The row value plus the column value gives the value of $r$. The table entry is $Z$. For example: if $r = .34$, then $Z = .3541$; if $Z = 1.7736$, then $r = .944$. For bivariate normal samples and large $N, Z$ is approximately normally distributed with mean equal to the inverse hyperbolic tangent of the population correlation coefficient and variance equal to $1/(N-3)$.
Table 1: Fisher's $Z$-transform. $Z = \tanh^{-1} r$.
  .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
.0 .0000 .0100 .0200 .0300 .0400 .0500 .0601 .0701 .0802 .0902
.1 .1003 .1104 .1206 .1307 .1409 .1511 .1614 .1717 .1820 .1923
.2 .2027 .2132 .2237 .2342 .2448 .2554 .2661 .2769 .2877 .2986
.3 .3095 .3205 .3316 .3428 .3541 .3654 .3769 .3884 .4001 .4118
.4 .4236 .4356 .4477 .4599 .4722 .4847 .4973 .5101 .5230 .5361
.5 .5493 .5627 .5763 .5901 .6042 .6184 .6328 .6475 .6625 .6777
.6 .6931 .7089 .7250 .7414 .7582 .7753 .7928 .8107 .8291 .8480
.7 .8673 .8872 .9076 .9287 .9505 .9730 .9962 1.0203 1.0454 1.0714
.8 1.0986 1.1270 1.1568 1.1881 1.2212 1.2562 1.2933 1.3331 1.3758 1.4219
  .000 .001 .002 .003 .004 .005 .006 .007 .008 .009
.90 1.4722 1.4775 1.4828 1.4882 1.4937 1.4992 1.5047 1.5103 1.5160 1.5217
.91 1.5275 1.5334 1.5393 1.5453 1.5513 1.5574 1.5636 1.5698 1.5762 1.5826
.92 1.5890 1.5956 1.6022 1.6089 1.6157 1.6226 1.6296 1.6366 1.6438 1.6510
.93 1.6584 1.6658 1.6734 1.6811 1.6888 1.6967 1.7047 1.7129 1.7211 1.7295
.94 1.7380 1.7467 1.7555 1.7645 1.7736 1.7828 1.7923 1.8019 1.8117 1.8216
.95 1.8318 1.8421 1.8527 1.8635 1.8745 1.8857 1.8972 1.9090 1.9210 1.9333
.96 1.9459 1.9588 1.9721 1.9857 1.9996 2.0139 2.0287 2.0439 2.0595 2.0756
.97 2.0923 2.1095 2.1273 2.1457 2.1649 2.1847 2.2054 2.2269 2.2494 2.2729
.98 2.2976 2.3235 2.3507 2.3796 2.4101 2.4427 2.4774 2.5147 2.5550 2.5987
.99 2.6467 2.6996 2.7587 2.8257 2.9031 3.9945 3.1063 3.2504 3.5434 3.8002