

Results from statements (23) appear in Table VII.
Standard errors for di�erences between drug A and drug B at hours 1 and 8 using the poly-

nomial model are similar to standard errors for these di�erences using the model with hour as a
classi�cation variable. The standard errors of di�erences between drugs A and B at intermediate
hours are less than the standard errors for respective di�erences using hour as a classi�cation
variable. Again, this is a phenomenon related to using regression models, and has very little to
do with the covariance structure. It demonstrates that there is considerable advantage to re�ning
the �xed e�ects portion of the model. We believe, however, that re�ning the �xed e�ects portion
of the model should be done after arriving at a satisfactory covariance structure using a saturated
�xed e�ects model.
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9. SUMMARY AND CONCLUSIONS

One of the primary distinguishing features of analysis of repeated measures data is the need
to accommodate the covariation of the measures on the same sampling unit. Modern statistical
software enables the user to incorporate the covariance structure into the statistical model. This
should be done at a stage prior to the inferential stage of the analysis. Choice of covariance
structure can utilize graphical techniques, numerical comparisons of covariance estimates, and
indices of goodness-of-�t. After covariance is satisfactorily modelled, the estimated covariance
matrix is used to compute generalized least squares estimates of �xed e�ects of treatments and
time.
In most repeated measures settings there are two aspects to the covariance structure. First is

the covariance structure induced by the subject experimental design, that is, the manner in which
subjects are assigned to treatment groups. The design typically induces covariance due to contribu-
tion of random e�ects. In the example of this paper, the design was completely randomized which
results in covariance of observations on the same subject due to between-subject variation. If the
design were randomized blocks, then there would be additional covariance due to block variation.
When using SAS PROC MIXED, the covariance structure induced by the subject experimental
design is usually speci�ed in the RANDOM statement. Second is the covariance structure induced
by the phenomenon that measures close in time are more highly correlated than measures far apart
in time. In many cases this can be described by a mathematical function of time lag between
measures. This aspect of covariance structure must be modelled using the REPEATED statement
in PROC MIXED.
Estimates of �xed e�ects, such as di�erences between treatment means, may be the same for

di�erent covariance structures, but standard errors of these estimates can still be substantially
di�erent. Thus, it is important to model the covariance structure even in conditions when estimates
of �xed e�ects do not depend on the covariance structure. Likewise, tests of signi�cance may
depend on covariance structure even when estimates of �xed e�ects do not.
The example in the present paper has equal numbers of subjects per treatment and no missing

data for any subject. Having equal numbers of subjects per treatment is not particularly important
as far as implementation of data analysis is concerned using mixed model technology. However,
missing data within subjects can present serious problems depending on the amount, cause and
pattern of missing data. In some cases, missing data can cause non-estimability of �xed e�ect
parameters. This would occur in the extreme situation of all subjects in a particular treatment
having missing data at the same time point. Missing data can also result in unstable estimates
of variance and covariance parameters, though non-estimability is unlikely. The analyst must also
address the underlying causes of missing data to assess the potential for introducing bias into the
estimates. If the treatment is so toxic as to cause elimination of study subjects, ignoring that cause
of missingness would lead to erroneous conclusions about the e�cacy of the treatment. For more
information on this topic, the reader is referred to Little and Rubin [18], who describe di�erent
severity levels of missingness and modelling approaches to address it.
Unequal spacing of observation times presents no conceptual problems in data analysis, but

computation may be more complex. In terms of PROC MIXED, the user may have to resort
to the class of covariance structures for spatial data to implement autoregressive covariance. See
Littell et al. [15] for illustration.
Using regression curves to model mean response as functions of time can greatly decrease

standard errors of estimators of treatment means and di�erences between treatment means at
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particular times. This is true in any modelling situation involving a continuous variable, and is
not related particularly to repeated measures data. This was demonstrated in Section 8 using poly-
nomials to model FEV1 trends over time. In an actual data analysis application, pharmacokinetic
models could be used instead. Such models usually are non-linear in the parameters, and thus
PROC MIXED could not be used in its usual form. However, the NLINMIX macro or the new
NLMIXED procedure could be used.

APPENDIX

The general linear mixed model speci�es that the data vector Y is represented by the equation

Y=X� + ZU + e (24)

where E(U)= 0, E(e)= 0; V (U)=G and V (e)=R. Thus

E(Y)=X� (25)

We assume that U and e are independent, and obtain

V (Y)=ZGZ′ + R (26)

Thus, the general linear mixed model speci�es that the data vector Y has a multivariate normal
distribution with mean vector �=X� and covariance matrix V=ZGZ′ + R.
Generalized least squares theory (Graybill, Reference [19], Chapter 6) states that the best linear

unbiased estimate of � is given by

b=(X′V−1X)−1X′V−1Y (27)

and the covariance matrix of the sampling distribution of b is

V (b)= (X′V−1X)−1 (28)

The BLUE of a linear combination a′� is a′b, and its variance is a′(X′V−1X)−1a. More generally,
the BLUE of a set of linear combinations A′� is A′b, and its sampling distribution covariance
matrix is A′(X′V−1X)−1A. Thus, the sampling distribution of A′b is multivariate normal with mean
vector E(A′b)=A′� and covariance matrix A′(X′V−1X)−1A. Inference procedures for the general
linear mixed model are based on these principles. However, the estimate b=(X′V−1X)−1X′V−1Y
and its covariance matrix V (b)= (X′V−1X)−1 both are functions, of V=ZGZ′ +R, and in most
all cases V will contain unknown parameters. Thus, an estimate of V must be used in its place.
Usually, elements of G will be functions of one set of parameters, and elements of R will be

functions of another set. The MIXED procedure estimates the parameters of G and R, using by
default the REML method, or the ML method, if requested by the user. Estimates of the parameters
are then inserted into G and R in place of the true parameter values to obtain V̂. In turn, V̂ is
used in place of V to compute b̂ and V̂(̂b).
Standard errors of estimates of linear combinations are computed as (V̂(a′b̂))1=2 =

(a′(V̂(̂b))a)1=2. Statistics for tests of �xed e�ects are computed as F = b′A(V̂(̂b))−1A′b=rank(A).
In some cases, the distributions of F are, in fact, F distributions, and in other cases they are only
approximate. Degrees of freedom for the numerator of the F statistic are given by the rank of A,
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but computation of degrees of freedom for the denominator is a much more di�cult problem. One
possibility is a generalized Satterthwaite approximation as given by Fai and Cornelius [20]. The
interested reader is also referred to McLean and Sanders [21] for further discussion on approxi-
mating degrees of freedom, and to Hulting and Harville [22] for some Bayesian and non-Bayesian
perspectives on this issue. For more information on analysis of repeated measures data, see Diggle
et al. [23] and Verbeke and Molenberghs [24].
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