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Abstract. We give a randomized algorithm using O(n7 log2 n) separation calls to
approximate the volume of a convex body with a fixed relative error. The bound is
O(n6 log4 n) for centrally symmetric bodies and for polytopes with a polynomial number
of facets, and O(n5 log4 n) for centrally symmetric polytopes with a polynomial number of
facets. We also give an O(n6 logn) algorithm to sample a point from the uniform distribu-
tion over a convex body.

Several tools are developed that may be interesting on their own. We extend results of
Sinclair–Jerrum (1988) and the authors (1990) on the mixing rate of Markov chains from
finite to arbitrary Markov chains. We also analyze the mixing rate of various random walks
on convex bodies, in particular the random walk with steps from the uniform distribution
over a unit ball.

0. Introduction.

a. Survey of results.

Computing the volume of a (high-dimensional) convex body is an ancient, basic, but
extremely difficult task. In fact, there are negative results in this direction: Bárány–
Füredi (1986), improving a result of Elekes (1986) proved that if the convex body is given
by a separation oracle (a natural framework which allows the polynomial-time solution
of many algorithmic problems), then any algorithm that approximates the volume within
a factor of no(n) necessarily takes exponential time. Dyer–Frieze (1988) and Khachiyan
(1988, 1989) showed that the problem of computing the volume exactly (deterministically)
is # P-hard, even for explicitely described polytopes. (A strong improvement of this is
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due to Brightwell and Winkler (1990), who proved that the exact determination of the
number of linear extensions of a poset – which is the volume of a related polytope – is also
# P-hard.)

A breakthrough in the opposite direction is due to Dyer, Frieze and Kannan (1989)
[DFK], who designed a polynomial time randomized algorithm to approximate the volume
of a convex body K in IRn. Their algorithm has two input parameters ε,δ>0, and computes
a random variable ζ such that with probability at least 1−δ, the volume of K is between
(1−ε)ζ and (1+ε)ζ. Several improvements of the original algorithm have been given. The
following list describes these improvements. Our main interest is the dependence of the
running time on the dimension n, and we include a column to indicate this. (The * after
the O means that we suppress factors of logn, as well as factors depending on the error
bounds ε,δ and the “badness” of the original data.)

Dyer, Frieze, Kannan (1989) O∗(n23) O(n23 log5 nε−2 log(1/ε) log(1/δ))
Lovász and Simonovits (1990) O∗(n16) O(n16 log5 nε−4 log(n/ε) log(n/δ))
Applegate and Kannan (1990) O∗(n10) O(n10 log2 nε−2 log2(1/ε) log(1/δ) log log(1/δ))
Lovász (1991) O∗(n10)
Dyer and Frieze (1991) O∗(n8) O(n8ε−2 log(n/ε) log(n/δ))
Lovász and Simonovits (1991) O∗(n7) O(n7 log2 nε−2 log3(1/ε) log(1/δ))

(this paper)
It is interesting to give a short survey of those ideas whose various combinations lead

to these improvements. The Dyer–Frieze–Kannan algorithm consists of two main phases:
the first, preliminary phase makes the body “reasonable round” by applying an affine
transformation to the given body K so that the image contains the unit ball B and is
contained in the concentrical ball with radius n3/2; this is achieved by a known application
of the ellipsoid method (see Grötschel, Lovász and Schrijver (1988) [GLS]). Then a sequence
of bodies K0 = B ⊆K1 ⊆ . . .⊆Kk = K is constructed so that the ratio of the volumes of
consecutive bodies is at most 2; these ratios are then estimated by a Monte-Carlo method,
sampling from Ki+1 and counting how often Ki is hit.

The most important ingredient is an algorithm to generate a random point from the
uniform distribution over a convex body. This is achieved by taking a random walk on the
lattice points inside the body, and stopping after an appropriately large (but polynomial)
number of steps. The analysis of the algorithm depends on two factors: a theorem of
Sinclair and Jerrum (1988) [SJ] on the mixing rate of time-reversible Markov chains and
on an isoperimetric inequality for subsets of a convex body.

The arguments are complicated by singularities on the surface of the body in two ways:
first, they mean “corners ” that the random walk will reach too slowly and second, they
weaken the isoperimetric inequality, whose proof by Dyer, Frieze and Kannan depends on
methods from differential geometry. Dyer, Frieze and Kannan get around this difficulty by
approximating the body by another convex body with a smooth surface, at the cost of a
substantial increase in the running time, which amounts to the solution of O∗(n23) convex
programs, or (using ellipsoid-type methods for the solution of these programs), to O∗(n27)
membership tests in K.

Khachiyan–Karzanov [KK] and Lovász–Simonovits [LS] proved the isoperimetric in-
equality in a best possible form (up to a constant). [LS] gives a new, more elementary proof

2



method, which facilitates further generalizations. [LS] also contains a generalization of the
Sinclair–Jerrum result, by allowing small exceptional sets, and by using information about
the initial distribution in estimating the convergence speed to the uniform distribution.
These ideas improve the running time to O∗(n16) membership tests.

Applegate and Kannan [AK] suggest another way to handle some of the difficulties
caused by non-smoothness: consider volume computation as the integration of the char-
acteristic function of the body, and approximate this characteristic function by a smooth
function. This requires the extension of the method of sampling from a uniform distribution
over a convex body to sampling from a distribution with a log-concave density function.
They show that the random walk technique, combined with the so-called “Metropolis rule”,
gives a fast sampling procedure. The proof involves an extension of the isoperimetric in-
equality from the usual volume (Lebesgue measure) to measures with a log-concave density
function.

A further improvement comes from the simple but elegant observation that by “sand-
wiching” the body between two concentrical cubes instead of two concentrical balls, a ratio
of O(n) can be achieved instead of the ratio of O(n3/2). (The running time includes the
square of this ratio.) They give an O∗(n10) implemetation of these ideas.

Dyer and Frieze [DF] show that the Applegate–Kannan method can be further im-
proved by two further ideas: using the improvement of the Sinclair–Jerrum estimate as
mentioned above, and by showing that the errors being almost independent, they accumu-
late in a slower rate. They improve the running time to O∗(n8) membership tests. They
also obtain the best possible constant in the isoperimetric inequality.

All the previously mentioned methods are based on random walks on lattice points.
Lovász [L] sketches the analysis of a random walk where each step is chosen from the
uniform distribution over the unit ball centered at the current position. Somewhat sur-
prisingly, the analysis depends on the same isoperimetric inequality. Replacing the random
walk on lattice points by this, but leaving the other ingredients of the algorithm in [LS]
essentially intact, improves the running time to O(n10).

In this paper we describe a randomized volume algorithm which requires O∗(n7) mem-
bership tests. Our algorithm builds on virtually all of the ideas mentioned above; yet we
feel that the combination is very natural and leads to an algorithm which is conceptually
quite simple.

A first observation is that once we replace the volume computation by integration, the
integrand need not approximate the characteristic function of the body: only its integral
has to approximate the volume. This enables us to use much smoother functions, and a
large ball as the domain of integration, which eliminates most of the errors due to boundary
effects.

Another, unexpected but important benefit is that in the first phase, only “approxi-
mate sandwiching” is needed: it suffices to achieve by an affine transformation that 2/3 of
the volume of the unit ball B is contained in K and 2/3 of the volume of K is contained
in the “almost circumscribed” ball mB. We show that this can be achieved in randomized
polynomial time with m=n, and in special cases even better (e.g. for centrally symmetric
polyhedra, m=O(logn)). Since m2 is a factor in the running time, this leads to substantial
improvements: O∗(n6) for centrally symmetric bodies or for polyhedra with polynomially
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many facets, and O∗(n5) for centrally symmetric polyhedra with polynomially many facets.
We suspect that the ratio m = n is not optimal even for general convex bodies; as far as
we can tell, even m = O(logn) is possible. This could lead to substantial improvement in
the running time.

While our volume algorithm is basically simple, we have to do some more extensive
preparations. One of these consists of extending the Sinclair–Jerrum result and its gen-
eralizations to Markov chains whose state space is an arbitrary measure space (Section
1). These extensions are basically rather straightforward from the discrete case, especially
having found the right formulation (see Feller (1968) for treatment of general Markov
chains).

Section 2 introduces log-concave functions and gives the proof of an even more general
version of the isoperimetric inequality. While the Applegate-Kannan form would suffice
to prove the error estimates for our main algorithm (with a little worse bound), the more
general form is more convenient to apply and has some corollaries that are interesting also
from a geometric point of view.

Section 3 discusses the issue of generating a random point from a distribution with a
log-concave density function. While the volume algorithm involves very “nice” functions
only, we derive general bounds on the mixing rates of various random walks on general
convex bodies. These bounds depend on isoperimetric inequalities; while these inequalities
use the basic isoperimetric inequality mentioned above, they may be of interest on their
own right. Our sampling algorithm is “truely” polynomial, i.e., polynomial in both n and
in log(1/ε), where ε is the error bound.

Section 4 contains the volume algorithm and its analysis.
To conclude this introduction we have to remark that we do not take the shortest

route to obtain an O∗(n7) volume algorithm. Substantial parts of our preparations aim
at gaining factors of logn or log(1/ε), or simply mathematical beauty. Thus, we could
restrict ourselves to finite Markov chains; s-conductance could be left out; the central
limit theorem and its treatment in the Hilbert space could be replaced by the results of
1.c, at the cost of a factor of logn; it would suffice to use the isoperimetric inequality of
Applegate and Kannan instead of the results in 2.b, at the cost of a factor of 1/ε; and we
could restrict ourselves to stepping in a unit ball in Section 3.

b. Computational model.

There is no standard finite encoding of a general convex body; various subclasses may
be encoded as solution sets of systems of linear inequalities (polyhedra), convex hulls of
lists of vectors (polytopes), level sets of concave functions (e.g., unit balls of norms) etc.
A general approach is to consider an oracle, i.e., a black box that answers certain queries
about the body. The most natural oracle is a membership oracle, which returns, for every
query x∈ IRn, the answer “YES” or “NO” to the question “Is x∈K?”. This is, however,
sometimes too strong, sometimes too weak. For algorithmic purposes, the most usual way
to describe a convex body K as an input is a well-guaranteed weak separation oracle. We
refer to Grötschel, Lovász and Schrijver (1988) for a discussion of the relative strengths of
these oracles; under rather reasonable technical assumptions, these are equivalent.

Definition (Weak separation oracle). For any y ∈CQn and error tolerance δ > 0, the
oracle returns either “YES” or “NO”. The “YES” answer means that the distance of y
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from K is at most δ; the “NO” answer means that the distance of y from IRn \K is less
than δ. In this case, it also returns a “proof” of this fact, in the form a hyperplane cT x≤γ
through y which almost separates y from K in the sense that

max{cT x : x∈K}≤ γ +δ|c|.

(So if y is near the boundary of K, then either answer is legal.)
In addition, we assume that we know the radius r of some ball contained in K (but we

do not necessarily know the center of the ball) and the radius R of another ball, with center
0, containing K. (In [GLS] this assumption is phrased as “the oracle is well guaranteed”.)
The number of bits needed to describe both of these balls is part of the input size. Without
loss of generality, we may assume that this contributes | logR|+ | logr| bits to the input
size.

We remark that for the main part of our algorithm, a weak membership oracle (defined
by relaxing the weak separation oracle in the obvious way) suffices.

Notation and preliminaries.

B denotes the euclidean unit ball, vol(K) is the volume (Lebesgue measure) of the set
K, and conv(X) denotes the convex hull of the set X ∈ IRn.

We shall repeatedly use the following fact.

0.1. Lemma. Let H be a halfspace in IRn and B, a unit ball whose center is at a
distance t from H. (So we speak of the halfspace not containing the center.) Then

(a) if t≤ 1/
√

n, then

vol(H∩B) >

(
1
2
− t
√

n

2

)
vol(B);

(b) if t > 1/
√

n then

1
10t
√

n
(1− t2)(n+1)/2vol(B) < vol(H∩B) <

1
t
√

n
(1− t2)(n+1)/2vol(B).

1. Conductance of Markov chains.

a. Markov schemes and Markov chains.

We extend the theory of conductance and rapid mixing from the finite case to arbitrary
Markov chains. See Halmos (1974) for fundamentals of measure theory, and [LS] for the
discrete versions of some of these results.

Let (Ω,A) be a σ-algebra. For every u∈Ω, let Pu be a probability measure on Ω, and
assume that for every A∈A, the value Pu(A) is measurable as a function of u. We call
the triple M=(Ω,A,{Pu :u∈Ω}) a Markov scheme. A Markov scheme, together with an
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initial distribution Q0 on Ω, defines a Markov chain, i.e. a sequence of random variables
w0,w1,w2, . . . with values from Ω such that w0 is chosen from distribution Q0 and wi+1 is
chosen from distribution Pwi

(independently of the value of w0, . . . ,wi−1). So we have

Prob(wi+1 ∈A | w1 =u1, . . . ,wi =ui)= Prob(wi+1 ∈A | wi = ui)= Pui
(A)

for every u1, . . . ,ui ∈Ω and A∈A.
Let (Ω,A,µ) be a measure space and let f :Ω×Ω→ IR be an integrable function (with

respect to the product measure µ×µ) such that
∫
Ω

f(u,v)dµ(v) = 1 for all u∈Ω. Then f
defines a Markov scheme by

Pu(A) =
∫

A

f(u,v)dµ(v).

If such a function f exists, then we call it the transition function of the Markov scheme
(with respect to the measure µ). The transition function is symmetric if f(x,y) = f(y,x).
We could describe (somewhat artificially) our volume algorithm using Markov chains hav-
ing transition functions, but some related Markov chains – which could conceivably replace
them – do not have. We give the proofs for the general case, but the reader may find them
easier to follow in terms of transition functions.

A probability measure Q on (Ω,A) is a stationary distribution for the Markov scheme
if choosing w0 from this distribution, w1 will have the same distribution (then, of course,
so does every wi). This is equivalent to saying that for all A∈A,

∫

Ω

Pu(A)dQ(u)= Q(A).

From now on we shall fix one stationary distribution Q. (We are not concerned here with
the existence of such a distribution; this will exist and in fact be explicitly given in the
applications we consider. In all cases relevant for us, the uniqueness of the stationary
distribution will be implied e.g. by Theorem 1.4 below.)

In the theory of finite Markov chains, matrices and their eigenvalues play a central
role. To extend some results from finite to general Markov chains, we consider the Hilbert
space L2 = L2(Ω,A,Q) with the inner product

〈f, g〉=
∫

Ω

fgdQ.

Every Markov scheme defines a positive linear operator M : L2→L2 by

(Mf)(u)=
∫

Ω

f(v)dPu(v).

So (Mf)(u) is the expected value of f(wi+1), given that wi =u. More generally, (Mkf)(u)
is the expected value of f(wi+k), given that wi =u.
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Consider a Markov chain where the first element (and hence the other elements as
well) are from the stationary distribution. In terms of the Hilbert space, we have for any
function f ∈L2,

E(f(wi))=E(f(w0))= 〈f,1〉,
E(f(wi)2) =E(f(w0)2) = 〈f,f〉,

E(f(wi)f(wi+k))=E(f(w0)f(wk))= 〈f,Mkf〉.
A Markov scheme is time-reversible if (roughly speaking) for any two sets A,B∈A, it

steps from A to B as often as from B to A. Formally, this means that∫

B

Pu(A)dQ(u)=
∫

A

Pu(B)dQ(u). (1.1)

It is easy to see that it suffices to require this relation for disjoint sets A and B. Condition
(1.1) can be written as∫

A

∫

B

1dPu(v)dQ(u)=
∫

B

∫

A

1dPu(v)dQ(u),

implying that for any function F : Ω×Ω→ IR for which the integrals exist, we have∫

Ω

∫

Ω

F (u,v)dPu(v)dQ(u)=
∫

Ω

∫

Ω

F (v,u)dPu(v)dQ(u). (1.2)

Another equivalent formulation is that the operator M is self-adjoint. If the Markov scheme
can be described by a transition function f with respect to Q, then time-reversibility is
equivalent to the symmetry of the transition function.

If the Markov scheme is time-reversible, then for any function f ∈L2 we have (using
(1.2))

〈f,f〉−〈f,Mf〉= 1
2

∫

Ω

∫

Ω

(f(x)−f(y))2 dPy(x)dQ(y)≥ 0, (1.3)

Equality holds here for a constant function. Thus the spectral radius of M is exactly 1.

b. Laziness of Markov chains.

We call a Markov scheme lazy if Pu(u)≥1/2 at each node. This condition is technical;
its main adventage is that (in the time-reversible case) it implies that the operator M
associated with the Markov scheme is positive semidefinite. In the discrete case this
follows from the fact that if the diagonal elements of a symmetric matrix majorize the
sum of absolute values of the rest of their row, then the matrix is positive semidefinite. To
see the positive definiteness in general, observe that 2M−I is also a self-adjoint operator
associated with a Markov scheme, and hence for any function f ∈L2, we have

〈f,Mf〉= 1
2
〈f,f〉− 1

2
〈f,(2M−I)f〉≥ 0.

Every Markov scheme can be made lazy by simply tossing a coin at each step and making
a move only if it is tails. So (at the cost of a little slow-down) we can assume that M is
positive semidefinite, which will be very convenient. One nice consequence of laziness is
that if the chain is time-reversible and we generate a Markov chain from the stationary
distribution, then the elements of the chain are “positively correlated” in the following
sense:
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1.1. Lemma. Let w1,w2, . . . be a time-reversible Markov chain generated by a lazy
Markov scheme M with w0 from the stationary distribution Q. Then for any function
f ∈L2,

E(f(wi)f(wj))≥E(f(wi))E(f(wj))=E(f(w0))2.

Proof. Let, say j > i. Since all the wi have the same distribution Q by the definition of
stationary distribution, we have here

E(f(wi)f(wj))=E(f(w0)f(wj−i))= 〈f, M j−if〉≥ 0,

since M is positive semidefinite. Applying this inequality to the function f−E(f(w0)), we
obtain the lemma.

c. Conductance and rapid mixing.

We define the ergodic flow Φ :A→ [0,1] of the Markov scheme by

Φ(A)=
∫

A

Pu(Ω\A)dQ(u).

This value is the probability of the event that choosing w0 from the stationary distribution,
we have w0 ∈A but w1 /∈A. From the assumption that Q is stationary, we get

Φ(A)−Φ(Ω\A)=
∫

A

Pu(Ω\A)dQ(u)−
∫

Ω\A
Pu(A)dQ(u)

=
∫

A

(1−Pu(A))dQ(u)−
∫

Ω\A
Pu(A)dQ(u)

= Q(A)−
∫

A

Pu(A)dQ(u)−
∫

Ω\A
Pu(A)dQ(u)

= Q(A)−
∫

Ω

Pu(A)dQ(u)= 0 .

Note that this computation also works backward: if Q′ is any probability distribution on
Ω such that the set-function

Φ′(A)=
∫

A

Pu(Ω\A)dQ′(u)

is invariant under complementation, then Q′ is stationary. This observation provides a
sometimes convenient way to verify that a given distribution is stationary.

The conductance of the Markov scheme is

Φ = inf
0<Q(A)<1/2

Φ(A)
Q(A)

;

for every 0≤ s≤ 1, the s-conductance is defined by

Φs = inf
s<Q(A)≤1/2

Φ(A)
Q(A)−s

.
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We call the value 1−Pu(u) the local conductance of the Markov scheme at element
u. If u is an atom (i.e., Q(u) > 0), then this is just Φ(u)/Q(u). So in this case the local
conductance is an upper bound on the conductance. More generally, let

Ht = {u∈Ω : Pu(u)> 1− t},

and let s = Q(Ht). Then

Φ(Ht) =
∫

Ht

Pu(Ω\Ht)dQ(u)<tQ(Ht).

As a consequence, the (s/2)-conductance of the scheme is at most 2t.
Let Qk denote the distribution of wk, i.e., let

Qk(A) =Prob(wk ∈A)

for A∈A. By definition, we have the recurrence

Qk(A)=
∫

Ω

Pu(A)dQk−1(u).

It is well-known (and will also follow from our results below) that if Φ(A) > 0 for all
A∈A with Q(A) > 0, then Qk →Q in the `1 distance. Our main point will be to give a
bound on the rate of convergence.

To measure the speed of convergence, we consider all measurable functions

g : Ω→ [0,1] with
∫

Ω

gdQ(u)= x,

and define the distance function of Q and Qk by

hk(x)= sup
g

∫

Ω

gdQk−x =
∫

Ω

g[dQk−dQ],

where the supremum is extended over all these functions. (We shall see below that this
supremum is always attained.) In the case of a finite Markov scheme with N atoms and
with uniform stationary distribution, hk(j/N) can be obtained by adding up the j largest
“errors” Qk(ω)−(1/N).

It follows easily from the definition that hk(x) is a concave function of x. Since
0≤hk(0)≤ 1 and hk(1) = 0, we have 0≤hk(x)≤ 1−x.

This somewhat artificial definition will be clearer from the following lemma.

1.2. Lemma. (i) For every set A∈A with Q(A) =x, we have

−hk(1−x)≤Qk(A)−Q(A)≤hk(x).
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(ii) If Q is atom-free, then

hk(x)= sup
A∈A

Q(A)=x

[
Qk(A)−Q(A)

]
.

(iii) For every 0<x<1, there exists a function G that is 0-1 valued except possibly
on a Q-atom, attaining the supremum in the definition of hk(x).

Proof. The upper bound in (i) is immediate if we notice that the incidence function
of A is one of the functions g considered in the definition of hk(Q(A)). The lower bound
follows by complementation. Assertion (ii) follows from assertion (iii) immediately, so it
suffices to prove (iii).

Let g : Ω→ [0,1] be any measurable function with
∫
Ω

gdQ=x. Let U be a measurable
subset of Ω with Q(U)=0 and Qk(U) maximum (such a subset clearly exists). Let Q′ and
Q′k be the restriction of Q and Qk to Ω\U . Then Q′k is absolutely continuous with respect
to Q′, so the Radon-Nikodym derivative φ= dQ′

k/dQ′ of Q′
k with respect to Q′ exists.

Let, for t≥ 0, At = U ∪{u ∈Ω\U : φ(u)≥ t} and s = inf{t : Q(At)≤ x}. Note that
As =∩{At : t<s}. Let A′=∪{At : t>s}, then A′⊆As and φ(u)= s for every u∈As \A′.
Moreover, Q(A′)≤ x≤Q(As). Choose a measurable set B with A′ ⊆B ⊆As, Q(B)≤ x,
and Q(B) maximum (such a set clearly exists).

Assume first that Q(B) =x. Then
∫

Ω

gdQk =
∫

U

gdQk +
∫

Ω\U
gφdQ

=
∫

U

gdQk +
∫

B\U
φdQ+

∫

B\U
(g−1)φdQ+

∫

Ω\B
gφdQ

≤Qk(B)+s

∫

B\U
(g−1)dQ+s

∫

Ω\B
gdQ =Qk(B)−sQ(B)+s

∫

Ω

gdQ

=Qk(B)−sx+sx = Qk(B).

So the incidence function of B achieves the supremum in the definition of hk(x).
Second, assume that Q(B)<x. Then for every W ⊆As \B, we have either Q(W )=0

or Q(W )>x−Q(B). Hence the measure Q, restricted to As\B, is concentrated on atoms;
let V be any of these. So Q(V )>x−Q(B) and for every subset of V ′⊆V , we have either
Q(V ′) =Q(V ) or Q(V ′) = 0. Let B′= B∪V .

Now we have, similarly as above,
∫

Ω

gdQk =
∫

U

gdQk +
∫

B\U
gdQk +

∫

V

gdQk +
∫

Ω\B′
gdQk

=
∫

U

gdQk +
∫

B\U
φdQ+

∫

B\U
(g−1)φdQ+s

∫

V

gdQ+
∫

Ω\B′
gφdQ

≤Qk(U)+Qk(B \U)+s

∫

B\U
(g−1)dQ+s

∫

V

gdQ+s

∫

Ω\B′
gdQ

=Qk(B)−sQ(B)+s

∫

Ω

gdQ= Qk(B)+s[x−Q(B)].
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Let f be the incidence function of B and f ′, the incidence function of B′. Let λ = (x−
Q(B))/Q(V ). Then

∫

Ω

[(1−λ)f +λf ′]dQ = Q(B)+λQ(V )= x,

and ∫

Ω

[(1−λ)f +λf ′]dQk = Qk(B)+λQk(V )= Qk(B)+s[x−Q(B)]x,

So the function (1−λ)f +λf ′ achieves the supremum in the definition of hk(x).

Below we shall call x an extreme point of a convex [concave] function, if it is not on
(in case of a discontinous function above [below]) a chord of the function.

It follows from this lemma that the extreme points of the concave function hk(x) are
those where the supremum is attained by the incidence function of a measurable set. It
also follows that

sup
x

hk(x)= sup
A
|Qk(A)−Q(A)|

is half of the `1-distance of Q and Qk. The Markov chain is called rapidly mixing if for
some θ < 1, this distance is O(θk).

The main lemma we need is a natural extension of Lemma 1.4 of Lovász and Si-
monovits (1990):

1.3. Lemma. Let k≥ 1. If s≤x≤ 1/2, then

hk(x)≤ 1
2

(
hk−1

(
x−2Φs(x−s)

)
+hk−1

(
x+2Φs(x−s)

))
.

If 1/2≤x≤ 1−s, then

hk(x)≤ 1
2

(
hk−1

(
x−2Φs(1−x−s)

)
+hk−1

(
x+2Φs(1−x−s)

))
.

Proof. We prove the first inequality; the second is analogous. Since both sides of the
inequality are concave functions of x, it suffices to verify the inequality for the extreme
points of the function on the left hand side. So by Lemma 1.2, we may assume that there
exists a set A with Q(A)= x and hk(x)= Qk(A)−Q(A). Define, for u∈Ω,

g1(u)=
{

2Pu(A)−1, if u∈A,
0, if u /∈A,

g2(u)=
{

1, if u∈A,
2Pu(A), if u /∈A.

Also set xi =
∫
Ω

gi dQ. Then – by the laziness of the walk – 0≤ gi ≤ 1 and 0≤ xi ≤ 1.
Moreover, since Q is stationary,

x1 +x2 =
∫

Ω

(g1 +g2)dQ =2
∫

Ω

Pu(A)dQ =2x.

11



Now we have

Qk(A)=
∫

Ω

Pu(A)dQk−1 =
1
2

∫

Ω

g1dQk−1 +
1
2

∫

Ω

g2 dQk−1.

So

hk(x) =Qk(A)−x =
1
2

(∫

Ω

g1dQk−1−x1

)
+

1
2

(∫

Ω

g2 dPk−1−x2

)

≤ 1
2
hk−1(x1)+

1
2
hk−1(x2).

Moreover, we have

x2−x=2
∫

Ω\A
Pu(A)dQ+Q(A)−x= 2

∫

Ω\A
Pu(A)dQ(u)≥ 2Φs(x−s),

and so
x2−x =x−x1≥ 2Φs(x−s).

Hence, by the concavity of hk−1,

hk(x)≤ 1
2
hk−1(x1)+

1
2
hk−1(x2)≤ 1

2
hk−1(x−2Φs(x−s))+

1
2
hk−1(x+2Φs(x−s)).

The following theorem is a slight extension of Theorem 1.2 of [LS].

1.4. Theorem. Let 0≤ s≤ 1/2, and assume that c1, c2 are chosen so that for every
s≤x≤ 1−s we have

h0(x)≤ c1 +c2 min{√x−s,
√

1−s−x}.
Then for every k≥ 0 and s≤x≤ 1−s we have

hk(x)≤ c1 +c2 min{√x−s,
√

1−s−x}
(

1− 1
2
Φ2

s

)k

.

Proof. By induction on k. If k=0, then the assertion is obvious. Assume that k≥1, let
s≤x≤ 1/2, and apply Lemma 1.3:

hk(x)≤ 1
2

(
hk−1

(
x−2Φs(x−s)

)
+hk−1

(
x+2Φs(x−s)

))

≤ c1 +
c2

2

(√
x−2Φs(x−s)−s

(
1− 1

2
Φ2

s

)k−1

+
√

x+2Φs(x−s)−s

(
1− 1

2
Φ2

s

)k−1
)

≤ c1 +
c2

2
√

x−s
(√

1−2Φs +
√

1+2Φs

)(
1− 1

2
Φ2

s

)k−1

≤ c1 +c2

√
x−s

(
1− 1

2
Φ2

s

)k

.

For 1/2≤x≤ 1−s the bound follows similarly.
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1.5. Corollary. (a) Let M =supA Q0(A)/Q(A). Then for every A⊆Ω,

|Qk(A)−Q(A)| ≤
√

M

(
1− 1

2
Φ2

)k

.

(b) Let 0<s≤1/2 and Hs =sup{|Q0(A)−Q(A)| : Q(A)≤s}. Then for every A⊆Ω,

|Qk(A)−Q(A)| ≤Hs +
Hs

s

(
1− 1

2
Φ2

s

)k

.

Proof. (a) The definition of M implies that for all 0≤x≤ 1, we have h0(x)≤Mx. Also
trivially h0(x)≤ 1−x. Hence h0(x)≤√M min{√x,

√
1−x}. Thus by Theorem 1.4,

hk(x)≤
√

M min{√x,
√

1−x}
(

1− 1
2
Φ2

)k

<
√

M

(
1− 1

2
Φ2

)k

,

from where the assertion follows.
(b) First we show that for every 0≤x≤ 1,

h0(x)≤Hs +
Hs

s

√
x−s. (1.4)

It is enough to prove this for the case when x is an extreme point of h0. For 0≤x≤ s we
have

h0(x)= sup
A∈A

Q(A)=x

(Q0(A)−Q(A))≤Hs.

Similarly, for 1−s≤x≤ 1 we have

h0(x) = sup
A∈A

Q(A)=x

(Q0(A)−Q(A))= sup
B∈A

Q(B)=1−x

(
Q0(Ω\B)−Q(Ω\B)

)

= sup
B∈A

Q(B)=1−x

(Q(B)−Q0(B))≤Hs.

By the concavity of h0(x), we have for every s≤x≤ 1 that

h0(x)≤ h0(s)
s

x≤ Hs

s
x≤Hs +

Hs

s
(x−s)≤Hs +

Hs

s

√
x−s.

This last upper bound also holds for x<s by the definition of Hs, and hence (1.4) follows.
Similarly, we have for 0≤x≤ 1

h0(x)≤Hs +
Hs

s

√
1−s−x.

So by Theorem 1.4,

hk(x)≤Hs +
Hs

s

(
1− 1

2
Φ2

s

)k

min{√x−s,
√

1−s−x}<Hs +
Hs

s

(
1− 1

2
Φ2

s

)k

.
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d. A Central Limit Theorem.

We prove a simple “Central Limit Theorem” for time-reversible Markov chains. It is
quite possible that this can be extended to all Markov chains by methods similar to those
in the previous chapter; but currently our proof makes use of time reversibility, mainly
through Lemma 1.1.

We need a lemma which may be viewed as a “spectral” result about the operator M .
For finite Markov chains, several of the first results establishing the rapid mixing property
used the spectrum of the matrix M . Some of these techniques extend to the infinite case
without any difficulty.

1.6. Lemma. Let M be a time-reversible Markov scheme with conductance Φ. Then
for every function f ∈L2 with E(f)= 0, we have

〈f,Mf〉≤
(

1− Φ2

2

)
‖f‖2.

Proof. We adapt the proof in [SJ]. We use the identity (1.3). Choose a real number r
such that Q({x : f(x)>r})≤1/2 and Q({x : f(x)<r})≤1/2. Let g(x)=max{f(x)−r,0}.
Replacing f by −f if necessary, we may assume that

∫

Ω

g2(x)dQ(x)≥ 1
2

∫

Ω

(f(x)−r)2 dQ(x)=
1
2
‖f‖2 +

1
2
r2≥ 1

2
‖f‖2.

Let A(t) = {x∈Ω : g2(x)>t}. Then we have
∫

Ω

∫

Ω

|g2(x)−g2(y)|dPy(x)dQ(y)= 2
∫

Ω

∫

A(g2(y))

(g2(x)−g2(y))dPy(x)dQ(y)

= 2
∫

Ω

∫ ∞

g2(y)

Py(A(t))dtdQ(y) = 2
∫ ∞

0

∫

Ω\A(t)

Py(A(t))dQ(y)dt

≥ 2Φ
∫ ∞

0

Q(A(t))dt =2Φ
∫

Ω

g2(x)dx= 2Φ‖g‖2,

since by the choice of r, Q(A(t))≤ 1/2 if t≥ 0. On the other hand, we have by Cauchy-
Schwarz,
∫

Ω

∫

Ω

|g2(x)−g2(y)|dPy(x)dQ(y)

≤
(∫

Ω

∫

Ω

(g(x)−g(y))2 dPy(x)dQ(y)
)1/2 (∫

Ω

∫

Ω

(g(x)+g(y))2 dPy(x)dQ(y)
)1/2

.

Here the second factor is easily estimated:
(∫

Ω

∫

Ω

(g(x)+g(y))2 dPy(x)dQ(y)
)1/2

≤
(∫

Ω

∫

Ω

2(g2(x)+g2(y))dPy(x)dQ(y)
)1/2

=2
(∫

Ω

g2(x)dx

)1/2

=2‖g‖.
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So
∫

Ω

∫

Ω

(g(x)−g(y))2 dPy(x)dQ(y)

≥
(∫

Ω

∫

Ω

|g2(x)−g2(y)|dPy(x)dQ(y)
)2 /∫

Ω

∫

Ω

(g(x)+g(y))2 dPy(x)dQ(y)

≥ 4Φ2‖g‖4/2‖g‖2 = 2Φ2‖g‖2≥Φ2‖f‖2.
Hence

∫

Ω

∫

Ω

(f(x)−f(y))2 dPy(x)dQ(y)≥
∫

Ω

∫

Ω

(g(x)−g(y))2 dPy(x)dQ(y)≥Φ2‖f‖2,

which proves the lemma by (1.3).

1.7. Corollary. Let M be a time-reversible Markov scheme with conductance Φ. Then
for every function f ∈L2 with E(f)= 0, we have

〈f,Mkf〉≤
(

1− Φ2

2

)k

‖f‖2.

Proof. Let M̂ denote the restriction of M to the invariant subspace E(f) = 0. From
Lemma 1.6 we get (see Riesz–Sz.-Nagy 19xx, VI, §1) that ‖M̂‖≤ 1−Φ2/2, and hence

‖M̂k‖≤‖M̂‖k ≤
(

1− Φ2

2

)k

.

1.8. Theorem. Let M be a time-reversible Markov scheme with stationary distribution
Q, let w1,w2, . . . be a Markov chain generated by M with initial distribution Q. Let F ∈L2

and ξ =
∑T−1

i=0 F (wi). Then

D2(ξ)≤ 4T

Φ2
‖F‖2.

Proof. We may assume that E(ξ)=
∫
Ω

F dQ=0. Then we have, by Lemmas 1.1 and 1.6,

D2(ξ) =E(ξ2)=
∑

0≤i,j≤T−1

E(F (wi)F (wj)) =
∑

0≤i,j≤T−1

E(F (w0)F (w|j−i|))

=T 〈F, F 〉+
T−1∑

k=1

2(T −k)〈F, MkF 〉< 2T

T−1∑

k=0

〈F, MkF 〉

≤ 2T

∞∑

k=0

〈F, MkF 〉≤ 2T

∞∑

k=0

(
1− Φ2

2

)k

‖F‖2 =
4T

Φ2
‖F‖2.
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e. The Metropolis Filter.

We conclude this section with describing a version of the Metropolis algorithm (1953),
which can be used to modify a given time-reversible Markov scheme so as to achieve a given
stationary distribution. The use of this method in volume computations was initiated by
Applegate and Kannan.

Consider a time-reversible Markov schemeM on the σ-algebra (Ω,A), and let F : Ω→IR
be a non-negative measurable function. Assume that the integral

F =
∫

Ω

F dQ

is finite. Recall that we denote by µF the measure with density function F , i.e.,

µF (S)=
∫

S

F (x)dQ(x)

for every measurable set S. Clearly QF =(1/F )µF is a probability distribution on (Ω,A).
We generate a Markov chain (w0,w1, . . .) of elements of Ω as follows. Given wk, we

generate a random element u from the distribution Pwk
. If F (u)≥F (wk), we let wk+1 =u.

If F (u)<F (wk), then we “flip a biased coin” with heads probability F (u)/F (wk). If we see
head, we move to wk+1 = u. Else, we let wk+1 = wk. Note the simple but very important
property of this method that we do not use the density function F/F of the desired limit
distribution, but only the ratios F (u)/F (v).

The transition probabilities of this new Markov scheme are given by

PF
u (A)=





∫

A

min
{

1,
F (v)
F (u)

}
dPu(v), if u /∈A,

∫

A

min
{

1,
F (v)
F (u)

}
dPu(v)+`(u), if u∈A,

where

`(u)=
∫

Ω

max
{

0,1− F (v)
F (u)

}
dPu(u)

is the probability that we had to stay because the coin tossing came out wrong. We call
this new Markov scheme M/F the filtering of M by F .

1.9. Lemma. If M is time-reversible, then the Markov scheme M/F is also time-
reversible with stationary distribution QF .

Proof. By our remark after the definition of ergodic flow, it suffices to verify that for
any two disjoint measurable sets A and B, we have

∫

A

PF
u (B)dQF (u) =

∫

B

PF
u (A)dQF (u).
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Substituting for PF
u and QF , this is equivalent to

∫

A

∫

B

min
{

1,
F (v)
F (u)

}
dPu(v)

F (u)
F

dQ(u)=
∫

B

∫

A

min
{

1,
F (v)
F (u)

}
dPu(v)

F (u)
F

dQ(u),

or

1
F

∫

A

∫

B

min{F (u), F (v)}dPu(v)dQ(u)=
1
F

∫

B

∫

A

min{F (u),F (v)}dPu(v)dQ(u).

This equality follows from the assumption that M is time-reversible.

Remark. For us, the important property of M/F will be that QF is stationary. This
is only true if the original Markov scheme M is time-reversible (the time-reversibility of
M/F is a convenient, but not crucial side benefit). There are many other ways to generate
a Markov chain with given stationary distribution QF (from the known Markov chain M),
but the Metropolis filter is in a sense optimal.

2. Log-concave functions and isoperimetric inequalities

a. Log-concave functions.

We collect some known facts about convex bodies and log-concave functions.

Definition. (Log-concave function.) A function f : IRn→ IR+ is log-concave if it satisfies,
for all x,y ∈ IRn and 0 <λ< 1,

f(λx+(1−λ)y)≤ f(x)λf(y)(1−λ).

Equivalently, a (non-negative) function is log-concave if its support K ={x∈ IRn : f(x)>0}
is convex, and logf is a concave function on K.

Every non-negative function that is concave over a convex domain is log-concave (we
define its value to be 0 outside the original domain). In particular, the characteristic
function of a convex body is log-concave. Log-concave functions include many density
functions important in statistics, e.g. e−x2

and e−|x|.
It is obvious that the product and the minimum of two log-concave functions is log-

concave (not their sum!). The following fact (Dinghas 1957, Prékopa 1971, 1973) is much
less obvious:

2.1. Lemma. The convolution h(x) =
∫
IRn g(u)f(x−u)du of two log-concave functions

(assuming that it is well-defined) is log-concave.

If F is a non-negative integrable function on IRn, then we denote by µF the measure
with density function F , i.e.,

µF (A)=
∫

A

F (x)dx.

Applying Lemma 2.1 with g chosen to be the characteristic function of the convex body
−K, we obtain the following Brunn-Minkowski type theorem:

17



2.2. Corollary. Let K⊆ IRn be a convex body and F : IRn→ IR+ a log-concave function.
Then µF (x+K) is a log-concave function of x.

Specializing further, we obtain

2.3. Corollary. Let K and K ′ be two convex bodies and t > 0. If the set {x ∈ IRn :
vol((K ′+x)∩K)>t} has an interior point, then it is a convex body. In particular, the set
Ks = {x∈K : vol((x+K)∩K)≥ (1−s)vol(K)} is a convex body for any 0 <s < 1.

Another consequence of Lemma 2.1 we shall need is the following, which we obtain
by choosing K in Corollary 2.2 a rectangle aligned with the axes having edges of length ε
in k directions and 1/ε in the remaining directions, and then letting ε→ 0.

2.4. Corollary. If F : IRn→ IR+ is a log-concave function with finite integral, then for
any subset {x1, . . . ,xk} of variables,

∫
IR . . .

∫
IRF dx1 . . .dxk is a log-concave function of the

remaining variables.

b. Isoperimetric inequalities for log-concave functions.

The following general lemma is a refinement of the bisection method introduced in
[LS].

2.5. Lemma. [Localization Lemma.] Let g and h be upper semi-continuous Lebesgue
integrable functions on IRn such that

∫

IRn

g(x)dx> 0 and

∫

IRn

h(x)dx> 0.

Then there exist two points a,b∈ IRn and a linear function ` : [0,1]→ IR+ such that

1∫

0

`(t)n−1g((1− t)a+ tb)dt> 0 and

1∫

0

`(t)n−1g((1− t)a+ tb)dt > 0.

(We may formulate the conclusion informally, in a more transparent way, as follows: if
both g and h have positive integrals, then there exists an infinitesimally narrow truncated
cone such that the restrictions of g and h to this “body” have positive integrals. It is
easy to show that we could not further restrict the family of these “test bodies”: cones, or
cylinders would not be enough.)

Proof. We may assume that g and h are continuous: in fact, they arise as limits of
monotone (strictly) increasing sequences of integrable continuous functions gk → g and
hk→h, and we have

lim
k→∞

∫

IRn

gk =
∫

IRn

g > 0,
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so for k large enough, we have
∫
IRn gk >0, and similarly

∫
IRn hk >0. If we know the validity

of the lemma for continuous functions, then it follows that there exist two points a,b∈ IRn

and a non-negative linear function ` such that

1∫

0

`(t)n−1gk((1− t)a+ tb)dt > 0 and

1∫

0

`(t)n−1hk((1− t)a+ tb)dt> 0,

and then

1∫

0

`(t)n−1g((1− t)a+ tb)dt > 0 and

1∫

0

`(t)n−1h((1− t)a+ tb)dt> 0.

Note also that it is enough to know that the conclusion holds with ≥ 0 instead of > 0.
Indeed, if we know the result with ≥0, then we can apply it to g−a and h−a in place of g
and h, where a is an everywhere positive continuous function with a small integral, which
implies strict inequality for the original functions.

Claim 1. There exists a sequence of convex bodies K0⊆K1⊆K2, . . . such that

∫

Ki

g(x)dx> 0 and

∫

Ki

h(x)dx > 0, (2.1)

and K =∩iKi is a point or a segment.

For K0 we may choose any sufficiently large ball. Given Ki, we choose a halfspace H
such that ∫

Ki∩H

g(x)dx =
1
2

∫

Ki

g(x)dx.

Let us call the boundary hyperplane of such a halfspace bisecting. Replacing H by the
complementary halfspace if necessary, we may assume that

∫

Ki∩H

h(x)dx> 0.

Thus Ki+1=Ki∩H will satisfy (2.1). What we have to show is that we can choose H so that
the Ki shrink to a 0-dimensional or 1-dimensional body. To this end, let us remark that
given any (n−2)-dimensional affine subspace A, there is at least one bisecting hyperplane
containing it. This follows by a trivial continuity argument, obtained by rotating the
hyperplane about A.

Let A0,A1, . . . be all the (n−2)-dimensional affine subspaces with rational coordinates,
ordered in a single sequence. Let Ki+1 be obtained from Ki by cutting it into two by a
bisecting hyperplane Pi through Ai, and choosing the appropriate half.
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We show that K =∩iKi is at most 1-dimensional. Assume that it is 2-dimensional,
then its projection onto one of the planes spanned by two coordinate axes (say, axes 1 and
2) is still 2-dimensional, and so has a rational interior point (r1, r2). The affine subspace
defined by x1 = r1, x2 = r2 is one of the Ai; but then Pi properly bisects K, and so also
Ki+1, which contradicts the construction.

If K is a single point a, then it follows from the continuity of g and h that g(a)≥ 0
and h(a)≥0, and so the conclusion holds for b=a and `≡1. So assume that K is a proper
segment, and let a and b denote the endpoints of K.

Claim 2. There exists a concave function ψ : [0,1]→ IR+, not identically zero, such that

1∫

0

ψ(t)n−1g((1− t)a+ tb)dt≥ 0,

1∫

0

ψ(t)n−1h((1− t)a+ tb)dt≥ 0.

(2.2)

Without loss of generality, a =0, b = e1. Consider an i≥ i0. Set

Zt = {x∈ IRn : x1 = t}

and

ψi(t)=
(

voln−1(Ki∩Zt)
vol(K)

)1/(n−1)

.

Let αi and βi denote the minimum and maximum of x1 over Ki. Clearly αi≤0 and βi≥1;
moreover, αi→ 0 and βi→ 1 as i→∞. The function ψi is concave on the interval [αi,βi]
by the Brunn-Minkowski Theorem.

We can select a subsequence of the indices i for which ψi(t) converges to a limit ψ(t)
for every 0≤ t≤1. (This is a version of the Blaschke Principle; alternatively, we can notice
that the functions ψi are uniformly equicontinuous in every interval [s,t] with 0<s<t<1,
and hence the Arzela–Ascoli Lemma implies that the sequence has a pointwise convergent
subsequence.) Obviously, the limit function ψ is also non-negative, concave, and

1∫

0

ψ(t)n−1 dt =1.

Now we have (with x= (t,y), t∈ IR, y ∈ IRn−1)

∫

Ki

g(x)dx=

βi∫

αi

∫

Ki∩Zt

g(t,y)dydt =

βi∫

αi


 1

voln−1(Ki∩Zt)

∫

Ki∩Zt

g(t,y)dy


vol(Ki)ψi(t)n−1 dt,
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and hence

1
vol(Ki)

∫

Ki

g(x)dx=

βi∫

αi


 1

voln−1(Ki∩Zt)

∫

Ki∩Zt

g(t,y)dy


ψi(t)n−1 dt.

The left hand side is non-negative, while the right hand side tends to
∫ 1

0
g(t,0)ψ(t)n−1 dt.

So this integral is non-negative. The same argument applies to h. This proves the claim.
To conclude the proof, we choose a,b∈K so that for an appropriate not identically

zero concave function ψ≥ 0, (2.2) is satisfied, and
(i) |a−b| is minimal.
We may assume again that a=0 and b=e1. We may also assume that ψ is continuous

(it could only have discontinuities at 0 or 1). If ψ is linear, we are done, so suppose that
ψ is not linear. Let 0≤α≤β≤ 1 be chosen so that

(ii) ψ is linear on the interval [α,β] and β−α is maximum (subject to (i)).
(It follows by a standard compactness argument that such a pair of points and function ψ
exist.) Define

ĝ(x) = g(p(x)) and ĥ(x)= h(p(x)),

where p(x) is the first coordinate of x. For every convex body L, let

ψL(t)= vol(L∩Zt)1/(n−1).

Also consider the convex body K ′ defined by

0≤x1≤ 1, x2, . . . ,xn≥ 0,

x2 + · · ·+xn≤ψ(x1).

(In other words, we consider for every 0≤ t≤1 the (n−1)-dimensional simplex St spanned
by the points te1, te1 +ψ(t)e2, . . . , te1 +ψ(t)en. The union of these simplices is a convex
body K ′.) Then

∫

K′

ĝ(x)dx =
1
n!

1∫

0

ψ(t)n−1g(te1)dt≥ 0,

and similarly ∫

K′

ĥ(x)dx≥ 0.

By (i), one of these integrals is 0; we may assume without loss of generality that
∫

K′

ĝ(x)dx =0.

Consider two real numbers 0 < σ < 1 and τ > 0, and the (n−2)-dimensional affine
subspace A defined by the equations x1 =σ and x2+· · ·+xn =τ . Assume that A intersects
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the interior of K ′. Then there is a hyperplane H through A that splits K ′ into two convex
bodies LA and L′A such that

∫

LA

ĝ(x)dx =
∫

L′
A

ĝ(x)dx =0.

We may assume that the notation is chosen so that
∫

LA

ĥ(x)dx≥ 0.

Then (∗) LA must intersect both Z0 and Z1; else, ψLA
satisfies (2.2) and violates (i). There

will be two different possibilities: either LA “faces down” (it contains the point (1/2)e1)
or it “faces up”. Condition (∗) implies that H cannot be orthogonal to the x1-axis, and
hence (using that it contains an (n−2)-dimensional subspace A of a special form) it can
be defined by an equation x2 + · · ·+xn = `(x1) where ` is a linear function. If LA “faces
down”, then (∗) implies that `(0), `(1)≥ 0 and

ψLA
(t) =min{ψ(t), `(t)}. (2.3)

We are going to show that chosing A appropriately, we get a contradiction at either
(i) or (ii).
Case 1. ψ(0) = ψ(1) = 0. Consider the affine subspace A defined by x1 = 1/2 and x2 +
· · ·+xn =τ . Then LA cannot “face up” by (∗). It follows from `(0), `(1)≥0 and `(1/2)=τ
that `(t) tends to 0 uniformly on [0,1] if τ → 0, and so (2.3) implies that ψLA

is linear on
an interval whose length tends to 1, contradicting (ii).
Case 2. ψ(0)=0 and ψ(1)>0 (say). Consider the affine subspace A defined by x1 =σ and
x2+ · · ·+xn = τ , where τ =ψ(1)σ. If LA “faces up”, then (∗) implies that `(t)=ψ(1)t and
so considering ψLA

we get a contradiction by case 1. So assume that LA “faces down”.
Then (∗) implies that 0≤ `(1)≤ψ(1) and so (2.3) implies that ψ0 is linear in the interval
[σ,1], which is longer than β−α if σ is small enough.
Case 3. ψ(0),ψ(1) > 0. Consider all continuous convex (!) functions η : [0,1]→ IR+ such
that 0≤ η(0)≤ψ(0) and 0≤ η(1)≤ψ(1), and the convex body Kη defined by

0≤x1≤ 1, x2, . . . ,xn≥ 0,

η≤x2 + · · ·+xn≤ψ(x1)

satisfies ∫

Kη

ĝ(x)dx =0, and
∫

Kη

ĥ(x)dx≥ 0.

Choose an η for which
1∫
0

η(t)dt is maximal. If η(0)=ψ(0) or η(1)=ψ(1), then considering

ψKη =ψ−η
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we get a contradiction by either Case 1 or Case 2. So assume that η(0) < ψ(0) and
η(1) <ψ(1).

Let (σ,τ) denote the intersection point of the segments connecting (0,η(0)) to (1,ψ(0))
and (0,ψ(0)) to (1,η(0)), and consider a hyperplane H through the affine subspace defined
by x1 = σ, x2 + · · ·+xn = τ , which cuts Kη into two parts M and M ′ for which

∫

M

ĝ(x)dx =
∫

M ′

ĝ(x)dx =0.

Note that by the choice of (σ,τ), either both M and M ′ intersect Z0 and Z1 or none of
them does; but the latter case is ruled out by (∗). Let M “face up” and M ′ “face down”.
Then M = K` and so by the maximality of η, we must have

∫

M

ĥ(x)dx< 0.

But the K ′ \M is a truncated cone and we have
∫

K′\M

g(x)dx =
∫

K′

g(x)dx−
∫

M

g(x)dx =0,

and ∫

K′\M

h(x)dx=
∫

K′

h(x)dx−
∫

M

h(x)dx> 0,

which contradicts (ii).

As an application, we derive the following isoperimetric inequality, which is a slight
extension of the inequality by Dyer and Frieze [DF] (which, in turn, is a slight extension
of the inequality by Applegate and Kannan [AK]).

2.6. Theorem. Let K⊆ IRn be a convex body, 0<t<1, and K1∪K2∪K3 be a partition
of K into three measurable sets such that for any two points a,b ∈K, the distance of
K1∩[a,b] and K2∩[a,b] is at least t|a−b|. Then for any log-concave function with support
K,

µF (K3)≥ 2t

1− t
min{µF (K1), µF (K2)} .

(This theorem is tight when F ≡ 1 and K is a cylinder.)

Proof. Assume, by way of contradiction, that

µF (K3)<
2t

1− t
min{µF (K1), µF (K2)} .

We may assume that K1 and K2 are open (we can delete the boundary of K and enlarge
K1 and K2 slightly to open sets so that both the assumptions and the indirect hypothesis
remain true).
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Let

g(x) =





F (x), if x∈K1,

−1− t

2t
F (x), if x∈K3,

0, otherwise,

and

h(x)=





F (x), if x∈K2,

−1− t

2t
F (x), if x∈K3,

0, otherwise,

Then, by the indirect hypothesis,
∫

IRn

g(x)dx> 0, and
∫

IRn

h(x)dx> 0.

Thus by Lemma 2.5, there exist two points a,b∈ IRn and a linear function ` : [0,1]→ IRn
+

such that

1∫

0

`(u)n−1g((1−u)a+ub)du> 0 and

1∫

0

`(u)n−1g((1−u)a+ub)du> 0. (2.4)

Let
Hi = {u : (1−u)a+ub∈Ki},

and
G(u)= `(u)n−1F ((1−u)a+ub).

Then (2.4) can be written as
∫

H3

G(u)du<
2t

1− t
min
i=1,2

∫

Hi

G(u)du.

Let µG be the measure on [0,1] with density function G.

Claim. For 0≤ s< s+ t≤ 1 we have

µG([s,s+ t])≥ 2t

1− t
min{µG([0,s]), µG([s+ t,1]).}

(Note that if we were content with the coefficient t instead of 2t/(1−t), then the claim
would be trivial, and in fact at this point we would only have to use that the function G
is unimodal.)

We may assume that G(u)= ecu for some constant c> 0. To see this, note that there
are constants c0 > 0 and c such that G(s) = c0e

cs and G(s+ t) = c0e
c(s+t). By the log-

concavity of G, we have G(u)≥c0e
cu for s<u<s+t and G(u)≤c0e

cu else. Thus it suffices
to prove the claim for G(u) = c0e

cu. Obviously, we may assume that c0 = 1. If c = 0 then

24



the assertion is obvious, so we may assume that c 6=0 and (without loss of generality) that
c> 0. Thus we want to show that

ec(s+t)−ecs≥ 2t

1− t
min

{
ecs−1, ec−ec(s+t)

}
.

One can easily see that the worst case is when ecs−1= ec−ec(s+t), i.e., when

ecs =
1+ec

1+ect
,

in which case we want to show that

(ect−1)
1+ec

1+ect
≥ 2t

1− t

(
1+ec

1+ect
−1

)
.

Introducing x= ect and λ =1/t we get

(λ−1)xλ+1−(λ+1)xλ +(λ+1)x−(λ−1)≥ 0.

We have x > 1 and λ > 1. Moreover, the function f(x) on the right hand side satisfies
f(1)= f ′(1) = f ′′(1)= 0 and

f ′′(x)= (λ+1)λ(λ−1)(xλ−1−xλ−2)≥ 0

for x≥ 1, and therefore f(x)≥ 0 for all x≥ 1. This proves the claim.
The claim proves the assertion for the (intuitively worst) case when H3 consists of a

single interval. In the general case, one could easily simplify H3 until it consists of one or
two intervals, and treat this case directly. To give an argument that is easier to describe,
for each maximal interval I = (a,b) contained in H3 and of length at least t we color the
interval [0,a] red if µG([0,a]) < µG([b,1]); else, color the interval [b,1] red. By the claim,
each interval I introduces a red set with µG-measure at most (1− t)/(2t)µG([I]). So the
whole red set will have measure at most (1− t)/(2t)µG(H3).

It suffices to show that either H1 or H2 is totally red. Suppose not, then the uncolored
set U intersects both H1 and H2. By our construction, U is an open interval. By the
assumption that the distance of H1 and H2 is at least t, U ∩H3 contains an interval of
length at least t. But then there is an adjacent red interval, a contradiction.

2.7. Corollary. Let K⊆IRn be a convex set, 0<t<1, and K1∪K2∪K3, a partition of K
into three measurable sets such that for any two points a,b∈K, the distance of K1∩ [a,b]
and K2∩ [a,b] is at least t|a−b|. Then

vol(K3)≥ 2t

1− t
min{vol(K1),vol(K2)}.

In particular, if (in any norm) K has diameter d and the distance of K1 and K2 is at least
1, then

vol(K3)≥ 2
d−1

min{vol(K1),vol(K2)}.
The Localization Lemma has several applications in convex geometry; for example, it

gives a simple proof of Lemma 2.1, and implies Brunn-Minkowski type results for balls and
other bodies. These will be treated in detail elsewhere; here we formulate one consequence,
which will be handy in our volume algorithm.
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2.8. Theorem. Let F be a log-concave function on IRn, and let

∫

IRn\B
F (x)dx = θ

∫

IRn
F (x)dx.

Then for every u≥ 1,

∫

IRn\uB

F (x)dx≤ θ(u+1)/2

∫

IRn
F (x)dx.

Proof. Assume that
∫

IRn\uB

F (x)dx> θ(u+1)/2

∫

IRn
F (x)dx.

Similarly as in the proof of Theorem 2.6, it follows from Lemma 2.5 that there exist two
points a,b∈ IRn and a linear function ` : [0,1]→ IR+ such that, setting

G(t)= `(t)n−1F ((1− t)a+ tb),

H1 = {t : 0≤ t≤ 1, (1− t)a+ tb∈B}, H2 = {t : 0≤ t≤ 1, (1− t)a+ tb∈uB \B},
H3 = [0,1]\H1 \H2,

we have ∫

H2∪H3

G(t)dt≤ θ

∫ 1

0

G(t)dt, (2.5)

and ∫

H3

G(t)dt> θ(u+1)/2

∫ 1

0

G(t)dt. (2.6)

Clearly G is log-concave, H1 is an interval, and H2 and H3 consist of one or two intervals.
We may assume that 0∈H1 (i.e., a∈B); else, we may choose a point s∈H1 such that

∫
[0,s]∩H1

G(t)dt∫
[s,1]∩H1

G(t)dt
=

∫ s

0
G(t)dt∫ 1

s
G(t)dt

.

Then we can replace [a,b] by either [a,(1−s)a+sb] or [(1−s)a+sb,b]. So let H1 = [0,α],
H2 = [α,β] and H3 = [β,1]. It follows easily that β≥ u+1

2 α.
We can choose c0, c > 0 so that

∫ α

0

G(t)dt =
∫ α

0

c0e
−ct dt, (2.7)

and ∫ 1

β

G(t)dt =
∫ ∞

β

c0e
−ct dt. (2.8)
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Then we have G(t)≥c0e
−ct for all α≤ t≤β; else, it would follow from the log-concavity of

G that G(t)<c0e
−ct either for all 0≤ t≤α or for all β≤ t≤ 1, contradicting the choice of

c0 and c. So, by (2.7) and (2.8),

1∫

0

G(t)dt≥
∞∫

0

c0e
−ct dt. (2.9)

But then by (2.5) we have

e−cα =

∫∞
α

c0e
−ct dt∫∞

0
c0e−ct dt

≤
∫ 1

α
G(t)dt∫ 1

0
G(t)dt

≤ θ,

and so, by (2.9),

∫ 1

β
G(t)dt

∫ 1

0
G(t)dt

≤
∫∞

β
c0e

−ct dt∫∞
0

c0e−ct dt
= e−cβ ≤ e−cα(u+1)/2≤ θ(u+1)/2,

contradicting (2.6).

As a special case we obtain

2.9. Corollary. Let K be a convex body in IRn and let θ = vol(K \B)/vol(K). Then
vol(K \uB)≤ θ(u+1)/2vol(K).

For this special case, the bound in Corollary 2.9 could be improved to
(
1−(1−θ1/n)(u+

1)/2
)n if (1−θ1/n)(u+1)/2 < 1 and 0 otherwise. We shall only need a simpler version of

the last assertion, to which we give a simple proof.

2.10. Lemma. Let K be a convex body in IRn and let θ = vol(K \B)/vol(K). Then

K ⊆ 2n

1−θ
B.

Proof. Let x be a point in K farthest from the origin, and let R = |x|. Replacing K by
conv((K∩B)∪{x}) we decrese θ, and therefore decrease 2n/(1−θ). So we may assume
that K =conv((K∩B)∪{x}). Blowing up K \B from x by a factor of (R+1)/(R−1), we
get a set containing K. Thus

vol(K)≤
(

R+1
R−1

)n

vol(K \B)≤ θ

(
R+1
R−1

)n

vol(K).

Hence
R≤ 2

1−θ1/n
−1 <

2n

1−θ
.

We conclude this section with one more lemma of similar type.
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2.11. Lemma. Let 0≤ t≤1. If vol(K \(x+K))≤ (1/2)vol(K), then vol(K \(tx+K))≤
(2t/3)vol(K).

Proof. Consider the function defined for u∈ [0,1] by

ψ(u)=
vol(K∩(ux+K))

vol(K)
.

By Corollary 2.2, ψ is log-concave. Moreover, ψ(0)= 1 and ψ(1)≥ 1/2. Hence we have

ψ(t)≥ 2−t,

and so

vol(K \(tx+K))≤ (
1−2−t

)
vol(K) <

2t

3
vol(K).

3. Random walks and sampling in convex bodies

a. Random walks with G-steps.

In Section 1 we analyzed general Markov chains, i.e., random walks in abstract measure
spaces. Now we turn to the special case when the underlying domain is IRn (or a convex
body), and the step is chosen uniformly from the unit ball about the current point. For
the time being, we allow an arbitrary norm, but for the algorithmic applications we only
need the case of a euclidean ball.

Let G be a centrally symmetric convex body in IRn, with its center at the origin, and
K, any convex body. We generate a Markov chain of points in K as follows. Let v0 be
drawn from some initial distribution on K. Given vk, we flip a coin and if it is heads, we let
vk+1 = vk. Else, we generate a vector u from the uniform distribution on G, and consider
vk +u. If vk +u ∈K, we let vk+1 = vk +u. Else, we let vk+1 = vk. We call this the lazy
random walk in K with G-steps. It is straightforward to see that this is a time-reversible
Markov scheme M(K,G) and the uniform distribution on K is stationary.

We shall analyze, more generally, a filtered version of this random walk. Let F be
a non-negative log-concave function on K, and let F =

∫
K

F (x)dx. Let µF denote the
measure with density function F and QF = (1/F )µF . Specializing the definition of the
Metropolis F -filtering for this case, we have, for any measurable set A with x /∈A,

Px(A)=
1

2vol(G)

∫

(x+G)∩A

min
{

1,
F (y)
F (x)

}
dy

=
1

2vol(G)

∫

(x+G)∩A

min
{

1
F (y)

,
1

F (x)

}
dµF (y).

(3.1)
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and

Px(x)=
1
2

+
1

2vol(G)

∫

x+G

max
{

0,1− F (y)
F (x)

}
dy. (3.2)

By Lemma 1.9, the measure QF is stationary for our Markov scheme. Also note that this
Markov scheme is lazy.

Our main goal is to estimate the mixing rate of the F -filtered lazy random walk with
G-steps. By the results of Section 1, it suffices to estimate its conductance. Our main
result in this section asserts that the conductance of this Markov scheme is determined in
a sense by its local conductance.

Recall that we denote by Ht the set of points x∈ IRn such that we have a chance of
less than t of making a step from x (where 0≤ t≤ 1/2), i.e.,∫

x+G

min{F (x),F (y)}dy < tF (x)vol(G).

We have noticed that setting s =QF (Ht)/2, the s-conductance is at most 2t.
The main theorem of this section asserts that if the local conductance is large and the

“diameter” of K is small, then the (global) conductance is large. Here the “diameter” of
K is measured by 1/θ, where θ is the largest number such that for all x,y ∈K,

vol(G∩(θ(x−y)+G))≥ 1
2
vol(G).

Then 1/θ is indeed the diameter in the norm whose unit ball is {x : vol(G∩ (x+G))≥
vol(G)/2}. If G=B is the euclidean ball, then Lemma 0.1 implies that θ is asymptotically
c/(
√

nd), where d is the euclidean diameter of K and c =1.4825 . . ..

3.2. Theorem. Let 0≤ t≤ 1/2, 0<θ < 1 and s=QF (Ht). Assume that for all x,y∈K,

vol(G∩(θ(x−y)+G))≥ 1
2
vol(G).

Then the (7s/t)-conductance of the Markov scheme M(K,G)/F is at least (1/6)t2θ.

Proof. Translating into more elementary terms, we want to prove the following. Consider
a splitting of K into two measurable sets S1 and S2. Then∫

S1

∫

S2∩(x+G)

min{F (x),F (y)}dydx≥ t2θvol(G)
6

min{QF (S1)− 7s

t
, QF (S2)− 7s

t
}.

Of course, we may assume that µF (Si)>7s/t for i=1,2, else the assertion is obvious. Note
that vol(G)min{µF (S1), µF (S2)} is a trivial upper bound on left hand side.

Let, for i =1,2,

S′i =
{

x∈Si : µF ((x+G)∩S3−i)≥ t

3
vol(G)F (x)

}
,

S′′i = Si \S′i \Ht,

and
S3 =S′1∪S′2∪Ht.

The key observation in the proof is the following.
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Claim. If x1 ∈S′′1 and x2 ∈S′′2 then vol((x1 +G)\(x2 +G)) >
t

3
vol(G).

Assume (by way of contradiction) that

vol((x1 +G)\(x2 +G))<
t

3
vol(G). (3.3)

Note that (3.3) is symmetric in x1 and x2. So we may assume that F (x1)≤ F (x2). Let
Gi =xi +G. Since x2 /∈Ht, we have

∫

G2

min{F (x2),F (y)}dy≥ tF (x2)vol(G). (3.4)

Moreover, (3.3) implies that
∫

G2\G1

min{F (x2),F (y)}dy <
t

3
F (x2)vol(G). (3.5)

Subtracting (3.5) from (3.4), we obtain
∫

G1∩G2

min{F (x2),F (y)}dy >
2t

3
F (x2)vol(G). (3.6)

Since x2 /∈S′2, we have
∫

G2∩S1

min{F (x2),F (y)}dy≤ t

3
F (x2)vol(G),

and hence ∫

G1∩G2∩S1

min{F (x2),F (y)}dy≤ t

3
F (x2)vol(G). (3.7)

Subtracting (3.7) from (3.6), we obtain
∫

G1∩G2∩S2

min{F (x2),F (y)}dy >
t

3
F (x2)vol(G).

Using the trivial inequality

min{F (x2),F (y)}≤ F (x2)
F (x1)

min{F (x1),F (y)},

we derive that ∫

G1∩G2∩S2

min{F (x1),F (y)}dy >
t

3
F (x1)vol(G),
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and hence ∫

G1∩S2

min{F (x1),F (y)}dy >
t

3
F (x1)vol(G).

But this inequality says that x1 ∈S′1, a contradiction. This proves the claim.
We can rephrase the claim as follows: If x1∈S′′1 and x2∈S′′2 then vol(G\((x2−x1)+

G)) >
t

3
vol(G). Hence Lemma 2.11 implies that for all x1 ∈S′′1 and x2 ∈S′′2 ,

vol(G\(
2
t
(x2−x1)+G)) >

1
2
vol(G).

Consider any a,b∈K such that S′′1 ∩[a,b] and S′′2 ∩[a,b] are non-empty, and let ρ|b−a|
be the distance of these sets. Then by the above, vol(G\((2/t)ρ(b−a)+G)> (1/2)vol(G).
On the other hand, by the definition of θ, vol(G\ (θ(b−a)+G)) ≤ (1/2)vol(G). Hence
ρ> tθ/2.

So we can apply Theorem 2.6 to get that

µF (S3)>
1
2
tθmin{µF (S′′1 ),µF (S′′2 )}.

Here
µF (S′′i )≥µF (Si)−µF (S′i)−µF (Ht)≥µF (Si)−µF (S3)−s,

and so (
1+

1
2
tθ

)
µF (S3)≥ 1

2
tθmin{µF (S1)−s, µF (S2)−s}.

Since tθ < 1, this implies that

µF (S3)≥ 1
3
tθmin{µF (S1)−s, µF (S2)−s}.

To complete the proof, we estimate the conductance as follows.

∫

S1

∫

S2
y∈x+G

min{F (x),F (y)}dydx≥
∫

S′1

∫

S2
y∈x+G

min{F (x),F (y)}dydx

≥
∫

S′1

t

3
F (x)vol(G)dx=

t

3
vol(G)µF (S′1).

Similarly, ∫

S1

∫

S2
y∈x+G

min{F (x),F (y)}dydx≥ t

3
vol(G)µF (S′2),
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and hence
∫

S1

∫

S2
y∈x+G

min{F (x),F (y)}dydx≥ t

6
vol(G)µF (S′1∪S′2)

=
t

6
vol(G)µF (S3 \Ht)

≥ t

6
vol(G)(µF (S3)−s)≥ t2θ

18
vol(G)min{µF (S1)−s, µF (S2)−s}− t

6
s

≥ t2θ

18
vol(G)min{µF (S1)− 7s

t
, µF (S2)− 7s

t
}.

3.3. Corollary. If the local conductance of M(K,G)/F is at least t at each point, then
its conductance is at least t2θ/18.

The following “Lipschitz type” condition gives an easy way to handle the local con-
ductance of the filtered Markov scheme:

3.4. Corollary. If F (u) ≥ t1F (v) whenever u− v ∈G, and the local conductance of
M(K,G) is at least t2 at each point, then the conductance of M(K,G)/F is at least
(t1t2)2θ/18.

b. Sampling from a convex body.

Generating an approximately uniformly distributed point in a convex body K is not
only the crucial step in the algorithm of Dyer, Frieze and Kannan, but an important
algorithmic question in statistics, optimization, simulation and other fields; cf. Smith
(1984), Berbie at al (1987), McGeoch and Hoogs (1990). In this paper we need a modified
version, sampling from a non-uniform distribution on a ball. But we shall also make use of
the uniform case, to test whether a convex body is (approximately) contained in another.
In fact, uniform sampling from a general convex body can be reduced to non-uniform
sampling from a ball, as we are going to show now.

We generate this random point by using a random walk with B-steps. One could of
course use any other centrally symmetric convex body G, provided one has an easy way of
generating a random point from the uniform distribution over G. This would allow cubes,
cross-polytopes, and others (and in fact the cube would perhaps be the most attractive
from the programming point of view). The only reason why we choose the euclidean ball
is that it is this case in which we can guarantee the best value of θ in Theorem 3.2.

A random point in the euclidean ball can be generated e.g. as follows. Let ξ1, . . . , ξn

be independent random variables from a standardized normal distribution, and let η be
uniformly distributed in [0,1]. Let µi = η1/nξi/

√
ξ2
1 + · · ·+ξ2

n, then v0 = (µ1, . . . ,µn) is
uniformly distributed over G.

The idea is contained in the following lemmas. Let K be a convex body containing
the origin in the interior and x∈ IRn. We denote by φ(x) = φK(x) the least non-negative
number t for which x∈ tK. (If K is centrally symmetric, this is just the norm determined
by K.) We set F (x)= FK(x)= e−φ(x), then 0 <F (x)≤ 1.
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3.5. Lemma.
vol(K)=

1
n!

∫

IRn

F (x)dx.

Proof. Let h : IR+→ IR be any function such that
∫∞
0

h(t)tn−1dt exists. To evaluate

∫

IRn
h(φ(x))dx

we partition the space into layers St ={x : t≤φ(x)≤ t+dt}. The measure of such a layer
is

(t+dt)nvol(K)− tnvol(K)= ntn−1vol(K)dt.

Hence ∫

IR

h(φ(x))dx = n ·vol(K) ·
∞∫

0

h(t)tn−1dt. (3.8)

In particular, we have

∫

IRn

F (x)dx = n ·vol(K) ·
∞∫

0

tn−1e−t dt =n!vol(K).

(The fact that we obtain the factor 1/n! is nice but irrelevant: the point is that if g is
any function of φ, then the integral of g over the space is the volume of K times a constant
that depends on n only. It would be perfectly sufficient to use a good approximation of
this constant.)

Put

λ(s)=
1
s


 1

(n−1)!

s∫

0

e−ttn−1 dt




1/n

.

3.6. Lemma. If v is a random vector in IRn with density function e−φ(v)/(n−1)!, then

H(v)=λ(φ(v))v

is uniformly distributed over K.

Proof. Set h(s) = 1
(n−1)!e

−s. The set sK is mapped by H−1 onto the set sλ(s)K. The
probability of sλ(s)K in the uniform distribution is (sλ(s))n; the probability of sK in the
distribution Qh is

∫

sK

h(x)dx =

s∫

0

h(s)sn−1 ds.
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These two numbers are equal (that’s how λ was chosen). Similar assertion holds for the
intersection of these sets with any fixed cone. This implies that H(v) is uniform.

Alternatively, the lemma can be verified directly by calculating the Jacobian of H.

Let K be a convex body and assume the following:
(A1) More than 2/3 of the volume of B is contained in K.
(A2) For some parameter 1≤m≤n3/2, more than 2/3 of the volume of K is contained

in the convex body mB.
Let an “error bound” ε> 0 be also given.
The following algorithm generates a random point in K.

Sampling Algorithm. Set

q =2mn log(4/ε),

t =1010nq2(n logn+log(2/ε)).

Starting from the uniform distribution over B, do a lazy random walk (v0, . . . ,vt) in qB,
with B-steps, filtered by F . Compute

w = H(vt).

3.7. Theorem. For every Lebesgue measurable set A⊆K, the random point w computed
by the Sampling Algorithm satisfies

∣∣∣∣Prob(H(vt)∈A)− vol(A)
vol(K)

∣∣∣∣ <ε.

Moreover, it needs O(n3m2 log2(1/ε)(n logn+log(1/ε))) membership tests and
O(n4m2 log2(1/ε)(n logn+log(1/ε))) arithmetic operations using numbers of O(logn) bits.

We need some lemmas. Note that it follows from assumption (A1) and Lemma 0.1

that the ball
1
3
n−1/2B is contained in K, and from assumption (A2) and Lemma 2.10 that

the ball 3nmB contains all of K. Hence

|x|/(3nm)≤φ(x)≤ 3
√

n|x|. (3.9)

The first lemma enables us to restrict our attention to qB.

3.8. Lemma. (
1− ε

4

)
vol(K)<

1
n!

∫

qB

F (x)dx.

Proof. Let K = K∩2mB, φ(x) = φK(x) and F (x) = e−φ(x). Then clearly F (x) < F (x).
Applying (3.8) with

h(t) =
{

e−t, if 0≤ t≤ 2n,
0, otherwise,
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we obtain

∫

2nmB

F (x)dx≥
∫

2nK

F (x)dx≥
∫

2nK

F (x)dx =nvol(K)

2n∫

0

e−ttn−1 dt>
39
40

n!vol(K)

≥ 13
20

n!vol(K).

So ∫

IRn \2nmB

F (x)dx≤ 7
20

n!vol(K),

and hence by Theorem 2.8,

∫

IRn−4log(1/ε)nmB

F (x)dx<

(
7
20

)log(4/ε)

n!vol(K) <
ε

4
n!vol(K).

We shall also need an estimate on the conductance of the random walk used in the
algorithm.

3.9. Lemma. If K satisfies (A1) and p≥10
√

n, then the conductance of M(pB,B)/FK

is at least 1/(20000p
√

n).

Proof. First we show that the local conductance of M(pB,B)/FK is at least 1/25. Let
x ∈ pB. If y is a point chosen randomly from the uniform distribution over x+B, then
the probability that y /∈ pB is less than 5/9, by the assumption that p≥ 10

√
n. By (A1),

the probability that y /∈ x+K is at most 1/3; thus with probability at least 1/9, we have
y ∈ pB∩(x+K). Now for each such y, we have

y ∈x+K ⊆φ(x)K +K =(φ(x)+1)K,

and hence φ(y)≤ φ(x)+1 and thus FK(y)≥ (1/e)FK(x). So the local conductance is at
least 1/(9e)> 1/25.

Second, Lemma 0.1 shows that

θ >
2

3pn1/2
.

Thus the lemma follows by Corollary 3.3.

Proof of Theorem 3.7. Let, for A⊆ IRn,

QF (A) =
∫

A

F (u)du

/∫

IRn

F (u)du ,

35



Q′
F (A)=

∫

A∩qB

F (u)du

/∫

qB

F (u)du ,

and
Qt(A)= Prob(vt ∈A).

Then for every A⊆K,

Prob(H(vt)∈A)= Prob(vt ∈H−1(A))= Qt(H−1(A))

and by Lemmas 3.5 and 3.6,

vol(A)
vol(K)

=QF (H−1(A)).

Thus it suffices to show that for every Lebesque measurable U ⊆ IRn, we have

|Qt(U)−QF (U)| ≤ ε.

By Lemma 3.8, we have

QF (U)−Q′F (U)=
µF (U)
µF (IRn)

− µF (U ∩qB)
µF (qB)

≤ µF (U)
µF (IRn)

− µF (U ∩qB)
µF (IRn)

=
µF (U \qB)

µF (IRn)
≤ ε

4
,

and similarly

Q′
F (U)−QF (U)=

µF (U ∩qB)
µF (qB)

− µF (U)
µF (IRn)

≤ µF (U ∩qB)
µF (qB)

− µF (U ∩qB)
µF (IRn)

=
µF (U ∩qB)µF (IRn \qB)

µF (qB)µF (IRn)
≤ ε

4
.

On the other hand, we can estimate Q′
F −Qt by Corollary 1.5:

|Qt(U)−Q′F (U)| ≤
√

M

(
1− 1

2
Φ2

)t

,

where, by (3.9),

M = sup
A

Q0(A)
Q′F (A)

=
Q0(B)
Q′F (B)

=
µF (qB)
µF (B)

≤ n!vol(K)
e−3

√
nvol(B)

≤n5n,

and by Lemma 3.9,

Φ≥ 1
20000q

√
n

.
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Hence

|Qt(U)−Q′F (U)| ≤n(5/2)n

(
1− 1

2
Φ2

)t

<
ε

2
.

The running time estimate is straightforward, except perhaps for the precision, whose
discussion we omit here since it will be discussed in Section 3 in connection with the volume
algorithm.

Remark. The following algorithm to generate a random point in K is perhaps more
natural: Let v0 be uniformly distributed over B. We do a lazy random walk (v0,v1, . . .) in
K with G-steps, where G= ε

100nB (no filtering!), and stop after t=O∗(n4m2) steps. This
algorithm achieves the same result, but the analysis is more complicated since we have to
use s-conductance instead of conductance.

4. A volume algorithm

a. Outline.

Let K be a convex body in IRn, given by a separation oracle, together with two
numbers r,R > 0 such that K is contained in the ball RB and it contains some ball with
radius r. In addition to K, the input to the algorithm consists of two numbers 0<δ,ε<1,
bounds on the error probability and relative error.

Our algorithm computes a (random) real number ζ such that with probability at least
1−δ,

(1−ε)vol(K)≤ ζ ≤ (1+ε)vol(K).

We may assume that ε, δ < 1. The algorithm will be polynomial in log(R/r), n, 1/ε, and
log(1/δ).

The algorithm consists of a preliminary part and a main part. The preliminary part
transforms K by an affine transformation to a convex body A(K) so that the following
two conditions (also formulated in Section 2) are met:

(A1) More than 2/3 of the volume of B is contained in A(K).
(A2) For some parameter m ∈ [1,n3/2], more than 2/3 of the volume of A(K) is

contained in the convex body mB.
The smaller m we can achieve, the faster the main part of our algorithm. We can

always achieve m = n3/2 deterministically, and m = n randomized, but for special cases
like centrally symmetric bodies, or polyhedra with a polynomial number of facets, smaller
values of m can be chosen, thereby reducing the running time of the main part.

The second, main part computes the volume, based on the identity in Lemma 3.5. In
this part we only need a membership oracle for the body.

We describe the algorithm in exact real arithmetic; we then show that rounding does
not introduce substantial errors.
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b. A statistical trick.

It will be convenient not to have to worry about the error probability δ. The following
well-known trick [see e.g. Jerrum, Valiant and Vazirani (1986)] shows that it suffices to
solve the problem with δ=1/3. Assume that we have an algorithm that computes a random
variable ζ that falls in the interval I = [(1−ε)vol(K), (1+ε)vol(K)], with probability at
least 2/3. Let s = 10log(1/δ), and let us compute 2s+1 independent values of ζ, say
ζ1, . . . , ζ2s+1. Let ζi0 be the median of them, i.e. the (s+1)-st of them when ordered
increasingly. We claim that

Prob(ζi0 ∈ I)≥ 1−δ.

In fact, if the median is not in the interval I, then at least s+1 of these 2s+1 values
are outside I. But by Chernoff’s inequality (1952) [see also e.g. Bollobás (1987)], the
probability that out of 2s+1 independent events, all having probability at most 1/3, more
than half occur is at most e−(s/10)≤ δ.

c. Preliminary part.

We describe a deterministic and a randomized algorithm to achieve (A1) and (A2) in
the general case, and randomized algorithms for special classes of convex bodies.

(1) A standard application of the ellipsoid method (see [GLS]) gives that we can find
an affine transformation A such that B⊆A(K)⊆n3/2B; such an affine tranformation A can
be computed using O

(
n4 log(R/r)

)
operations with numbers with O

(
n2(| logR|+ | logr|))

digits. This way we have achieved m=n3/2. This “rounding” was used in [DFK] and [LS].
For polyhedra given by explicit linear inequalities, m=O(n) can be achieved by the same
method.

To improve this result, we have to examine why we loose a factor of n1/2 for general
convex bodies. Recall that the ellipsoid method maintains an ellipsoid E that contains
the body K. An ellipsoid step replaces E by another ellipsoid containing K with smaller
volume. For this, we use a cutting plane: a halfspace H also containing K. If H does not
contain the ellipsoid E/(2n) obtained from E by shrinking it from its center by a factor of
2n, then one computes an ellipsoid E′⊇E∩H ⊇K with smaller volume than E.

The crucial step in implementing this scheme is testing whether K contains E/(2n)
or, equivalently, whether an appropriate affine image A(K) contains the unit ball B. Un-
fortunately, there is no polynomial-time test available for this (in fact, the problem is
exponentially hard, by the results of [BF]). In [GLS] the following approximation method
was used: we test if the vectors ±ei (i = 1, . . . ,n) belong to A(K). If the answer is no, we
know A(K) does not contain B, and have a vector in B \A(K). If the answer is yes, we
know that the ball n−1/2B belongs to A(K) (loosing the factor of n1/2).

(2) We could stop here having achieved (A1) and (A2) with m=n3/2; but this would
cost a factor of n in the running time of the main part. Instead, we go on using a randomized
test for B⊆A(K) by selecting T = d3logne independent random points in B, and testing
if they belong to A(K). If one of them does not, we have a point in B \A(K) needed to
carry out the ellipsoid step. If all of them belong to A(K), we conclude that at least 2/3
of the volume of B must be in A(K). If less than 2/3 of the volume of B is contained
in A(K), then the probability that we do not find a point in the difference is less than
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(2/3)T ≤ 1/(100n2 logn). The procedure lasts at most 25n2 logn ellipsoid steps, so the
probability that it halts with A(K) containing less than 2/3 of B is less than 1/4.

This gives a randomized algorithm that achieves (A1) and (A2), with m=O(n), with
error probability less than 1/4. Note that (A2) is achieved in a much stronger sense: the
ball mB in fact contains A(K). (Independently, a similar randomized rounding algorithm
was worked out by U. Faigle )

(3) In the case of centrally symmetric bodies, exactly the same improvement over the
ratio n in [GLS] works and one achieves (A1) and (strong) (A2) with m= O(n1/2).

(4) We can also turn things around and find an affine transformation that achieves
(A1) in the strong sense that B is contained in A(K), while achieving (A2) in the original
sense. For this, we can apply a “polar” form of the ellipsoid method, used by Lenstra
(1983). In this, we maintain that the body A(K) contains the unit ball, and apply affine
transformations to reduce the radius of the circumscribed ball. If A(K) contains a vector
x with |x|> 6n, then we can apply the following affine transformation: we expand the
body K by a factor of 1+(1/n) in all directions orthogonal to x, shrink it by a factor of
3 in the direction of x, and translate it by −(2/3)x/|x|. The resulting body still contains
B, and this operation reduces the volume of A(K) by a factor of (1+1/n)n−1/3 < e/3. If
we start with the result of (1), then after at most O(n logn) applications of this step, the
circumscribed ball can be reduced to 6nB.

Of course, we need to test whether A(K) ⊆ 6nB and if not then find a point in
6nB \A(K). We can do this by generating T = dlog3/2(10n logn)e independent random
points in A(K) and testing if they belong to 6nB. If one of them does not, we have a
point in A(K)\6nB needed to carry out the ellipsoid step. If all of them belong to 6nB,
we conclude that at least 2/3 of the volume of A(K) must be in 6nB. If less than 2/3 of
the volume of B is contained in A(K), then the probability that we do not find a point in
the difference is less than (2/3)T ≤ 1/(10n logn).

The cost of generating random points in A(K) is substantial: if we use the Sampling
Algorithm from the previous section (with ε a small constant), we need O(n4m2 logn)
membership tests and O(n5m2 logn) arithmetic operations. With a little trick, we can
take m = O(n) here: we can apply the Sampling Algorithm to K ′= A(K)∩(18n)B, since
it follows from Theorem 2.7(b) that if vol(A(K) \ (6nB)) = θvol(A(K)) where θ > 1/3,
then vol(A(K) \ (18nB)) ≤ θ2vol(A(K)) and hence vol(K ′ \ (6n)B) ≥ θ/(1+ θ)vol(K ′) >
(1/4)vol(K ′).

We need to generate O(n log2 n) random points altogether, which makes the cost of
this phase O(n7 log3 n), at most a log factor more than the cost of the main part.

At this point, it is not clear that we have won anything since the ratio m = O(n)
can be achieved in a much simpler fashion following (2). But for the special case (which
is perhaps the most important) when A(K) is a polytope with a polynomial number of
facets, we do gain more. If A(K) has nc facets, then we can shrink A(K) by a factor of
Ω(
√

n/ logn) and still have 2/3 of the volume of B in A(K). In fact, each facet of A(K)
cuts off a fraction of less that 1/(3nc) of the volume of B by Lemma 2.1. So for polytopes
with a polynomial number of facets, (A1) and (A2) can be achieved with m=O(

√
n logn).

(5) Similarly, if K is a centrally symmetric polytope with a polynomial number of
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facets, then m=O(logn) can be achieved in time not exceeding the time of the main part.

d. The main volume algorithm.

Let us assume that K is a convex body such that vol(K ∩B) ≥ (2/3)vol(B) and
vol(K∩(mB))≥ (2/3)vol(K). Let φ and F be defined as in Section 2. For i = 0,1, . . ., we
define the function

Fi(x)=min{F (x),exp(−|x|n1/22−i/n)}.
Instead of computing the volume, we shall integrate the function F , using the formula

of Lemma 3.5:
vol(K)=

1
n!

∫

IRn
F (x)dx,

and the approximation provided by Lemma 3.8. Our algorithm follows the same general
pattern as the algorithms in [DFK], [LS], [AK] and [DF], but details are different (and in
fact somewhat simpler).
Volume Algorithm. (a) Set

q =4mn log(1/ε),
k =4n logn,

t =1011nkq2ε−2.

(b) For i=1, . . . ,k, we do a lazy random walk (vi
0, . . . ,v

i
3t) in qB, with B-steps, filtered

by Fi. We use the notation of Section 2, but with qB playing the role of K. Thus

QFi(A)=
∫

A

Fi(u)du

/∫

qB

Fi(u)du.

The first walk starts at a point generated from the distribution QF0 . The i-th walk starts
where the (i−1)-st ended. We compute

αi =
1
t

2t∑

j=t+1

Fi−1(vi
j)

Fi(vi
j)

(The first t steps of each phase serve to get close to the stationary distribution of the
given phase. So the points vi

j (j = t+1, . . . ,2t) will have a distribution over qB that is very
close to QFi . Also note that Fi =FKi , where Ki =K∩2i/nB. Therefore, αi will be a good
estimate on

∫

qB

Fi−1

Fi
dQFi =

∫

qB

Fi−1(x)dx

/∫

qB

Fi(x)dx ≈ vol(Ki−1)
vol(Ki)

.

The last t steps ensure independence from the next phase. The first t steps of each phase
could be replaced by a shorter walk and the last t steps could be omitted, at the cost of a
more complicated analysis.)

(c) Estimate vol(K) by
ζ =(α1 · · ·αk)−1vol(B).
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e. Analysis of the algorithm.

4.1. Theorem. If K is a convex body such that vol(K∩B)≥ (2/3)vol(B) and vol(K∩
(mB))≥ (2/3)vol(K), and ζ is the estimate on vol(K) given by the Volume Algorithm,
then

Prob((1−ε)ζ < vol(K) < (1+ε)ζ)≥ 3/4.

Moreover, the algorithm uses

kt = O(n3m2ε−2(logm+log log(1/ε))2(n+log(1/ε))2 log(1/ε)2)

membership oracle calls and

ktO(n)= O(n4m2ε−2(logm+log log(1/ε))2(n+log(1/ε))2 log(1/ε)2)

arithmetic operations on numbers with O(logn+log(1/ε)) bits.

(Ordinarily, a membership test takes at least n arithmetic operations (it has to look
at the coordinates), so the running time will be dominated by the membership tests.)

Combining this theorem with our discussions in the Preliminary part, we obtain several
corollaries. For sake of simplicity, we assume here that ε > 2−n, and R/r < nn. We only
give the number of oracle calls; each oracle call goes with O(n) arithmetic operations on
numbers with O(logn) bits.

4.2. Corollary. (a) If K is a convex body given by a well-guaranteed separation oracle,
then we can compute a random value ζ using O(n7ε−2 log2 n log2(1/ε) log(1/δ)) oracle calls,
so that

Prob((1−ε)ζ ≤ vol(K)≤ (1+ε)vol(K))≥ 1−δ.

(b) If K is centrally symmetric, or K is a polytope with a polynomial (in n) number
of facets, then we need only O(n6ε−2 log4 n log2(1/ε) log(1/δ)) membership tests.

(c) If K is a centrally symmetric polytope with a polynomial (in n) number of
facets, then we need only O(n5ε−2 log4 n log2(1/ε) log(1/δ)) oracle calls.

Proof of Theorem 4.1. We need some preliminary observations. Since Fi = FKi , the
functions Fi are log-concave. Note that each Ki also satisfies conditions (A1) and (A2),
and we have

F0 =exp(−|x|n1/2)≤F1≤ . . .≤Fk = F.

Let Wi =
∫

qB
Fi dy. Then Lemma 3.8 implies that

(
1− ε

4

)
n!vol(Ki)<Wi <n!vol(Ki).

For the case i =0, the value
∫

IRn
exp(−√n|x|)dx =n−n/2n!vol(B)

is easily computed, and W0 is within a factor of (1− ε
4 ) of this value.
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Claim 1.
1
2
≤ Wi−1

Wi
≤ 1. (4.1)

Up to an error of ε, this follows immediately from the observation that it is essentially
the ratio of the volumes of Ki−1 and Ki. Precisely, we have

Wi−1 =
∫

qB

Fi−1(y)dy≥
∫

2−1/nqB

Fi−1(y)dy

=
1
2

∫

qB

Fi−1(2−1/nx)dx≥ 1
2

∫

qB

Fi(x)dx =
1
2
Wi.

Let P i
p denote the distribution of the p-th point in the i-th random walk, and consider,

as in Section 1, the distance function hi
p of P i

j and QFi . Since the latter measure is atom-
free, we have by Lemma 1.2(ii),

hi
p(x) = supP i

p(A)−x,

(i=1, . . . ,k), where A ranges over all measurable subsets of qB with QFi(A)=x. For i=0
we define h0

p(x) = 0. Let Φ =mini Φi, and η =
(
1−Φ2/2

)t. By Lemma 3.9,

Φ≥ 1
20000q

√
n

.

Hence η < e−tΦ2/2 < m−128n/ε2
.

Claim 2. For every 0≤x≤ 1, i≥ 1 and t≤ p≤ 3t, we have

hi
p(x)≤

{
2ηmin{√x,

√
1−x}, if t≤ p≤ 3t,

4min{√x,
√

1−x}, otherwise.

Proof. By induction on i. For i=0 and p=3t the assertion may be considered true. Let
i> 0. Note that we have, for a suitable measurable set A⊆ qB with QFi(A)= x,

hi
0(x)= P i

0(A)−x=P i−1
3t (A)−x.

Let y =QFi−1(A). Then

y =
1

Wi−1

∫

A

Fi−1(u)du≤ 1
Wi−1

∫

A

Fi(u)du

≤ 2
Wi

∫

A

Fi(u)du=2QFi(A)= 2x.

Hence y−x≤x. Similarly 1−y≤ 2(1−x). Therefore, by the induction hypothesis,

hi
0(x)= P i−1

3t (A)−x= P i−1
3t (A)−y+(y−x)≤hi−1

3t (y)+min{x,1−x}
≤ 2ηmin{√y,

√
1−y}+min{√x,

√
1−x}

< (1+4η)min{√x,
√

1−x}.
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Hence by Theorem 1.4, we have for p≥ t,

hi
p(x)≤ (1+4η)min{√x,

√
1−x}

(
1− 1

2
Φ2

i

)p

≤ (1+4η)min{√x,
√

1−x}η < 2ηmin{√x,
√

1−x}.
The case p < t follows trivially.

Remark. This claim remains valid if we start our random walk from any other distri-
bution P satisfying

|P (A)−QF1(A)|< 4min{
√

QF1(A),
√

1−QF1(A)},
and it is enough to assume that for each j < i, we walk at least t steps filtered by Fj .

Consider two vertices u=vi
a and w =vj

b where i<j and t<a,b≤2t. The next lemma
estimates the correlation between f(u)= Fi−1(u)/Fi(u) and g(w)= Fj−1(w)/Fj(w).

Claim 3. |E(f(u)g(w))−E(f(u))E(g(w))| ≤ 6η.

Proof. Let us start another (inhomogeneous) random walk vi
a,vi

a+1, . . . ,v
j
b, where the

transition probabilities from a v to the next are the same as from the v with the same
indices, but the distribution of the starting point vi

a is “filtered” by the function f in the
following sense. Put

cf =
1∫

qB
f dP i

a

=
Wi

Wi−1
,

then 1≤ cf ≤ 2. Further, put

P
i

a(A)= Prob(vi
a ∈A)=

∫
A

f dP i
a∫

qB
f dP i

a

= cf ·
∫

A

f dP i
a.

Let P
k

r denote the distribution of vk
r (i≤ k≤ j, 0≤ r≤ 2t), and let

h
k

r (x)= sup
QFk

(A)=x

P
k

r (A)−QFk
(A).

Then we have

E(f(u)g(w))=
∫

qB

E(f(x)g(w) | u= x)dP i
a(x)=

∫

qB

E(g(w) | u=x)f(x)dP i
a(x)

=
∫

qB

E(g(w) | u= x)dP
i

a(x)
∫

qB

f dP i
a =E(g(vj

b))E(f(u)).

Hence, using that 0≤ f,g≤ 1,

|E(f(u)g(w))−E(f(u))E(g(w))|=
∣∣∣E(f(u))

(
E(g(vj

b))−E(g(vj
b))

)∣∣∣

=E(f(u))
∣∣∣∣
∫

qB

g(y)(dP
j

b(y)−dP j
b (y))

∣∣∣∣≤ |P
j

b−P j
b |

≤ |P j

b−QFi |+ |P j
b −QFi |.
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Here the second term is at most 2η by Claim 2. To estimate the first, we use that

h
i

a(z)= sup
QFi

(A)=z

[
P

i

a(A)−QFi
(A)

]
.

Let A⊆ qB, QFi
(A)= z. Then

P
i

a(A)−QFi
(A)=

∫

A

cff(x)dP i
a(x)−z

≤
∫

A

cff [dP i
a−dQFi

]+
∫

A

cff(x)dQFi
(x)−z≤ cfhi

a(y)+cfy−z,

where y =
∫

A
f(x)dQFi

(x)≤ z. Hence by Claim 2,

h
i

a(z)≤ 5
√

z.

On the other hand, trivially
h

i

a(z)≤ 1−z≤ 5
√

1−z.

Thus we may apply the argument of Claim 2 to the other Markov chain to get

h
j

b(z)≤ 2η,

and so
|P j

b −QFi | ≤ 2η.

Now we can turn to estimating the error of the algorithm. The error of our estimate
ζ comes from three main sources:

I. Wk 6=vol(K), W0 6=vol(B). This is taken care of by Lemma 3.8.
II. The probabilistic error of our estimate ζ has itself three possible sources:
(E1) The distribution of the points vi

t+1 generated in step (c) is not exactly (1/Wi)QFi .
(E2) The points vi

t+1 are not independent.

(E3) The sum used to estimate Wi−1
Wi

has a standard deviation.
Claims 2 and 3 will be used to handle (E1) and (E2), and Theorem 1.8, to handle

(E3).
We want to show that

Prob

(
1− ε

2
≤

k∏

i=1

αi

/
k∏

i=1

E(αi) ≤ 1+
ε

2

)
> 3/4. (4.2)

Set αi/E(αi)= 1+βi, then (4.2) becomes

Prob

(
1− ε

2
≤

k∏

i=1

(1+βi)≤ 1+
ε

2

)
> 3/4.
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We split those outcomes when the event fails into three cases, each having probability less
that 1/8.

Case 1. There exists an i such that |βi| > 1/2. For a given i, we can estimate the
probability of this by Chebyshev’s inequality. Since E(βi) = 0, and 1/2≤E(αi)≤ 1, we
have

Prob
(
|βi|> 1

2

)
≤ 4D2(βi).

By Theorem 1.8 applied with F = Fi−1/Fi (which satisfies 0≤F ≤ 1), we get

D2(tαi)≤ 4t

Φ2
i

‖F‖2≤ 4t

Φ2
,

and hence

D2(αi)≤ 4
tΦ2

≤ ε2

32k
.

Thus

E(β2
i ) =D2(βi)=

D2(αi)
E2(αi)

≤ ε2

8k
. (4.3)

Hence the probability that there exists an i with |βi|> 1/2 is at most 1/8.

Case 2. A similar argument settles the case when
∑k

i=1 β2
i > ε/8. In fact, by Markov’s

inequality and (4.3),

Prob

(
k∑

i=1

β2
i >

ε

8

)
≤E

(
k∑

i=1

β2
i

)/ε

8
≤ 1

8
.

Case 3. So assume that |βi| ≤ 1/2 for all i and
∑k

i=1 β2
i ≤ ε/4. Then

| log(1+βi)−βi|<β2
i .

If ∣∣∣∣∣
k∏

i=1

(1+βi)−1

∣∣∣∣∣ >
ε

2

then ∣∣∣∣∣
k∑

i=1

log(1+βi)

∣∣∣∣∣ >
ε

4
,

and hence ∣∣∣∣∣
k∑

i=1

βi

∣∣∣∣∣ >
ε

4
−

k∑

i=1

β2
i >

ε

8
.
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Since E(βi) = 0, the probability of this can be estimated by Chebyshev’s inequality:

Prob

(∣∣∣∣∣
k∑

i=1

βi

∣∣∣∣∣>
ε

8

)
≤ 64D2(

∑
i βi)

ε2
. (4.4)

Now here

D2(
∑

i

βi)=E




(
k∑

i=1

βi

)2

=

k∑

i=1

E(β2
i )+2

∑

1≤i<j≤k

E(βiβj).

The first term is at most ε2/8 by (4.3). To estimate the second, write

E(βiβj) =
1

E(αi)E(αj)
[
E(αiαj)−E(αi)E(αj)

]
.

Here, with the notation of Claim 3,

αiαj =
1
t2

2t∑
p=t+1

2t∑
q=t+1

f(vi
a)g(vj

b),

and hence by Claim 3,

E(αiαj)=
1
t2

2t∑
p=t+1

2t∑
q=t+1

E(f(vi
a)g(vj

b))≤
1
t2

2t∑
p=t+1

2t∑
q=t+1

E(f(vi
a))E(g(vj

b))+4η

=E(αi)E(αj)+4η.

Thus

E(βiβj)≤ 16η < 2−10 ε2

k2

and so

D2(
∑

i

βi)≤ ε2

4
,

whence by (4.4),

Prob

(∣∣∣∣∣
k∑

i=1

βi

∣∣∣∣∣ >
ε

8

)
<

1
8
.

III. Numerical errors come from two sources: first, we can compute φ(x) only
approximately and second, we have desribed the algorithm assuming that arithmetic op-
erations with real numbers can be carried out exactly. We compute φ(x) with absolute
error at most ε/n2; this means a relative error of ε/n2 in Fi(x), and hence a relative error
of ε/n2 in αi. Thus this adds up to a relative error of kε/n2 <ε/10 in ζ.

Next we estimate the error coming from the fact that we calculate with finite pre-
cision, in fact to 100logn bits after the point. The run of the algorithm is determined
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by three random sequences: b1
1, b

1
2, . . . , b

i
p, . . ., independent random bits (to secure the lazy-

ness), u1
1,u

1
2, . . . ,u

i
p, . . . independent uniformly distributed vectors in B (the jumps), and

τ1
1 , τ1

2 , . . . , τ i
p, . . . independent uniformly distributed number in [0,1] (the Metropolis filter-

ing). We have

vi
p+1 =

{
vi

p +ui
p, if bi

p =1, vi
p +ui

p ∈ qB and τ i
p≤Fi(vi

p +ui
p)/Fi(vi

p),
vi

p, otherwise.
(4.5)

In the actual computation, we get the vectors ui
p the numbers τ i

p and the values of Fi with
some error: let ûi

p, τ̂ i
p and F̂i be these rounded values. Then we determine the process

v̂1
1 , v̂1

2 , . . . , v̂i
p . . . by

v̂i
p+1 =

{
v̂i

p + ûi
p, if bi

p =1, v̂i
p + ûi

p ∈ qB and τ̂ i
p≤ F̂i(vi

p +ui
p)/F̂i(vi

p),
v̂i

p, otherwise.
(4.6)

We claim that with large probability, the same alternative is chosen in (4.5) and (4.6) at
each step; this implies then that |vi

p−v̂i
p|<n−10 for all i and p, and hence the ζ we compute

is within a factor of 1+ε/2 to the true value.
Assume that not always the same choice is made in (4.5) and (4.6), and consider the

first occurance of this. Then either (a) vi
p +ui

p ∈ qB but v̂i
p + ûi

p /∈ qB (or vice versa), or
(b) τ i

p≤Fi(vi
p +ui

p)/Fi(vi
p) but τ̂ i

p > F̂i(vi
p +ui

p)/F̂i(vi
p) (or vice versa). If (b) occurs, then

|τ i
p−Fi(vi

p +ui
p)/Fi(vi

p)|< n−100, and the probability that this occurs is less than 2/n100.
Assume that (a) occurs. Since we consider the first occurance, we have |vi

p−v̂i
p|<n−90 and

hence the distance of vi
p from the boundary of qB must be less than n−89. Let S denote

that n−89-neighborhood of the boundary of qB. It is easy to compute that QFi(S)<n−88,
and therefore by Claim 2,

Prob(vi
p ∈S)< n−44.

So the probability that either (a) or (b) ever occurs is less than 2kt/n44 < 1/50.

The running time of the Volume Algorithm is clearly dominated by the time needed
to carry out the random walk. This takes kt moves, where each move takes the updating
of n coordinates, one test of membership in qB, the evaluation of φ(x), and a constant
number of arithmetic operations (where the evaluation of ex is considered as a single
arithmetic operation; else, we need O(logn) arithmetic operations). To evaluate φ(x), we
find the largest t with tx∈K by binary search with error ε/n2; this takes O(logn+log(1/ε))
membership tests. Thus the algorithm takes O(t(logn+log(1/ε))) membership tests and
O(tn(logn+log(1/ε))) arithmetic operations. Ordinarily, a membership test takes at least
n arithmetic operations (it has to look at the coordinates), so the running time will be
dominated by the membership tests.

If we combine the preliminary part and the main part to a single algorithm, we face
an additional difficulty: we have assumed that membership test can be carried out not
only for K but also in its affine image A(K) produced by the preliminary part in a single
step. This is not justified if we only have an oracle for the original K, since then we have
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to apply each time the inverse of the affine transformation to get the point to be queried
from the oracle. If the membership test takes n2 or more operations, this is majorized by
that. However, for most sensible encodings of K (say, by linear or algebraic inequalities),
we can compute a new encoding for the affine image and work with this.

We may also leave K invariant and generate the random steps from an appropriate
ellipsoid instead of the unit ball. This would solve the problem with the membership test
but would increase the cost of generating the random step to O(n2), and hence would lead
to essentially the same analysis.
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L. Danzer, D. Langwitz, H. Lenz (1957), Über das Löwnersche Ellipsoid und sein Analogon

unter den einem Eikörper einbeschriebenen Ellipsoiden. Arch. Math. 8, 214–219.
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A. Prékopa (1971), Logarithmic concave measures with applications to stochastic program-
ming, Acta Sci. Math. Szeged. 32 301–316.
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