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CHAPTER

\" "1 esting presents an interesting anomaly for software engineers, who by their
nature are constructive people. Testing requires that the developer discard

basis poth preconceived notions of the “correctness” of software just developed and
testing ......... 485 then work hard to design test cases to “break” the software. Beizer [Beio0]
:’:‘::::‘:“ ........ 195 describes this situation effectively when he states:

:::;‘Y‘i‘:y value 198 There's a myth that if we were really good at programming, there would be no bugs to

A catch. If only we could really concentrate, if only everyone used structured program-

testing ......... 492 ming, top-down design, . .. then there would be no bugs. So goes the myth. There are
cyclomatic bugs, the myth says, because we are bad at what we do; and if we are bad at it, we
‘°'“'P|°x"y """ 2 should feel guilty about it. Therefore, testing and test case design is an admission of
:::::;?::T;; ______ 497 failure, which instills a goodly dose of guilt. And the tedium of testing is just punish-
flow groph ... .. 485 ment for our errors. Punishment for what? For being human? Guilt for what? For fail-
graph-based testing ing to achieve inhuman perfection? For not distinguishing between what another
methads ......... ki programmer thinks and what he says? For failing to be telepathic? For not solving
:::::I ':::::es 49 human communications problems that have been kicked around . . . for forty centuries?
ILEE) ocoocooos 22 Should testing instill guilt? Is testing really destructive? The answer to these ques-
eyl 4y tionsis Nor

patterns . ....... 507 In this chapter, I discuss techniques for software test-case design for conven-
specialized tional applications. Test-case design focuses on a set of techniques for the cre-
environments .. . .503 ation of test cases that meet overall testing objectives and the testing strategies
white-box

testng ... e discussed in Chapter 17.

Who does it? During early stages of testing, a
software engineer performs all tests. However,
as the testing process progresses, testing spe-

What is it? Once source code has
been generated, software must be
tested to uncover {and correct) as

many errors as possible before deliv-
ery to your customer. Your godl is to design a
series of test cases that have a high likelihood of
finding errors—but how? That's where software
festing techniques enter the picture. These tech-
niques provide systematic guidance for design-
ing tests that (1) exercise the internal logic and
inferfaces of every software component and (2)
exercise the input and output domains of the pro-
gram to uncover errors in program function,
behavior, and performance.

cialists may become involved.

Why is it important? Reviews and other SQA

actions can and do uncover errors, but they are
not sufficient. Every time the program is executed,
the customer fests it! Therefore, you have to exe-
cute the program before it gets to the customer
with the specific intent of finding and removing all
errors. In order fo find the highest possible num-
ber of errors, fests must be conducted systemati-
cally and test cases must be designed using
disciplined techniques.



PART THREE QUALITY MANAGEMENT

What are the steps? For conventional applica-
tions, software is tested from two different per-
spectives: {1) internal program logic is exercised
using “white box” test-case design techniques
and (2) software requirements are exercised
using “black box” test-case design techniques.
Use cases assist in the design of tests fo uncover
errors at the software validation level. In every
case, the infent is to find the maximum number
of errors with the minimum amount of effort

interfaces, component collaborations, and

"external requirements is designed and docu-
mented, expected results are defined, and actual
results are recorded.

How do | ensure that I've done it right? When

you begin testing, change your point of view. Try
hard to “break” the software! Design fest cases
in a disciplined fashion and review the fest cases
you do create for thoroughness. In addition, you
can evaluate test coverage and track error

and time.

detection achivities.

What is the work product? A set of fest cases
designed to exercise both internal logic,

SOFTWARE TESTING FUNDAMENTALS

“Every program
does something
right, it just may
not be the thing we
want it to do.”

Avuthor unknown

What are the
® character-
istics of
testability?

The goal of testing is to find errors, and a good test is one that has a high probabil-
ity of finding an error. Therefore, you should design and implement a computer-
based system or a product with “testability” in mind. At the same time, the tests
themselves must exhibit a set of characteristics that achieve the goal of finding the
most errors with a minimum of effort.

Testability. James Bach' provides the following definition for testability: “Software
testability is simply how easily [a computer program] can be tested.” The following
characteristics lead to testable software.

Operability. “The better it works, the more efficiently it can be tested.” If a system
is designed and implemented with quality in mind, relatively few bugs will block
the execution of tests, allowing testing to progress without fits and starts.

Observability. “What you see is what you test.” Inputs provided as part of testing
produce distinct outputs. System states and variables are visible or queriable c'lur—
ing execution. Incorrect output is easily identified. Internal errors are automatically
detected and reported. Source code is accessible.

Controllability. “The better we can control the software, the more the testing can
be automated and optimized.” All possible outputs can be generated through some
combination of input, and 1/0 formats are consistent and structured. All code is
executable through some combination of input. Software and hardware states and

1 The paragraphs that follow are used with permission of James Bach (copyright 1994) and have been
adapted from material that originally appeared in a posting in the newsgroup comp.software-eng.

“Errors are more
common, more
pervasive, and
more troublesome
in software than
with other
technologies.”

David Parnas

‘, What is o
. Ilgoodll
test?
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variables can be controlled directly by the test engineer. Tests can be conveniently
specified, automated, and reproduced.

Decomposability. "By controlling the scope of testing, we can more quickly
isolate problems and perform smarter retesting.” The software system is built from
independent modules that can be tested independently.

Simplicity. “The less there is to test, the more quickly we can test it.” The pro-
gram should exhibit functional simplicity (e.g., the feature set is the minimum nec-
essary to meet requirements); structural simplicity (e.g., architecture is modularized
to limit the propagation of faults), and code simplicity (e.g., a coding standard is
adopted for ease of inspection and maintenance).

Stability. "The fewer the changes, the fewer the disruptions to testing.” Changes
to the software are infrequent, controlled when they do occur, and do not invali-
date existing tests. The software recovers well from failures.

Understandability. “The more information we have, the smarter we will test.” The
architectural design and the dependencies between internal, external, and shared
components are well understood. Technical documentation is instantly accessible,
well organized, specific and detailed, and accurate. Changes to the design are
communicated to testers.

You can use the attributes suggested by Bach to develop a software configuration
(Le., programs, data, and documents) that is amenable to testing.

Test Characteristics. And what about the tests themselves? Kaner, Falk, and
Nguyen [Kan93] suggest the following attributes of a “good” test:

A good test has a high probability of finding an error. To achieve this goal, the
tester must understand the software and attempt to develop a mental picture of
how the software might fail. Ideally, the classes of failure are probed. For example,
one class of potential failure in a graphical user interface is the failure to recognize
proper mouse position. A set of tests would be designed to exercise the mouse in
an attempt to demonstrate an error in mouse position recognition.

A good test Is not redundant. Testing time and resources are limited. There is no
point in conducting a test that has the same purpose as another test. Every test
should have a different purpose (even if it is subtly different).

A good test should be “best of breed” [Kan93]. In a group of tests that have a simi-
lar intent, time and resource limitations may mitigate toward the execution of only
a subset of these tests. In such cases, the test that has the highest likelihood of
uncovering a whole class of errors should be used.

A good test should be neither too simple nor too complex. Although it is sometimes
possible to combine a series of tests into one test case, the possible side effects
associated with this approach may mask errors. In general, each test should be
executed separately.
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Designing Unique Tests

The scene: Vinod's cubical.

The players: Vinod and Ed—members of the
SafeHome software engineering team.

The conversation:

Vinod: So these are the test cases you intend fo run for
the passwordValidation operation.

Ed: Yeah, they should cover prefty much all possibilities
for the kinds of passwords a user might enter.

Vinod: So let's see . . . you note that the correct
password will be 8080, right?

Vinod: Those are okay, but | don't see much point in
running both the 1234 and 6789 inputs. They're
redundant . . . test the same thing, don't they?

Ed: Well, they're different values.

Vinod: That's true, but if 1234 doesn’t uncover an

error . . . in other words . . . the passwordValidation
operation notes that it's an invalid password, it's not likely
that 6789 will show us anything new.

Ed: | see what you mean.

Vinod: I'm not frying to be picky here . . . its just that

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS
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;ei;am ]ogistical problems. For even small programs, the number of possible logical
aths can be very large. White-box testin
: g should not, however, be dismissed

. . . . ' ' as
Impractical. A limited number of important logical paths can be selected and

/Q d Exhaustive Testing

O

Consider a 100-line program in the language
C. Alter some basic data declaration, the

exercised. Important data structures can be probed for validity

exists) has been developed for exhaustive testing. The
processor can develop o test case, execute it, and evaluate

program contains two nested loops that execute from 1 to

20 fimes each, depending on conditions specified at input

Inside the interior loop, four if-then-else constructs are -
required. There are approximately 10" possible paths that
may be executed in this program!

the results in one millisecond. Working 24 hours a day,
365 days a year, the processor would work for 3170 years
fo fest the program. This would, undeniably, cause havoc
in most development schedules.

Ed: Uh huh.

Vinod: And you specify passwords 1234 and 6789 to

we have limited fime fo do testing, so it's a good idea to
run tests that have a high likelihood of finding new errors.

Ed: Not a problem . . . 'll give this a bit more thought.

test for error in recognizing invalid passwords?

Ed: Right, and | also test passwords that are close to the
correct password, see . . . 8081 and 8180.

TNTERNAL AND EXTERNAL VIEWS QF TESTING

“There is only one
rule in designing
test cases: cover oll
features, but do
not make foo
many test cases.”

Tsuneo Yomoura

Ep
&%@3‘
POINT
White-box tests con be
designed only after
componentdevel design
(or source code)
exists. The logica!
details of the program
must he ovailable.

Any engineered product (and most other things) can be tested in one of two ways:
(1) Knowing the specified function that a product has been designed to perform, tests
can be conducted that demonstrate each function is fully operational while at the same
time searching for errors in each function. (2) Knowing the internal workings of a prod-
uct, tests can be conducted to ensure that “all gears mesh,” that is, internal operations
are performed according to specifications and all internal components have been ade-
quately exercised. The first test approach takes an external view and s called black-box
testing. The second requires an internal view and is termed white-box testing.?

Black-box testing alludes to tests that are conducted at the software interface.
A black-box test examines some fundamental aspect of a system with little regard
for the internal logical structure of the software. White-box testing of software is pred-
icated on close examination of procedural detail. Logical paths through the software
and collaborations between components are tested by exercising specific sets of
conditions and/or loops.

At first glance it would seem that very thorough white-box testing would lead
to “100 percent correct programs.” All we need do is define all logical paths, develop
test cases to exercise them, and evaluate results, that is, generate test cases to
exercise program logic exhaustively. Unfortunately, exhaustive testing presents

2 The terms functional testing and structural testing are sometimes used in place of black-box and
white-box testing, respectively.

To put thi i {

o put this number in perspective, we assume that a
magic test “magic”

Q st processor (“magic” because no such processor

Therefore, it is reasonable fo assert that exhaustive

testing is impossible for large software systems. )

—18.3 WHITE-BOX TESTING

“Bugs lurk in
corners and

congregate at
boundaries.”

Boris Beizer

White-box testing, sometimes called glass-box testing, is a test-case desi hil

ph){ that uses the control structure described as part of component—leveglndp '1 o
derive test cases. Using white-box testing methods, you can derive test caeSIgnhto
(1) guarantee that all independent paths within a module have been exeri'esfi )
least once, (2) exercise all logical decisions on their true and false sides 3 e
f’:lll loops at their boundaries and within their operational bounds and' 4 ) exea'lte
internal data structures to ensure their validity. ’ ) enerse

18.4 Basis PATH TESTING

Basis path testing is a white-box testing technique first proposed by Tom M

[McC76]. The basis path method enables the test-case designer to ()i/erive ICC"abe
.complexity measure of a procedural design and use this measure as a guide fz zgi'cal
ing a basis set of execution paths. Test cases derived to exercise the bafis seta e quar.
anteed to execute every statement in the program at least one time during tersiii;ar_

18.4.1 Flow Graph Notation

Before we consider the basis path method, a simple notation for the representati

of control flow, called a flow graph (or program graph) must be introduced.? Th ﬂlon
graph depicts logical control flow using the notation illustrated in Figure .18 leE o
structured construct (Chapter 10) has a corresponding flow graph sy?nbol e

In y basis € C ucte 10U e use of flo aphs. However (5]
3 actua € patl ethod can b ond d wi O g
A% y
serve as a useful 10tation for u derstalldmg control flow and lllustratmg the approaChW
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W The structured constructs in flow graph form: W

Case Compound

Flow graph :
notation . ] logic
Sequence If While Unti

Where each circle represents one or more
nonbranching PDL or source code statements

Toillustrate the use of a flow graph, consider the procedural design representation in

Figure 18.2a. Here, a flowchart is used to depict program control structure. Figure 18.2b

GDV'CE‘ maps the flowchart into a corresponding flow graph (assuming that no compound
A flow graph should be conditions are contained in the decision diamonds of the flowchart). Referring to
drawn only when the  Figure 18.2b, each circle, called a flow graph node, represents one or more p.rocedu.ral
logical stuctwe of & gtatements. A sequence of process boxes and a decision diamond can map into a sin-
component s ompex gle node. The arrows on the flow graph, called edges or links, represent flow of con-
;ZZ i?v;ag{fzf,logl,ls;,ﬁ trol and are analogous to flowchart arrows. An edge must terminate at a node, even
paths more readily. if the node does not represent any procedural statements (e.g., see the flow graph
symbol for the if-then-else construct). Areas bounded by edges and nodes are called

i ian 4
regions. When counting regions, we include the area outside the graph as a region.

ma) Flowchart and (b) flow graph

Edge

Node

Region

4 A more detailed discussion of graphs and their uses is presented in Section 18.6.1.

Predicate

node \

IFa OR b
then procedure x
else procedure 'y

ENDIF

When compound conditions are encountered in a procedural design, the genera-
tion of a flow graph becomes slightly more complicated. A compound condition
occurs when one or more Boolean operators (logical OR, AND, NAND, NOR) is pres-
entin a conditional statement. Referring to Figure 18.3, the program design language
(PDL) segment translates into the flow graph shown. Note that a separate node is
created for each of the conditions a and b in the statement IF ¢ OR b. Each node that
contains a condition is called a predicate node and is characterized by two or more
edges emanating from it.

18.4.2 Independent Program Paths

An independent path is any path through the program that introduces at least one
new set of processing statements or a new condition. When stated in terms of a flow
graph, an independent path must move along at least one edge that has not been
traversed before the path is defined. For example, a set of independent paths for the
flow graph illustrated in Figure 18.2b is

Path 1: 1-11

Path 2: 1-2-3-4-5-10-1-11

Path 3: 1-2-3-6-8-9-10-1-11

Path 4: 1-2-3-6-7-9-10-1-11

Note that each new path introduces a new edge. The path
1-2-3-4-5-10-1-2-3-6-8-9-10-1-11

is not considered to be an independent path because it is simply a combination of
already specified paths and does not traverse any new edges.

Paths 1 through 4 constitute a basis set for the flow graph in Figure 18.2b. That is,
if you can design tests to force execution of these paths (a basis set), every statement
in the program will have been guaranteed to be executed at least one time and every
condition will have been executed on its true and false sides. It should be noted that
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ﬁpwcsg

Cyclomatic complexity
is a seful mefic for
predicting those
modules that are likely
to be error prone. Use
it for test plonning as
well gs testcase
design.

9 Howdol
® compute
cyclomatic

complexity?

Cyclomatic complexity
provides the upper
bound on the number
of test cases that will
be required to
quarantee that every
siotement in the
program has been
executed af leost one
fime.
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the basis set is not unique. In fact, a number of different basis sets can be derived for

a given procedural design. . .
How do you know how many paths to look for? The computation of cyclomatic

complexity provides the answer. Cyclomatic complexity is a software metric that pr?—
vides a quantitative measure of the logical complexity of a program. When used in
the context of the basis path testing method, the value computed for cyclomatic com-
plexity defines the number of independent paths in the basis set of a program and
provides you with an upper bound for the number of tests that must be conducted to
ensure that all statements have been executed at least once.

Cyclomatic complexity has a foundation in graph theory and provides you with an
extremely useful software metric. Complexity is computed in one of three ways:

1. The number of regions of the flow graph corresponds to the cyclomatic
complexity.
2. Cyclomatic complexity V(G) for a flow graph G is defined as
VG =E-N+2
where E is the number of flow graph edges and N is the number of flow
graph nodes.
3. Cyclomatic complexity V(G) for a flow graph G is also defined as
VGy=P+1
where P is the number of predicate nodes contained in the flow graph G.
Referring once more to the flow graph in Figure 18.2b, the cyclomatic complexity can
be computed using each of the algorithms just noted:
1. The flow graph has four regions.
2. V(G)=11edges — 9nodes + 2 = 4.
3. V(G) = 3 predicate nodes + 1 = 4.
Therefore, the cyclomatic complexity of the flow graph in Figure 18.2b is 4.
More important, the value for V(G) provides you with an upper bound for the num-

ber of independent paths that form the basis set and, by implication, an upper bound
on the number of tests that must be designed and executed to guarantee coverage

of all program statements.

SAFEHOME

>

T
Ll B

The players: Vinod and Shakira—members of the
SafeHome software engineering team who are working
on fest planning for the security function.

Using Cyclomatic Complexity

The conversation:

Shakira: Look . . . | know that we should unit-test all the
components for the security function, but there are a lot of
‘em and if you consider the number of operations that

The scene: Shakira’s cubicle.

CHAPTER 18 TESTING CONVENTIONAL APPLICATIONS 489

have to be exercised, | don’t know . . . maybe we should components and see which have the highest values for

forget white-box testing, infegrate everything, and start

VIG). They're the ones that are most likely to be error

running black-box tests. prone.

Vinod: You figure we don‘t have enough time to do
component fests, exercise the operations, and then

infegrate?

Shakira: The deadline for the first increment is getting
closer than Id like . . . yeah, I'm concerned.

Vinod: Why don't you at least run white-box tests on

Shakira: And how do | compute V of G2

Vinod: It really easy. Here's a book that describes how
to do it.

Shakira (leafing through the pages): Okay, it
doesn’t look hard. I'll give it a try. The ops with
the highest VIG) will be the candidates for white-box

the operations that are likely fo be the most error prone?  tests.

Shakira (exasperated): And exactly how do | know  Vinod: Just remember that there are no guarantees.

which are the most error prone?
Vinod: Vof G.
Shakira: Huh?

Vinod: Cyclomatic complexity—V of G. Just compute
VG) for each of the operations within each of the

“The Ariane 5
rocket blew up on
lift-off due solely
to a software
defect (o bug)
involving the

conversion of a 64-

bit floating point
value info a 16-bit
integer. The rocket
and its four
satellites were
uninsured and
worth 5500
million. [Path fests
that exercised the
conversion path]
would have found
the bug but were
vetoed for
budgetary
reasons.”

A news report

A component with a low VIG} can still be error
prone.

Shakira: Alright. But ot least this'll help me to narrow
down the number of components that have to undergo
white-box testing.

18.4.3 Deriving Test Cases

The basis path testing method can be applied to a procedural design or to source
code. In this section, I present basis path testing as a series of steps. The procedure
average, depicted in PDL in Figure 18.4, will be used as an example to illustrate each
step in the test-case design method. Note that average, although an extremely sim-
ple algorithm, contains compound conditions and loops. The following steps can be
applied to derive the basis set:

1. Using the design or code as a foundation, draw a corresponding
flow graph. A flow graph is created using the symbols and construction
rules presented in Section 18.4.1. Referring to the PDL for average in
Figure 18.4, a flow graph is created by numbering those PDL statements that
will be mapped into corresponding flow graph nodes. The corresponding
flow graph is shown in Figure 18 5.

2. Determine the cyclomatic complexity of the resultant flow graph.
The cyclomatic complexity V(G) is determined by applying the algorithms
described in Section 18.4.2. It should be noted that V(G) can be determined
without developing a flow graph by counting all conditional statements in
the PDL (for the procedure average, compound conditions count as two) and
adding 1. Referring to Figure 18.5,

V(G) = 6 regions
V(G) = 17 edges — 13 nodes + 2 =6
V(G) = 5 predicate nodes + 1 = 6
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FiGure 18.4

PDL with
nodes
identitied

PROCEDURE average;

N .
This tt)r-ucedur-e computes the average of 100 or fewer
numbers that lie between bounding values: it also computes the

sum and the total number vafid.

:NTERFACE RETURNS average, total.input, total.valid;
NTERFACE ACCEPTS value, minimum, maximum;

TYPE valuef1:100] 18 BCALAR ARRAY:
TYPE average, total.input, total.valid:

minimum, maximum, sum I g :
TYPE i 18 INTEGER; AR

i=1;
; J totalinput = totalvalid = 0; .2
sum = Q;

DO WHILE value[i] <> -999 AND totalinput < 100 3

4 increment fotal.input by 1;
I valuefi} > = minimum AND value
5= /THEN i
EN incrament total.velid by 1:
7 sum = s sum + value[i]

ELSE skip

8 ENDIF
increment | by I;

9 ENDDO

IF fotalvalid > 0 10

N THEN average = i

12 ige = sum / total.valid;

“ELSE average = -999; .
13 enpIF

END average

D . . .
rztili'mme a basis set of linearly independent paths. The value of V.
provides the upper bound on the number of linearly independent paths

through the program control structure. In the case of
expect to specify six paths:

Path 1: 1-2-10-11-13
Path 2: 1-2-10-12-13

[il < = maximum @

(&)

procedure average, we

ro 125 I

Flow graph for
the procedure
average
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Path 3: 1-2-3-10-11-13

Path 4: 1-2-3-4-5-8-9-2-. ..

Path 5: 1-2-3-4-5-6-8-9-2-. ..

Path 6: 1-2-3-4-5-6-7-8-9-2-. . .
The ellipsis (. . .) following paths 4, 5, and 6 indicates that any path through
the remainder of the control structure is acceptable. It is often worthwhile to

identify predicate nodes as an aid in the derivation of test cases. In this case,
nodes 2, 3, 5, 6, and 10 are predicate nodes.

4. Prepare test cases that will force execution of each path in the basis
set. Data should be chosen so that conditions at the predicate nodes are
appropriately set as each path is tested. Each test case is executed and com-
pared to expected results. Once all test cases have been completed, the tester
can be sure that all statements in the program have been executed at least

once.

It is important to note that some independent paths (e.g., path 1 in our example)
cannot be tested in stand-alone fashion. That is, the combination of data required to
traverse the path cannot be achieved in the normal flow of the program. In such
cases, these paths are tested as part of another path test.

18.4.4 Graph Matrices

The procedure for deriving the flow graph and even determining a set of basis paths
is amenable to mechanization. A data structure, called a graph matrix, can be quite
useful for developing a software tool that assists in basis path testing.

A graph matrix is a square matrix whose size {i.e., number of rows and columns)
is equal to the number of nodes on the flow graph. Each row and column corre-~
sponds to an identified node, and matrix entries correspond to connections (an edge)
between nodes. A simple example of a flow graph and its corresponding graph
matrix [Beig0] is shown in Figure 18.6.

Ficure 18.6

Graph matrix

Connected to
node
Node 1 2 3 4 5

1 a

2

3 d b

4 c f
5 g e

Flow graph Graph matrix
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‘, What is a

¢ graph matrix
and how do 1
extend it for use
in testing?

18.5

PART THREE QUALITY MANAGEMENT

Referring to the figure, each node on the flow graph is identified by numbers,
while each edge is identified by letters. A letter entry is made in the matrix to
correspond to a connection between two nodes. For example, node 3 is connected

to node 4 by edge b.
To this point, the graph matrix is nothing more than a tabular representation of a

flow graph. However, by adding a link weight to each matrix entry, the graph matrix
can become a powerful tool for evaluating program control structure during testing.
The link weight provides additional information about control flow. In its simplest
form, the link weight is 1 (a connection exists) or O (a connection does not exist). But
link weights can be assigned other, more interesting properties:

e The probability that a link (edge) will be execute.

e The processing time expended during traversal of a link
e The memory required during traversal of a link

» The resources required during traversal of a link.

Beizer [Bei90] provides a thorough treatment of additional mathematical algo-
rithms that can be applied to graph matrices. Using these techniques, the analysis
required to design test cases can be partially or fully automated.

CONTROL STRUCTURE TESTING

“Paying more
attention fo
running fests than
to designing them
is a dassic
mistoke.”

Brian Marick

Errors are much more
common in the
neighborhood of
logical condifions than
they are in the locus of
sequential processing
statements.

The basis path testing technique described in Section 18.4 is one of a number of tech-
niques for control structure testing. Although basis path testing is simple and highly
effective, it is not sufficient in itself. In this section, other variations on control struc-
ture testing are discussed. These broaden testing coverage and improve the quality

of white-box testing.

18.5.1 Condition Testing

Condition testing [Tai89] is a test-case design method that exercises the logical con-
ditions contained in a program module. A simple condition is a Boolean variable or
a relational expression, possibly preceded with one NOT (=) operator. A relational

expression takes the form

E, <relational-operator> E;

where E, and E, are arithmetic expressions and <relational-operator> is one of the
following: <, =, =, # (nonequality), >, or=. A compound condition is composed of
two or more simple conditions, Boolean operators, and parentheses. We assume
that Boolean operators allowed in a compound condition include OR ( l), AND (&),
and NOT (-). A condition without relational expressions is referred to as a Boolean
expression.

If a condition is incorrect, then at least one component of the condition is incor-
rect. Therefore, types of errors in a condition include Boolean operator errors

“Good festers are
masters at noficing
‘something funny’
and adting on it.”

Brian Marick
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(incorrect/missing/extra Boolean operators), Boolean variable errors, Boolean
parenthesis errors, relational operator errors, and arithmetic expression errors. The
condition testing method focuses on testing each condition in the program to ensure
that it does not contain errors.

18.5.2 Data Flow Testing

The data flow testing method [Fra93] selects test paths of a program according to the
locations of definitions and uses of variables in the program. To illustrate the data
flow testing approach, assume that each statement in a program is assigned a unique
statement number and that each function does not modify its parameters or global
variables. For a statement with S as its statement number,

DEF(S) = {X| statement S contains a definition of X]
USE(S) = {X | statement S contains a use of X}

If statement S is an if or loop statement, its DEF set is empty and its USE set is based
on the condition of statement S. The definition of variable X at statement S is said to
be live at statement S’ if there exists a path from statement S to statement S’ that con-
tains no other definition of X.

A definition-use (DU) chain of variable X is of the form [X, S, S7, where Sand S’ are
statement numbers, X is in DEF(S) and USE(S"), and the definition of X in statement
Sis live at statement S.

One simple data flow testing strategy is to require that every DU chain be covered
at least once. We refer to this strategy as the DU testing strategy. It has been shown
that DU testing does not guarantee the coverage of all branches of a program. How-
ever, a branch is not guaranteed to be covered by DU testing only in rare situations
such as if-then-else constructs in which the then part has no definition of any vari-
able and the else part does not exist. In this situation, the else branch of the if state-
ment is not necessarily covered by DU testing.

18.5.3 Loop Testing

Loops are the cornerstone for the vast majority of all algorithms implemented in
software. And yet, we often pay them little heed while conducting software tests.
Loop testing is a white-box testing technique that focuses exclusively on the
validity of loop constructs. Four different classes of loops [Bei90] can be defined: sim-
ple loops, concatenated loops, nested loops, and unstructured loops (Figure 18.7).

Simple loops. The following set of tests can be applied to simple loops, where n
is the maximum number of allowable passes through the loop.

1. Skip the loop entirely.

2. Only one pass through the loop.

3. Two passes through the loop.
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4. m passes through the loop where m < n.

5. n—1,n, n+ 1 passes through the loop.

Nested loops. If we were to extend the test approach for simple loops to nesFed
loops, the number of possible tests would grow geometrically as the level of nesting
increases. This would result in an impractical number of tests. Beizer [Bei90] sug-
gests an approach that will help to reduce the number of tests:

1. Start at the innermost loop. Set all other loops to minimum values.

2. Conduct simple loop tests for the innermost loop while holding the outer
loops at their minimum iteration parameter (e.g., loop counter) values. Add
other tests for out-of-range or excluded values.

3. Work outward, conducting tests for the next loop, but keeping all other outer
loops at minimum values and other nested loops to “typical” values.

4. Continue until all loops have been tested.

Concatenated loops. Concatenated loops can be tested using the approach
defined for simple loops, if each of the loops is independent of the other. However,
if two loops are concatenated and the loop counter for loop 1 is used as the initial
value for loop 2, then the loops are not independent. When the loops are not inde-
pendent, the approach applied to nested loops is recommended.

Unstructured loops. Whenever possible, this class of loops should be redesigned
to reflect the use of the structured programming constructs (Chapter 10).
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18.6 BLACK-BoX TESTING

“To err is human,
to find a bug is
divine.”

Robert Dunn
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Black-box testing, also called behavioral testing, focuses on the functional require-
ments of the software. That is, black-box testing techniques enable you to derive sets
of input conditions that will fully exercise all functional requirements for a program.
Black-box testing is not an alternative to white-box techniques. Rather, it is a com-
plementary approach that is likely to uncover a different class of errors than white-
box methods.

Black-box testing attempts to find errors in the following categories: (1) incorrect
or missing functions, (2) interface errors, (3) errors in data structures or external
database access, (4) behavior or performance errors, and (5) initialization and
termination errors.

Unlike white-box testing, which is performed early in the testing process, black-
box testing tends to be applied during later stages of testing (see Chapter 17). Because
black-box testing purposely disregards control structure, attention is focused on the
information domain. Tests are designed to answer the following questions:

o How is functional validity tested?

e How are system behavior and performance tested?

e What classes of input will make good test cases?

e Is the system particularly sensitive to certain input values?

e How are the boundaries of a data class isolated?

o What data rates and data volume can the system tolerate?

» What effect will specific combinations of data have on system operation?
By applying black-box techniques, you derive a set of test cases that satisfy the fol-
lowing criteria [Mye79]: (1) test cases that reduce, by a count that is greater than one,
the number of additional test cases that must be designed to achieve reasonable

testing, and (2) test cases that tell you something about the presence or absence of
classes of errors, rather than an error associated only with the specific test at hand.

18.6.1 Graph-Based Testing Methods

The first step in black-box testing is to understand the objects® that are modeled in
software and the relationships that connect these objects. Once this has been
accomplished, the next step is to define a series of tests that verify “all objects have
the expected relationship to one another” [Bei95]. Stated in another way, software
testing begins by creating a graph of important objects and their relationships and

5 In this context, you should consider the term objects in the broadest possible context. 1t encom-
passes data objects, traditional components (modules), and object-oriented elements of computer
software.
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then devising a series of tests that will cover the graph so that each object and rela-
tionship is exercised and errors are uncovered.

To accomplish these steps, you begin by creating a graph—a collection of nodes
that represent objects, links that represent the relationships between objects, node
weights that describe the properties of a node (e.g., a specific data value or state
behavior), and link weights that describe some characteristic of a link.

The symbolic representation of a graph is shown in Figure 18.8a. Nodes are
represented as circles connected by links that take a number of different forms.
A directed link (represented by an arrow) indicates that a relationship moves in only
one direction. A bidirectional link, also called a symmetric link, implies that the rela-
tionship applies in both directions. Parallel links are used when a number of different
relationships are established between graph nodes.

As a simple example, consider a portion of a graph for a word-processing
application (Figure 18.8b) where

Object #1 = newFile (menu selection)

Object #2 = documentWindow

Object #3 = documentText

Referring to the figure, a menu select on newFile generates a document window.

The node weight of documentWindow provides a list of the window attributes that
are to be expected when the window is generated. The link weight indicates that the

ﬁpwcss.

Input classes are
known relatively early
in the soffware
process. For this
reason, begin thinking
about equivalence
partitioning as the
design is created.
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window must be generated in less than 1.0 second. An undirected link establishes a
symmetric relationship between the newFile menu selection and documentText,
and parallel links indicate relationships between documentWindow and
documentText. In reality, a far more detailed graph would have to be generated
as a precursor to test-case design. You can then derive test cases by traversing the
graph and covering each of the relationships shown. These test cases are designed
in an attempt to find errors in any of the relationships. Beizer [Bei95] describes a
number of behavioral testing methods that can make use of graphs:

Transaction flow modeling. The nodes represent steps in some transac-
tion (e.g., the steps required to make an airline reservation using an online
service), and the links represent the logical connection between steps (e.g.,
flightInformationInput is followed by validationAvailabilityProcessing).

The data flow diagram (Chapter 7) can be used to assist in creating graphs of
this type.

Finite state modeling. The nodes represent different user-observable states
of the software (e.g., each of the “screens” that appear as an order entry clerk
takes a phone order), and the links represent the transitions that occur to move
from state to state (e.g., orderInformation is verified during inventoryAvail-
abilityLook-up and is followed by customerBillingInformation input). The
state diagram (Chapter 7) can be used to assist in creating graphs of this type.

Data flow modeling. The nodes are data objects, and the links are the
transformations that occur to translate one data object into another. For
example, the node FICA tax withheld (FTW) is computed from gross wages
(GW) using the relationship, FTW = 0.62 x GW.

Timing modeling. The nodes are program objects, and the links are the
sequential connections between those objects. Link weights are used to
specify the required execution times as the program executes.

A detailed discussion of each of these graph-based testing methods is beyond
the scope of this book. If you have further interest, see [Bei95] for a comprehensive
coverage.

18.6.2 Equivalence Partitioning

Equivalence partitioning is a black-box testing method that divides the input domain
of a program into classes of data from which test cases can be derived. An ideal test
case single-handedly uncovers a class of errors (e.g., incorrect processing of all
character data) that might otherwise require many test cases to be executed before
the general error is observed.

Test-case design for equivalence partitioning is based on an evaluation of
equivalence classes for an input condition. Using concepts introduced in the preced-
ing section, if a set of objects can be linked by relationships that are symmetric,
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transitive, and reflexive, an equivalence class is present [Bei95]. An equivalence
class represents a set of valid or invalid states for input conditions. Typically, an input
condition is either a specific numeric value, a range of values, a set of related values,
or a Boolean condition. Equivalence classes may be defined according to the

following guidelines:

1. Ifan input condition specifies a range, one valid and two invalid equivalence
classes are defined.

2. If an input condition requires a specific value, one valid and two invalid
equivalence classes are defined.

3. Ifan input condition specifies a member of a set, one valid and one invalid
equivalence class are defined.

4. If an input condition is Boolean, one valid and one invalid class are defined.

By applying the guidelines for the derivation of equivalence classes, test cases for
each input domain data item can be developed and executed. Test cases are selected
so that the largest number of attributes of an equivalence class are exercised at once.

18.6.3 Boundary Value Analysis

A greater number of errors occurs at the boundaries of the input domain rather than
in the “center.” 1t is for this reason that boundary value analysis (BVA) has been de-
veloped as a testing technique. Boundary value analysis leads to a selection of test
cases that exercise bounding values.

Boundary value analysis is a test-case design technique that complements equiv-
alence partitioning. Rather than selecting any element of an equivalence class, BVA
leads to the selection of test cases at the “edges” of the class. Rather than focusing
solely on input conditions, BVA derives test cases from the output domain as well
Mye79].

Guidelines for BVA are similar in many respects to those provided for equivalence
partitioning:

1. Ifan input condition specifies a range bounded by values a and b, test cases

should be designed with values a and b and just above and just below a and b.

2. Ifan input condition specifies a number of values, test cases should be devel-
oped that exercise the minimum and maximum numbers. Values just above
and below minimum and maximum are also tested.

3. Apply guidelines 1 and 2 to output conditions. For example, assume that a tem-
perature versus pressure table is required as output from an engineering analy-
sis program. Test cases should be designed to create an output report that
produces the maximum (and minimum) allowable number of table entries.

4. Ifinternal program data structures have prescribed boundaries (e.g., a table
has a defined limit of 100 entries), be certain to design a test case to exercise
the data structure at its boundary.

(/>
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Most software engineers intuitively perform BVA to some degree. By applying
these guidelines, boundary testing will be more complete, thereby having a higher
likelihood for error detection.

18.6.4 Orthogonal Array Testing

There are many applications in which the input domain is relatively limited. That is,
the number of input parameters is small and the values that each of the parameters
may take are clearly bounded. When these numbers are very small (e.g., three input
parameters taking on three discrete values each), it is possible to consider every
input permutation and exhaustively test the input domain. However, as the number
of input values grows and the number of discrete values for each data item increases,
exhaustive testing becomes impractical or impossible.

Orthogonal array testing can be applied to problems in which the input domain is
relatively small but too large to accommodate exhaustive testing. The orthogonal
array testing method is particularly useful in finding region faults—an error category
associated with faulty logic within a software component.

To illustrate the difference between orthogonal array testing and more conven-
tional “one input item at a time” approaches, consider a system that has three input
items, X, ¥, and Z. Each of these input items has three discrete values associated with
it. There are 3° = 27 possible test cases. Phadke [Pha97] suggests a geometric view
of the possible test cases associated with X, Y, and Z illustrated in Figure 18.9.
Referring to the figure, one input item at a time may be varied in sequence along each
input axis. This results in relatively limited coverage of the input domain (repre-
sented by the left-hand cube in the figure).

When orthogonal array testing occurs, an L9 orthogonal array of test cases is
created. The L9 orthogonal array has a “balancing property” [Pha97]. That is, test
cases (represented by dark dots in the figure) are “dispersed uniformly throughout
the test domain,” as illustrated in the right-hand cube in Figure 18.9. Test coverage
across the input domain is more complete.

Ficure 18.9
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To illustrate the use of the L9 orthogonal array, consider the send function for a
fax application. Four parameters, P1, P2, P3, and P4, are passed to the send function.
Each takes on three discrete values. For example, P1 takes on values:

P1 = 1, send it now
P1 = 2, send it one hour later
P1 = 3, send it after midnight

P2, P3, and P4 would also take on values of 1, 2, and 3, signifying other send
functions.

If a “one input item at a time” testing strategy were chosen, the following
sequence of tests (P1, P2, P3, P4) would be specified: (1,1,1,1),(2,1,1,1), (3,1, 1, 1),
(1,2,1,1),(1,3,1,1),(1,1,2,1),(1,1,3, 1), (1, 1, 1,2),and (1, 1, 1, 3). Phadke [Pha97]
assesses these test cases by stating:

Such test cases are useful only when one is certain that these test parameters do not
interact. They can detect logic faults where a single parameter value makes the software
malfunction. These faults are called single mode faults. This method cannot detect logic
faults that cause malfunction when two or more parameters simultaneously take certain
values; that is, it cannot detect any interactions. Thus its ability to detect faults is limited.

Given the relatively small number of input parameters and discrete values,
exhaustive testing is possible. The number of tests required is 3% = 81, large but man-
ageable. All faults associated with data item permutation would be found, but the
effort required is relatively high.

The orthogonal array testing approach enables you to provide good test coverage
with far fewer test cases than the exhaustive strategy. An L9 orthogonal array for the
fax send function is illustrated in Figure 18.10.
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Phadke [Pha97] assesses the result of tests using the L9 orthogonal array in the
following manner:

Detect and isolate all single mode faults. A single mode fault is a consistent prob-
lem with any level of any single parameter. For example, if all test cases of factor P1 = 1
cause an error condition, it is a single mode failure. In this example tests 1, 2 and 3
[Figure 18.10] will show errors. By analyzing the information about which tests show
errors, one can identify which parameter values cause the fault. In this example, by not-
ing that tests 1, 2, and 3 cause an error, one can isolate [logical processing associated
with “send it now” (P1 = 1)] as the source of the error. Such an isolation of fault is

Ficure 18.10
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important to fix the fault.

Detect all double mode faults. If there exists a consistent problem when specific
levels of two parameters occur together, it is called a double mode fault. Indeed, a double
mode fault is an indication of pairwise incompatibility or harmful interactions between

two test parameters.

Multimode faults. Orthogonal arrays [of the type shown] can assure the detection of
only single and double mode faults. However, many multimode faults are also detected

by these tests.

You can find a detailed discussion of orthogonal array testing in [Pha89].
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static testing fools and dynamic testing tools. Three
different types of static testing tools are used in the
indusiry: code-based testing tools, specialized testing
languages, and requirements-based testing tools. Code-
based testing tools accept source code as input and
perform a number of analyses that result in the generation
of test cases. Specialized testing languages (e.g., ATLAS)
enable a software engineer to write detailed test
specifications that describe each test case and the logistics
for its execution. Requirements-based testing tools isolate
specific user requirements and suggest fest cases (or
classes of tests) that will exercise the requirements.
Dynamic testing tools interact with an executing program,
checking path coverage, testing assertions about the value
of specific variables, and otherwise instrumenting the

(xecuﬁon flow of the program.
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Representative Tools:®

McCabeTest, developed by McCabe & Associates
(www.mccabe.com), implements a variety of path
testing techniques derived from an assessment of
cyclomatic complexity and other software metrics.

TestWorks, developed by Software Research, Inc.
(www.soft.com/Products), is a complete set of
automated testing tools that assists in the design of tests
cases for software developed in C/C++ and Java and
provides support for regression testing.

T-VEC Test Generation System, developed by T-VEC
Technologies (www.t-vec.com), is a tool set that
supports unit, infegration, and validation festing by
assisting in the design of test cases using information
contained in an OO requirements specification.

e-TEST Suite, developed by Empirix, Inc. (www.empirix
.com), encompasses a complete set of tools for testing
WebApps, including tools that assist test-case design
and test planning.

/

6 Tools noted here do not represent an endorsement, but rather a sampling of tools in this category.
In most cases, tool names are trademarked by their respective developers.
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MoDEL-BASED TESTING
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Steve McConnell

Model-based testing (MBT) is a black-box testing technique that uses information
contained in the requirements model as the basis for the generation of test cases. In
many cases, the model-based testing technique uses UML state diagrams, an ele-
ment of the behavioral model (Chapter 7), as the basis for the design of test cases.”
The MBT technique requires five steps:

1. Analyze an existing behavioral model for the software or create one.
Recall that a behavioral model indicates how software will respond to exter-
nal events or stimuli. To create the model, you should perform the steps
discussed in Chapter 7: (1) evaluate all use cases to fully understand the
sequence of interaction within the system, (2) identify events that drive the
interaction sequence and understand how these events relate to specific
objects, (3} create a sequence for each use case, (4) build a UML state
diagram for the system (e.g., see Figure 7.6), and (5) review the behavioral
model to verify accuracy and consistency.

2. Traverse the behavioral model and specify the inputs that will force
the software to make the transition from state to state. The inputs will
trigger events that will cause the transition to occur.

3. Review the behavioral model and note the expected outputs as the
software makes the transition from state to state. Recall that each
state transition is triggered by an event and that as a consequence of the
transition, some function is invoked and outputs are created. For each set of
inputs (test cases) you specified in step 2, specify the expected outputs as
they are characterized in the behavioral model. “A fundamental assumption
of this testing is that there is some mechanism, a test oracle, that will deter-
mine whether or not the results of a test execution are correct” [DAC03]. In
essence, a test oracle establishes the basis for any determination of the cor-

rectness of the output. In most cases, the oracle is the requirements model,
but it could also be another document or application, data recorded else-
where, or even a human expert.

4. Execute the test cases. Tests can be executed manually or a test script can
be created and executed using a testing tool.

5. Compare actual and expected results and take corrective action as
required.

MBT helps to uncover errors in software behavior, and as a consequence, it is
extremely useful when testing event-driven applications.

7 Model-based testing can also be used when software requirements are represented with decision
tables, grammars, or Markov chains [DAC03].
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Unique guidelines and approaches to testing are sometimes warranted when spe-
cialized environments, architectures, and applications are considered. Although the
testing techniques discussed earlier in this chapter and in Chapters 19 and 20 can
often be adapted to specialized situations, it's worth considering their unique needs
individually.

18.8.1 Testing GUIs

Graphical user interfaces (GUIs) will present you with interesting testing challenges.
Because reusable components are now a common part of GUI development envi-
ronments, the creation of the user interface has become less time consuming and
more precise (Chapter 11). But, at the same time, the complexity of GUIs has grown,
leading to more difficulty in the design and execution of test cases.

Because many modern GUIs have the same look and feel, a series of standard
tests can be derived. Finite-state modeling graphs may be used to derive a series of
tests that address specific data and program objects that are relevant to the GUI. This
model-based testing technique was discussed in Section 18.7.

Because of the large number of permutations associated with GUI operations, GUI
testing should be approached using automated tools. A wide array of GUI testing
tools has appeared on the market over the past few years.®

18.8.2 Testing of Client-Server Architectures

The distributed nature of client-server environments, the performance issues asso-
ciated with transaction processing, the potential presence of a number of different
hardware platforms, the complexities of network communication, the need to serv-
ice multiple clients from a centralized (or in some cases, distributed) database, and
the coordination requirements imposed on the server all combine to make testing of
client-server architectures and the software that resides within them considerably
more difficult than stand-alone applications. In fact, recent industry studies indicate
a significant increase in testing time and cost when client-server environments are
developed.

In general, the testing of client-server software occurs at three different levels:
(1) Individual client applications are tested in a “disconnected” mode; the operation
of the server and the underlying network are not considered. (2) The client software
and associated server applications are tested in concert, but network operations are
not explicitly exercised. (3) The complete client-server architecture, including net-
work operation and performance, is tested.

8 Hundreds, if not thousands, of GUI testing tool resources can be evaluated on the Web. A good

starting point for open-source tools is www.opensourcetesting.org/functional.php.
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Although many different types of tests are conducted at each of these levels of
detail, the following testing approaches are commonly encountered for client-server

applications:

« Application function tests. The functionality of client applications is tested
using the methods discussed earlier in this chapter and in Chapters 19 and
20. In essence, the application is tested in stand-alone fashion in an attempt
to uncover errors in its operation.

o Server tests. The coordination and data management functions of the server
are tested. Server performance (overall response time and data throughput)
is also considered.

» Database tests. The accuracy and integrity of data stored by the server is
tested. Transactions posted by client applications are examined Lo ensure
that data are properly stored, updated, and retrieved. Archiving is also tested.

« Transaction tests. A series of tests are created to ensure that each class
of transactions is processed according to requirements. Tests focus on the
correctness of processing and also on performance issues (€.g., transaction
processing times and transaction volume).

« Network communication tests. These tests verify that communication
among the nodes of the network occurs correctly and that message passing,
transactions, and related network traffic occur without error. Network
security tests may also be conducted as part of these tests.

To accomplish these testing approaches, Musa [Mus93] recommends the devel-
opment of operational profiles derived from client-server usage scenarios.” An oper-
ational profile indicates how different types of users interoperate with the
client-server system. That is, the profiles provide a “pattern of usage” that can be
applied when tests are designed and executed. For example, for a particular type of
user, what percentage of transactions will be inquiries? updates? orders?

To develop the operational profile, it is necessary to derive a set of scenarios that
are similar to use cases (Chapters 5 and 6). Each scenario addresses who, where,
what, and why. That is, who the user is, where (in the physical client-server architec-
ture) the system interaction occurs, what the transaction is, and why it has occurred.
Scenarios can be derived using requirements elicitation techniques (Chapter 5) or
through less formal discussions with end users. The result, however, should be the
same. Each scenario should provide an indication of the system functions that will be
required to service a particular user, the order in which those functions are required,
the timing and response that is expected, and the frequency with which each func-
tion is used. These data are then combined (for all users) to create the operational
profile. In general, testing effort and the number of test cases to be executed are

9 It should be noted that operational profiles can be used in testing for all types of system architec-
tures, not just client-server architecture.
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allocated to each usage scenario based on frequency of usage and criticality of the
functions performed.

18.8.3 Testing Documentation and Help Facilities

The term software lesting conjures images of large numbers of test cases prepared to
exercise computer programs and the data that they manipulate. Recalling the defi-
nition of software presented in Chapter 1, it is important to note that testing must
also extend to the third element of the software configuration—documentation.

Errors in documentation can be as devastating to the acceptance of the program
as errors in data or source code. Nothing is more frustrating than following a user
guide or an online help facility exactly and getting results or behaviors that do not
coincide with those predicted by the documentation. It is for this reason that that
documentation testing should be a meaningful part of every software test plan.

Documentation testing can be approached in two phases. The first phase, techni-
cal review (Chapter 15), examines the document for editorial clarity. The second
phase, live test, uses the documentation in conjunction with the actual program.

Surprisingly, a live test for documentation can be approached using techniques
that are analogous to many of the black-box testing methods discussed earlier.
Graph-based testing can be used to describe the use of the program; equivalence
partitioning and boundary value analysis can be used to define various classes of
input and associated interactions. MBT can be used to ensure that documented
behavior and actual behavior coincide. Program usage is then tracked through the
documentation.

e
B¢y Documentation Testing o Is the design of the document (layout, typefaces,
” The following questions should be answered indentation, graphics) conducive to understanding and
\

during documentation and/or help facility
testing:

quick assimilation of information?
o Are dll software error messages displayed for the user
described in more detail in the document? Are actions

o Does the documentation accurately describe how to

to be taken as a consequence of an error message

accomplish each mode of use?
Is the description of each interaction sequence
accurate?

o Are examples accurate?
e Are ferminology, menu descriptions, and system

responses consistent with the actual program?

Is it relatively easy to locate guidance within the
documentation?

Can troubleshooting be accomplished easily with the
documentation?

Avre the document's table of contents and index robust,

kcccurcfe, and complete?

clearly delineated?

o IFhypertext links are used, are they accurate and
complete?

o If hypertext is used, is the navigation design
appropriate for the information required?

The only viable way to answer these questions is to
have an independent third party {e.g., selected users) test
the documentation in the context of program usage. All
discrepancies are noted and areas of document ambiguity
or weakness are defined for potential rewrite.
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18.8.4 Testing for Real-Time Systems

The time-dependent, asynchronous nature of many real-time applications adds a
new and potentially difficult element to the testing mix—time. Not only does the test-
case designer have to consider conventional test cases but also event handling (i.e.,
interrupt processing), the timing of the data, and the parallelism of the tasks
(processes) that handle the data. In many situations, test data provided when a real-
time system is in one state will result in proper processing, while the same data pro-
vided when the system is in a different state may lead to error.

For example, the real-time software that controls a new photocopier accepts
operator interrupts (i.e., the machine operator hits control keys such as RESET or
DARKEN) with no error when the machine is making copies (in the “copying” state).
These same operator interrupts, if input when the machine is in the “jammed” state,
cause a display of the diagnostic code indicating the location of the jam to be lost
(an error).

In addition, the intimate relationship that exists between real-time software and
its hardware environment can also cause testing problems. Software tests must
consider the impact of hardware faults on software processing. Such faults can be
extremely difficult to simulate realistically.

Comprehensive test-case design methods for real-time systems continue to
evolve. However, an overall four-step strategy can be proposed:

e Task testing. The first step in the testing of real-time software is to test
each task independently. That is, conventional tests are designed for each
task and executed independently during these tests. Task testing uncovers
errors in logic and function but not timing or behavior.

« Behavioral testing. Using system models created with automated tools, it
is possible to simulate the behavior of a real-time system and examine its
behavior as a consequence of external events. These analysis activities can
serve as the basis for the design of test cases that are conducted when the
real-time software has been built. Using a technique that is similar to equiva-
lence partitioning (Section 18.6.2), events (e.g., interrupts, control signals)
are categorized for testing. For example, events for the photocopier might
be user interrupts (e.g., reset counter), mechanical interrupts (e.g., paper
jammed), system interrupts (e.g., toner low), and failure modes (e.g., roller
overheated). Each of these events is tested individually, and the behavior of
the executable system is examined to detect errors that occur as a conse-
quence of processing associated with these events. The behavior of the
system model (developed during the analysis activity) and the executable
software can be compared for conformance. Once each class of events has
been tested, events are presented to the system in random order and with
random frequency. The behavior of the software is examined to detect
behavior errors.

18.9
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» Intertask testing. Once errors in individual tasks and in system behavior
have been isolated, testing shifts to time-related errors. Asynchronous tasks
that are known to communicate with one another are tested with different
data rates and processing load to determine if intertask synchronization errors
will occur. In addition, tasks that communicate via a message queue or data
store are tested to uncover errors in the sizing of these data storage areas.

¢ System testing. Software and hardware are integrated, and a full range of
system tests are conducted in an attempt to uncover errors at the software-
hardware interface. Most real-time systems process interrupts. Therefore,
testing the handling of these Boolean events is essential. Using the state
diagram (Chapter 7), the tester develops a list of all possible interrupts and
the processing that occurs as a consequence of the interrupts. Tests are then
designed to assess the following system characteristics:

o Are interrupt priorities properly assigned and properly handled?

e Is processing for each interrupt handled correctly?

e Does the performance (e.g., processing time) of each interrupt-handling
procedure conform to requirements?

e Does a high volume of interrupts arriving at critical times create problems
in function or performance?

In addition, global data areas that are used to transfer information as part of
interrupt processing should be tested to assess the potential for the generation of
side effects.

PATTERNS FOR SOFTWARE TESTING

Asoftware festing
pattemns catalog can be
found of www.rhse
.com/pages/
TestPatternList.itm.

[/
[

POINT

Testing patterns can
help o software team
communicate more
effectively about
testing and better
understand the forces
that lead to a specific
testing approach.

The use of patterns as amechanism for describing solutions to specific design problems
was discussed in Chapter 12. But patterns can also be used to propose solutions to other
software engineering situations—in this case, software testing. Testing patterns describe
common testing problems and solutions that can assist you in dealing with them.

Not only do testing patterns provide you with useful guidance as testing activities
commence, they also provide three additional benefits described by Marick [Mar02]:

1. They [patterns] provide a vocabulary for problem-solvers. “Hey, you know, we should
use a Null Object.”

2. They focus attention on the forces behind a problem. That allows [test case] designers
to better understand when and why a solution applies.

3. They encourage iterative thinking. Each solution creates a new context in which new
problems can be solved.

Although these benefits are “soft,” they should not be overlooked. Much of
software testing, even during the past decade, has been an ad hoc activity. If testing
patterns can help a software team to communicate about testing more effectively;
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Patterns thot describe
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efficiency, strategy, and
problem resolution can
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.testing.com/
test-patterns/
patterns/.
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to understand the motivating forces that lead to a specific approach to testing, and
to approach the design of tests as an evolutionary activity in which each iteration
results in a more complete suite of test cases, then patterns have accomplished much.

Testing patterns are described in much the same way as design patterns
(Chapter 12). Dozens of testing patterns have been proposed in the literature (e.g.,
[Mar02]). The following three testing patterns (presented in abstract form only)
provide representative examples:

Pattern name: PairTesting

Abstract: A process-oriented pattern, PairTesting describes a technique that is anal-
ogous to pair programming (Chapter 3) in which two testers work together to design and
execute a series of tests that can be applied to unit, integration or validation testing
activities.
Pattern name: SeparateTestInterface

Abstract: There is a need to test every class in an object-oriented system, including
“internal classes” (i.e., classes that do not expose any interface outside of the component
that used them). The SeparateTestInterface pattern describes how to create “a test
interface that can be used to describe specific tests on classes that are visible only inter-
nally to a component” [Lan01].
Pattern name: ScenarioTesting

Abstract: Once unit and integration tests have been conducted, there is a need to
determine whether the software will perform in a manner that satisfies users. The
ScenarioTesting pattern describes a technique for exercising the software from the
user’s point of view. A failure at this level indicates that the software has failed to meet a

user visible requirement [KanO1].

A comprehensive discussion of testing patterns is beyond the scope of this book.
If you have further interest, see [Bin99] and [Mar02] for additional information on
this important topic.

The primary objective for test-case design is to derive a set of tests that have the
highest likelihood for uncovering errors in software. To accomplish this objective,
two different categories of test-case design techniques are used: white-box testing
and black-box testing.

White-box tests focus on the program control structure. Test cases are derived to
ensure that all statements in the program have been executed at least once during
testing and that all logical conditions have been exercised. Basis path testing, a
white-box technique, makes use of program graphs (or graph matrices) to derive
the set of linearly independent tests that will ensure statement coverage. Condition
and data flow testing further exercise program logic, and loop testing complements
other white-box techniques by providing a procedure for exercising loops of varying
degrees of complexity.
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Hetzel [Het84] describes white-box testing as “testing in the small.” His implica-
tion is that the white-box tests that have been considered in this chapter are typically
applied to small program components (e.g., modules or small groups of modules).
Black-box testing, on the other hand, broadens your focus and might be called
“testing in the large.”

Black-box tests are designed to validate functional requirements without regard
to the internal workings of a program. Black-box testing techniques focus on the
information domain of the software, deriving test cases by partitioning the input and
output domain of a program in a manner that provides thorough test coverage.
Equivalence partitioning divides the input domain into classes of data that are likely
to exercise a specific software function. Boundary value analysis probes the pro-
gram’s ability to handle data at the limits of acceptability. Orthogonal array testing
provides an efficient, systematic method for testing systems with small numbers of
input parameters. Model-based testing uses elements of the requirements model to
test the behavior of an application.

Specialized testing methods encompass a broad array of software capabilities and
application areas. Testing for graphical user interfaces, client-server architectures,
documentation and help facilities, and real-time systems each require specialized
guidelines and techniques.

Experienced software developers often say, “Testing never ends, it just gets trans-
ferred from you [the software engineer] to your customer. Every time your customer
uses the program, a test is being conducted.” By applying test-case design, you can
achieve more complete testing and thereby uncover and correct the highest number
of errors before the “customer’s tests” begin.

PROBLEMS AND POINTS TO PONDER

18.1. Myers [Mye79] uses the following program as a self-assessment for your ability to spec-
ify adequate testing: A program reads three integer values. The three values are interpreted as
representing the lengths of the sides of a triangle. The program prints a message that states
whether the triangle is scalene, isosceles, or equilateral. Develop a set of test cases that you feel
will adequately test this program.

18.2. Design and implement the program (with error handling where appropriate) specified in
Problem 18.1. Derive a flow graph for the program and apply basis path testing to develop test
cases that will guarantee that all statements in the program have been tested. Execute the cases
and show your results.

18.3. Can you think of any additional testing objectives that are not discussed in Section 18.1.1?

18.4. Select a software component that you have designed and implemented recently. Design a
set of test cases that will ensure that all statements have been executed using basis path testing.

18.5. Specify, design, and implement a software tool that will compute the cyclomatic com-
plexity for the programming language of your choice. Use the graph matrix as the operative data
structure in your design.

18.6. Read Beizer [Bei95] or a related Web-based source (e.g., www.laynetworks.com/
Discrete%20Mathematics_1g.htm) and determine how the program you have developed in
Problem 18.5 can be extended to accommodate various link weights. Extend your tool to
process execution probabilities or link processing times.
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18.7. Design an automated tool that will recognize loops and categorize them as indicated in
Section 18.5.3.

18.8. Extend the tool described in Problem 18.7 to generate test cases for each loop category,
once encountered. It will be necessary to perform this function interactively with the tester.

18.9. Give at least three examples in which black-box testing might give the impression that
“everything’s OK,” while white-box tests might uncover an error. Give at least three examples
in which white-box testing might give the impression that “everything’s OK,"” while black-box
tests might uncover an error.

18.10. Will exhaustive testing (even if it is possible for very small programs) guarantee that the
program is 100 percent correct?

18.11. Test a user manual (or help facility) for an application that you use frequently. Find at
least one error in the documentation.

FuRTHER BEADINGS AND INFORMATION SOURCES

Virtually all books dedicated to software testing consider both strategy and tactics. Therefore,
further readings noted for Chapter 17 are equally applicable for this chapter. Everett and
Raymond (Software Testing, Wiley-IEEE Computer Society Press, 2007), Black (Pragmatic Soft-
ware Testing, Wiley, 2007), Spiller and his colleagues (Software Testing Process: Test Management,
Rocky Nook, 2007), Perry (Effective Methods for Saftware Testing, 3d ed., Wiley, 2005), Lewis
(Software Testing and Continuous Quality Improvement, 2d ed., Auerbach, 2004), Loveland and his
colleagues (Software Testing Techniques, Charles River Media, 2004), Burnstein (Practical Soft-
ware Testing, Springer, 2003), Dustin (Effective Software Testing, Addison-Wesley, 2002), Craig
and Kaskiel (Systematic Software Testing, Artech House, 2002), Tamres (Iniroducing Software
Tesling, Addison-Wesley, 2002), and Whittaker (How to Break Software, Addison-Wesley, 2002)
are only a small sampling of many books that discuss testing principles, concepts, strategies,
and methods.

A second edition of Myers [Mye79] classic text has been produced by Myers and his col-
leagues (The Art of Software Testing, 2d ed., Wiley, 2004) and covers test-case design techniques
in considerable detail. Pezze and Young (Software Testing and Analysis, Wiley, 2007), Perry
(Effective Methods for Software Testing, 3d ed., Wiley, 2006), Copeland (A Practitioner's Guide to
Software Test Design, Artech, 2003), Hutcheson (Software Testing Fundamentals, Wiley, 2003),
Jorgensen (Software Testing: A Craftsman’s Approach, 2d ed., CRC Press, 2002) each provide use-
ful presentations of test-case design methods and techniques. Beizer’s [Bei90] classic text pro-
vides comprehensive coverage of white-box techniques, introducing a level of mathematical
rigor that has often been missing in other treatments of testing. His later book [Bei95} presents
a concise treatment of important methods.

Software testing is a resource-intensive activity. it is for this reason that many organizations
automate parts of the testing process. Books by Li and Wu (Effective Software Test Automation,
Sybex, 2004); Mosely and Posey (Just Enough Software Test Automation, Prentice-Hall, 2002);
Dustin, Rashka, and Poston (Automated Software Testing: Introduction, Management, and Perfor-
mance, Addison-Wesley, 1999); Graham and her colleagues (Software Test Automation, Addison-
Wesley, 1999); and Poston (Automating Specification-Based Software Testing, 1EEE Computer
Society, 1996) discuss tools, strategies, and methods for automated testing. Nquyen and his col-
leagues (Global Software Test Automation, Happy About Press, 2006) present an executive
overview of testing automation.

Thomas and his colleagues (Java Testing Patterns, Wiley, 2004) and Binder {Bin99] describe
testing patterns that cover testing of methods, classes/clusters, subsystems, reusable compo-
nents, frameworks, and systems as well as test automation and specialized database testing.

A wide variety of information sources on test-case design methods is available on the Inter-
net. An up-to-date list of World Wide Web references that are relevant to testing techniques can
be found at the SEPA website: www.mhhe.com/engcs/compsci/pressman/professional/
olc/ser.htm.



