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Abstract. The DGMRES algorithm was designed to compute the Drazin inverse solution of

consistent or inconsistent linear systems Ax = b, where A is a square singular matrix with arbitrary

index. In this paper we compare the convergence rate of DGMRES with that of GMRES applied to

the nonsingular part of A.

1. Introduction. Let A be an n by n matrix with index α. The index is the

size of the largest Jordan block of A corresponding to the zero eigenvalue. The Drazin

inverse AD of A is the unique n by n matrix that satisfies

AAD = ADA, Aα+1AD = Aα, ADAAD = AD.

Since AD can be written as a polynomial in A [7, p. 186], there is a possibility of

using Krylov subspace methods to find the Drazin inverse solution ADb to a possibly

inconsistent linear system Ax = b.

Such an algorithm, called DGMRES, was developed by Sidi in [12, 13]. More

recently, various restarted versions of the algorithm have been studied; see, for ex-

ample, [10, 16]. In this paper, we deal only with the full (unrestarted) version of the

algorithm and compare its performance to that of the full GMRES algorithm applied

to the nonsingular part of the matrix.

The DGMRES algorithm works as follows. Given an initial guess x0, compute

the initial residual r0 = b− Ax0, and form Aαr0. Note that while the original linear

system Ax = b may have no solution, if we multiply each side by Aα, then the linear

system Aα+1x = Aαb is consistent and has x = ADb as a solution.

Let v1 = β−1(Aαr0), where β = ‖Aαr0‖. (Here, and throughout this paper, ‖ · ‖
denotes the 2-norm for vectors and the corresponding operator norm for matrices.) We

will choose approximate solutions xk−α, k = α+1, α+2, . . ., to be of the form x0 plus a

linear combination of vectors from the Krylov subspace span{v1, Av1, . . . , Ak−α−1v1},
where the linear combination is chosen to minimize ‖Aα(b−Axk−α)‖.

To do this, first use the Arnoldi algorithm to construct an orthonormal basis for

the Krylov space span{v1, Av1, . . . , Ak−1v1}. If the Arnoldi vectors v1, . . . , vk form

the columns of an n by k matrix Vk, then Vk satisfies

(1.1) AVk = Vk+1Hk+1,k,
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where Hk+1,k is a k+1 by k upper Hessenberg matrix. Take the approximate solution

xk−α to be of the form

xk−α = x0 + Vk−αξ,

for some (k − α)-vector ξ to be determined. Then the residual rk−α := b − Axk−α

satisfies rk−α = r0 −AVk−αξ and

Aαrk−α = Aαr0 −Aα+1Vk−αξ.

Using (1.1), this can be written as

Aαrk−α = Aαr0 −AαVk−α+1Hk−α+1,k−αξ

= Aαr0 −Aα−1Vk−α+2Hk−α+2,k−α+1Hk−α+1,k−αξ

...

= Aαr0 − Vk+1Ĥk+1,k−αξ,

where Ĥk+1,k−α = Hk+1,kHk,k−1 · · ·Hk−α+1,k−α. Since Aαr0 = Vk+1(βe1), where

e1 = (1, 0, . . . , 0)T is the first unit vector, we can write

(1.2) Aαrk−α = Vk+1(βe1 − Ĥk+1,k−αξ),

and ξ can be chosen to minimize ‖Aαrk−α‖ by solving the k+1 by k−α least squares

problem

Ĥk+1,k−αξ ≈ βe1.

Note that while xk−α − x0 is a linear combination of just the first k − α Arnoldi

vectors, determination of the appropriate linear combination through the vector ξ

requires computation of the first k+1 Arnoldi vectors and the associated Hessenberg

matrices Hk+1,k, Hk,k−1, . . .. Once a complete set of linearly independent Krylov

space vectors has been constructed so that, say, hK+1,K = 0 and AVK = VKHK , the

formula for AαrK−ℓ, 0 ≤ ℓ ≤ min{K − 1, α}, becomes

AαrK−ℓ = Aαr0 −Aα−ℓ+1VKĤK,K−ℓξ

= Aαr0 − VKHα−ℓ+1
K ĤK,K−ℓξ

= VK(βe1 −Hα−ℓ+1
K ĤK,K−ℓξ),

and a K by K− ℓ least squares problem with coefficient matrix Hα−ℓ+1
K ĤK,K−ℓ must

be solved to determine ξ.
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This algorithm is very similar to the GMRES algorithm for solving nonsingular

linear systems, and it can be written as follows:

DGMRES for the Drazin inverse solution of Ax = b, index of A is α. [13]

Initialization:

Given an initial guess x0, compute r0 = b−Ax0 and Aαr0. Set β = ‖Aαr0‖ and v1 = β−1Aαr0.

Main loop:

For k = 1, 2, . . .

Construct the next Arnoldi vector: Set vk+1 = Avk. For j = 1, . . . , k:

Compute hjk = v∗j vk+1.

Replace vk+1 ← vk+1 − hjkvj .

Compute hk+1,k = ‖vk+1‖.
If hk+1,k = 0 (or within roundoff of 0), set a flag; otherwise set vk+1 = vk+1/hk+1,k.

If k > α and flag not set,

Form Ĥk+1,k−α =
∏α

j=0 Hk+1−j,k−j .

Solve the least squares problem Ĥk+1,k−αξ ≈ βe1 for ξ.

Set xk−α = x0 + Vk−αξ. Compute rk−α = b−Axk−α and Aαrk−α.

If ‖Aαrk−α‖ sufficiently small, then terminate; otherwise, continue.

If flag is set, form the final iterates and terminate: Let k̃ = min{k − 1, α}. For ℓ = k̃, k̃ − 1, . . . , 0,

Form Ĥk,k−ℓ = Hα−ℓ+1
k

∏ℓ−1
j=0 Hk−j,k−j−1.

Solve the least squares problem Ĥk,k−ℓξ ≈ βe1 for ξ.

Set xk−ℓ = x0 + Vk−ℓξ. Compute rk−ℓ = b−Axk−ℓ and Aαrk−ℓ.

Note from (1.2) that one can monitor ‖Aαrk−α‖ = ‖Ĥk+1,k−αξ − βe1‖, without

actually computing xk−α, so one need only evaluate xk−α when this norm drops

below a desired tolerance. [In this algorithm, we have used different indexing than

has been used in most previous papers (e.g., [12, 13, 10, 16]), letting xk−α = x0 +

Vk−αξ, even though the columns of Vk−α span the same space as {Aαr0, . . . , A
kr0}.

In previous papers, this would have been referred to as xk, with the consequence that

x1, . . . , xα were undefined or just equal to x0. We find this indexing more convenient

for comparisons with GMRES.]

Note also that if α in the above algorithm is greater than the index of A, then

the procedure still finds a solution of Aα+1x = Aαb, while if α is less than the index

of A, then it attempts to solve the linear system Aα+1x = Aαb, which may have no

solution.
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In the following sections, we compare the convergence rate of the DGMRES algo-

rithm to that of GMRES applied to the nonsingular part of the matrix. It is shown

that while the GMRES algorithm produces a residual at step k that is equal to the ini-

tial residual r̂0 minus its orthogonal projection onto span{Br̂0, B
2r̂0, . . . , B

kr̂0}, where

B is the nonsingular part of the matrix, the convergence of DGMRES is governed by

the size of r̂0 minus its orthogonal projection onto span{Bα+1r̂0, B
α+2r̂0, . . . , B

α+kr̂0}.
Thus, the problem is to estimate the importance of the missing terms Br̂0, . . . , B

αr̂0.

Good a priori estimates can be given when α = 1. The same techniques can be used

for larger values of α, but the bounds become more complicated and less tight.

2. Expression for the Drazin Inverse Using a Block Upper Triangular

Form. Every n by n matrix A can be written in the form

(2.1) A = S

[

B 0

0 N

]

S−1,

where S is a nonsingular n by n matrix, B is a nonsingular m by m matrix, 0 ≤ m ≤ n,

and N is a nilpotent n−m by n−m matrix [7, p. 185]. This could, for example, be

the Jordan canonical form of A, where B is a direct sum of all the nonsingular Jordan

blocks and N is a direct sum of all the singular Jordan blocks. The Drazin inverse of

A is then given by

(2.2) AD = S

[

B−1 0

0 0

]

S−1.

Note that while the decomposition (2.1) is not unique, the Drazin inverse (2.2) is.

We prefer to work with unitary similarity transformations, so factoring the non-

singular matrix S in the form S = QR where Q is unitary and R is upper triangular

of the form

R =

[

R11 R12

0 R22

]

,

where R11 is a nonsingular m by m matrix and R22 is a nonsingular n−m by n−m

matrix, we can write

(2.3) A = Q

[

B ∗
0 N

]

Q∗,

where

B = R11BR−1
11 , N = R22NR−1

22 ,
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and the asterisk represents a matrix block that will not play a role in the analysis.

Note that if the index of A is α, then the first m columns of Q form an orthonormal

basis for the range of Aα and the remaining n−m columns of Q form an orthonormal

basis for the orthogonal complement of the range of Aα.

While the decompositions (2.1) or (2.3) are not easy to compute numerically (see,

for example, [6] for a method to compute (2.3)), in the next section we will use the

form (2.3) to compare the performance of DGMRES applied to A to that of GMRES

applied to B.

3. Comparison with GMRES. Assume that A has index α. The DGMRES

algorithm described in Section 1 generates vectors xD
k−α, k = α+ 1, α + 2, . . ., of the

form

xD
k−α = x0 +

k−α
∑

j=1

cjA
α+j−1r0.

(Here we have added a superscript D to emphasize that these are quantities gener-

ated by the DGMRES algorithm.) The residual rDk−α := b − AxD
k−α is then r0 −

∑k−α
j=1 cjA

α+jr0, and AαrDk−α satisfies

AαrDk−α = (I −
k−α
∑

j=1

cjA
α+j)Aαr0.

The coefficients c1, . . . , ck−α are chosen to minimize the 2-norm of AαrDk−α:

(3.1) ‖AαrDk−α‖ = min
c1,...,ck−α

‖(I −
k−α
∑

j=1

cjA
α+j)Aαr0‖.

From (2.3) and (3.1),

(3.2) ‖AαrDk−α‖ = min
c1,...,ck−α

∥

∥

∥

∥

∥

Q

[

I −∑k−α
j=1 cjB

α+j ∗
0 I

]

Q∗Aαr0

∥

∥

∥

∥

∥

.

The vector Q∗Aαr0 has norm equal to ‖Aαr0‖ and it has nonzeros only in its first m

positions since columns m + 1, . . . , n of Q are orthogonal to the range of Aα. If r̂0

denotes the first m entries of this vector, then

(3.3) ‖AαrDk−α‖ = min
c1,...,ck−α

‖(I −
k−α
∑

j=1

cjB
α+j)r̂0‖,
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and, for any initial residual r0, we can write

‖AαrDk−α‖/‖Aαr0‖ ≤ max
‖r̂0‖=1

min
c1,...,ck−α

‖(I −
k−α
∑

j=1

cjB
α+j)r̂0‖(3.4)

≤ min
c1,...,ck−α

‖I −
k−α
∑

j=1

cjB
α+j‖.(3.5)

The bound in (3.4) is the worst-case residual norm bound for DGMRES while the one

in (3.5) is the ideal DGMRES residual norm bound [5]. It follows from results in [8]

that the coefficients c1, . . . , ck−α that minimize the matrix norm in (3.5) are uniquely

determined, assuming that this minimal matrix norm is positive.

When the GMRES algorithm is applied to a problem with the nonsingular coef-

ficient matrix B and initial residual r̂0, the residual rGk at step k satisfies

(3.6) ‖rGk ‖ = min
d1,...,dk

‖(I −
k

∑

j=1

djB
j)r̂0‖.

The worst-case and ideal GMRES residual norm bounds are:

‖rGk ‖/‖rG0 ‖ ≤ max
‖r̂0‖=1

min
d1,...,dk

‖(I −
k

∑

j=1

djB
j)r̂0‖(3.7)

≤ min
d1,...,dk

‖I −
k

∑

j=1

djB
j‖.(3.8)

The terms d1B, . . . , dαB
α that are present in the GMRES minimization problems (3.6

- 3.8) are not present in the DGMRES minimization problems (3.3 - 3.5), and we wish

to estimate how important these extra terms are.

We first note that it is immediate from (3.3) that

(3.9) ‖AαrDk−α‖ ≤ min
d1,...d⌊k/(α+1)⌋

‖(I −
⌊k/(α+1)⌋

∑

j=1

dj(B
α+1)j)r̂0‖,

where ⌊·⌋ denotes the integer part. The quantity on the right is the norm of the

GMRES residual at step ⌊k/(α + 1)⌋ for a problem with coefficient matrix Bα+1

and initial residual r̂0. We wish, however, to relate the behavior of DGMRES for a

problem with coefficient matrix A to that of GMRES for a problem with coefficient

matrix B rather than Bα+1.
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3.1. Matrices of Index One. Consider first the case α = 1. Let d̃1, . . . , d̃k be

the coefficients that achieve the minimum in (3.6). Then we can write

r̂0 =

k
∑

j=1

d̃jB
j r̂0 + rGk , Br̂0 =

k
∑

j=1

d̃jB
j+1r̂0 +BrGk .

Combining these two equalities,

r̂0 = d̃1





k
∑

j=1

d̃jB
j+1r̂0 +BrGk



+

k−1
∑

j=1

d̃j+1B
j+1r̂0 + rGk

=

k
∑

j=1

(d̃1d̃j + d̃j+1)B
j+1r̂0 + d̃1BrGk + rGk , d̃k+1 := 0.(3.10)

It follows from (3.3) that

(3.11) ‖ArDk ‖ = min
c1,...,ck

‖r̂0 −
k

∑

j=1

cjB
1+j r̂0‖ ≤ ‖(I + d̃1B)rGk ‖ ≤ (1 + |d̃1| ‖B‖)‖rGk ‖.

A slightly stronger bound can be obtained as follows. Comparing (3.3) and (3.6),

we can write

min
c1,...,ck−1

‖(I −
k−1
∑

j=1

cjB
1+j)r̂0‖ ≤ min

d1,...,dk

‖(I −
k

∑

j=1

djB
j)r̂0‖+

(3.12) |d̃1| min
e1,...,ek−1

‖B(I −
k−1
∑

j=1

ejB
j)r̂0‖,

where d̃1 is the value of d1 that minimizes the first term on the right-hand side. The

first term on the right-hand side is the norm of the GMRES residual rGk , and the

second measures how well d̃1Br̂0 can be approximated by a linear combination of

B2r̂0, . . . , B
kr̂0. It is |d̃1| times the norm of the GMRES residual at step k − 1 when

the initial residual is Br̂0, and it is bounded above by |d̃1| ‖B‖ times the norm of the

GMRES residual at step k − 1 for initial residual r̂0. Thus, letting rDk−1 denote the

DGMRES residual at step k − 1, we can write

(3.13) ‖ArDk−1‖ ≤ ‖rGk ‖+ |d̃1| ‖B‖ ‖rGk−1‖.

Similar comparisons can be derived for worst-case and ideal GMRES and DGMRES.

For instance, if PD
k−1(A) represents the ideal DGMRES polynomial in (3.5) (of degree

k but involving only the k − 1 powers A2, . . . , Ak) and PG
k (B) represents the ideal
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GMRES polynomial in (3.8), then

(3.14) ‖PD
k−1(A)‖ ≤ ‖PG

k (B)‖+ | ˜̃d1| ‖B‖ ‖PG
k−1(B)‖,

where
˜̃
d1 is the coefficient of B in PG

k (B).

The only remaining question is the size of d̃1 or
˜̃
d1, which are the coefficients of

B in the actual and ideal GMRES polynomials, respectively. It is well-known that

the reciprocals of the roots of the GMRES polynomial corresponding to any initial

residual r̂0 all lie in the field of values of B−1: W (B−1) := {q∗B−1q : ‖q‖ = 1}.
[See, e.g., [14, 4].] It is shown in [15] that this holds for the reciprocals of the roots

of the ideal GMRES polynomial as well. If w(B−1) denotes the numerical radius

of B−1, w(B−1) := maxz∈W (B−1) |z|, then the reciprocal of each root has absolute

value less than or equal to w(B−1). If θ1, . . . , θk are the roots of the actual or ideal

GMRES polynomial, then this polynomial can be written as
∏k

j=1(I − θ−1
j B), and

the coefficient of B is the negative of the sum of the reciprocals of the roots, which

satisfies |−∑k
j=1 θ

−1
j | ≤ k w(B−1). It follows that the bounds (3.13) and (3.14), which

depend on coefficients generated by the GMRES algorithm or its ideal counterpart,

can be replaced by the a priori estimates

(3.15) ‖ArDk−1‖ ≤ ‖rGk ‖+ k w(B−1) ‖B‖ ‖rGk−1‖ ≤ ‖rGk ‖+ k κ(B) ‖rGk−1‖,

and

‖PD
k−1(A)‖ ≤ ‖PG

k (B)‖+ k w(B−1) ‖B‖ ‖PG
k−1(B)‖

≤ ‖PG
k (B)‖+ k κ(B) ‖PG

k−1(B)‖,(3.16)

respectively, where κ(B) := ‖B−1‖ ‖B‖. The second bound in (3.15) and (3.16) is

just a slightly weaker (but possibly more convenient) estimate using the fact that

w(B−1) ≤ ‖B−1‖.

Unfortunately, the bounds in (3.15) and (3.16) involve a factor k in the estimates

of |d̃1| and | ˜̃d1|. We need a bound on the absolute value of the sum of the reciprocals

of the roots of the actual or ideal GMRES polynomial. Could all k of these values

actually be equal to w(B−1)? It seems unlikely, but in the case of the ideal GM-

RES polynomial we know of no further published results on the distribution of the

reciprocal roots.

In the case of actual GMRES polynomials, however, there is some analysis [3, 9].

The coefficient estimates in [9] depend on the initial residual, but to analyze worst-case

GMRES we need bounds that are independent of the starting vector. Such a priori

bounds can be found in [3], which deals with sums of real parts and with absolute

values of Ritz values, but the same arguments can be used to obtain bounds on sums
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of imaginary parts and hence on the absolute value of the sum of Ritz values.

The roots of the GMRES polynomial pGk corresponding to the nonsingular matrix

B and some initial residual r̂0 are known as harmonic Ritz values. It is shown [4]

that the reciprocals of these roots are standard Ritz values obtained from the Arnoldi

process applied to the matrix B−1 with starting vector Br̂0. Write B−1 in the form

B−1 = H + iS, where H := (B−1 + B−∗)/2 and S := (B−1 − B−∗)/(2i) are both

Hermitian. Let µ1 ≤ . . . ≤ µm denote the eigenvalues of H and let ν1 ≤ . . . ≤ νm

denote the eigenvalues of S. Let θ−1
1 , . . . , θ−1

k denote the Ritz values obtained at step

k of the Arnoldi algorithm applied to B−1 with initial vector Br̂0 (i.e., the reciprocals

of the roots of the GMRES polynomial pGk ).

Theorem 3.1. (See [3].) Using the above notation, if d̃1 is the coefficient of

B in the GMRES polynomial pGk (B) corresponding to the nonsingular matrix B and

initial residual r̂0 (i.e., the polynomial for which rGk = pGk (B)r̂0), then

(3.17) |d̃1| =

∣

∣

∣

∣

∣

∣

k
∑

j=1

θ−1
j

∣

∣

∣

∣

∣

∣

≤









max{|
k

∑

j=1

µm−j+1|, |
k

∑

j=1

µj |}





2

+



max{|
k

∑

j=1

νm−j+1|, |
k

∑

j=1

νj |}





2






1/2

.

Proof. Let the columns of an m by k matrix V form an orthonormal basis for the

Krylov space generated by the Arnoldi algorithm applied to B−1 with initial vector

Br̂0. Then V can be chosen in such a way that V ∗B−1V is upper triangular, with the

Ritz values θ−1
1 , . . . , θ−1

k on its main diagonal. Let the columns of V̂ ∈ C
m×(m−k) form

an orthonormal basis for the orthogonal complement of the range of V , and choose this

basis so that V̂ ∗B−1V̂ is upper triangular, with diagonal entries labeled θ−1
k+1, . . . , θ

−1
m .

Order the values θ−1
1 , . . . , θ−1

m in increasing order of real part: Re(θ−1
r1 ) ≤ . . . ≤

Re(θ−1
rm), or in increasing order of imaginary part: Im(θ−1

i1
) ≤ . . . ≤ Im(θ−1

im
).

By a result of Schur [1, p. 35], the vector [Re(θ−1
rj )]mj=1 of ordered diagonal entries

of [V, V̂ ]∗H[V, V̂ ] majorizes the vector [µj ]
m
j=1 of eigenvalues; that is,

(3.18)

ℓ
∑

j=1

µj ≤
ℓ

∑

j=1

Re(θ−1
rj ), ℓ = 1, . . . ,m.

Since the values θ−1
rj , j = 1, . . . , k are ordered by increasing real part, it follows that
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Re(θ−1
rj ) ≤ Re(θ−1

j ), and (3.18) can be replaced by

(3.19)

k
∑

j=1

µj ≤
k

∑

j=1

Re(θ−1
j ).

Similarly, the vector [Im(θ−1
ij

)]mj=1 of ordered diagonal entries of [V, V̂ ]∗S[V, V̂ ]

majorizes the vector [νj ]
m
j=1 of eigenvalues; that is,

(3.20)

ℓ
∑

j=1

νj ≤
ℓ

∑

j=1

Im(θ−1
ij

), ℓ = 1, . . . ,m.

Since the values θ−1
ij

, j = 1, . . . , k are ordered by increasing imaginary part, it follows

that Im(θ−1
ij

) ≤ Im(θ−1
j ) and so we have

(3.21)
k

∑

j=1

νj ≤
k

∑

j=1

Im(θ−1
j ).

Applying the same analysis to −B−1 yields

(3.22)

k
∑

j=1

µm−j+1 ≥
k

∑

j=1

Re(θ−1
j ),

k
∑

j=1

νm−j+1 ≥
k

∑

j=1

Im(θ−1
j′ ).

Finally, combining (3.19), (3.21), and (3.22), we obtain the bounds,

∣

∣

∣

∣

∣

∣

k
∑

j=1

Re(θ−1
j )

∣

∣

∣

∣

∣

∣

≤ max







|
k

∑

j=1

µm−j+1|, |
k

∑

j=1

µj |







,

∣

∣

∣

∣

∣

∣

k
∑

j=1

Im(θ−1
j )

∣

∣

∣

∣

∣

∣

≤ max







|
k

∑

j=1

νm−j+1|, |
k

∑

j=1

νj |







,

from which (3.17) follows.

If many eigenvalues of H and S have magnitude significantly less than w(B−1)

or if their signs cause cancellation in the sums on the right-hand side of (3.17), then

the bound (3.17) may be significantly less than kw(B−1).

For worst-case DGMRES, if ‖ArDk−1‖ is the maximum, over all initial residuals r0

with ‖Ar0‖ = 1, of the norm of A times the residual at step k − 1, and if ‖rGk ‖ and

‖rGk−1‖ are the GMRES residual norms at steps k and k−1 for the associated problem

with coefficient matrix B and initial residual r̂0 consisting of the first m entries of

10



Q∗Ar0, then, in analogy to (3.13), we can write

(3.23) max
‖Ar0‖=1

‖ArDk−1‖ ≤ ‖rGk ‖+ |d̃1| ‖B‖ ‖rGk−1‖,

where now d̃1 is the coefficient of B in the GMRES polynomial pGk (B) for initial

residual r̂0 corresponding to the worst-case DGMRES initial residual. The bound

|d̃1| ≤ kw(B−1) holds in this case as well, but we also have the sharper estimate in

(3.17).

Note also that if A has index 0 (i.e., it is nonsingular), but the DGMRES algorithm

is run with α = 1, then these same comparisons hold. In this case B = A, but because

we treat the matrix as if it had index 1 in the DGMRES algorithm the first degree term

is still missing from the DGMRES polynomial. The following theorem summarizes

these results:

Theorem 3.2. Let A be an n by n matrix with index 0 or 1 and assume that A

can be written in the form (2.3), where B is a nonsingular m by m matrix, m ≤ n.

Let rDk−1 denote the residual at step k − 1 of the DGMRES algorithm applied to the

linear system Ax = b with initial residual r0 := b − Ax0 and with α set to 1. Let rGk
and rGk−1 denote the residuals at steps k and k − 1 of the GMRES algorithm applied

to a linear system with coefficient matrix B and initial residual r̂0 consisting of the

first m entries of Q∗Ar0. Then

(3.24) ‖ArDk−1‖ ≤ ‖rGk ‖+ |d̃1| ‖B‖ ‖rGk−1‖,

where d̃1 is the coefficient of B in the GMRES polynomial pGk (B), where rGk =

pGk (B)r̂0. The coefficient d̃1 satisfies |d̃1| ≤ kw(B−1), where w(·) denotes the nu-

merical radius, and it also satisfies the inequality in (3.17).

If PD
k−1(A) is the ideal DGMRES polynomial defined by (3.5) and PG

k and PG
k−1

are ideal GMRES polynomials defined by (3.8), then

(3.25) ‖PD
k−1(A)‖ ≤ ‖PG

k (B)‖+ | ˜̃d1| ‖B‖ ‖PG
k−1(B)‖,

where
˜̃
d1 is the coefficient of B in the ideal GMRES polynomial PG

k (B) and satisfies

| ˜̃d1| ≤ kw(B−1).

3.2. Matrices with Higher Index. While the same procedure can be applied

to matrices of higher index, its usefulness becomes questionable. Suppose, for instance,

that α = 2. Returning, for simplicity, to the type of argument that led to (3.10), let

P2 denote any element in the span of {B3r̂0, . . . , B
k+2r̂0}. Then we can write

r̂0 = d̃1Br̂0 + d̃2B
2r̂0 + rGk + P2, Br̂0 = d̃1B

2r̂0 +BrGk + P2, B2r̂0 = B2rGk + P2.

11



Combining these equalities,

r̂0 = d̃1(d̃1B
2r̂0 +BrGk ) + d̃2B

2rGk + rGk + P2

= [I + d̃1B + (d̃21 + d̃2)B
2]rGk + P2.(3.26)

Since ‖A2rDk ‖ is the minimum over all elements P2 in span{B3r̂0, . . . , B
k+2r̂0} of the

norm of the difference between r̂0 and P2, it follows that

(3.27)

‖A2rDk ‖ ≤ ‖(I + d̃1B + (d̃21 + d̃2)B
2)rGk ‖ ≤

(

1 + |d̃1| ‖B‖+ |d̃21 + d̃2| ‖B2‖
)

‖rGk ‖.

Writing the GMRES polynomial in the form
∏k

j=1(I − θ−1
j B), it can be seen

that the coefficient d̃2 of B2 is the sum of products of all pairs of reciprocal roots:

d̃2 =
∑k−1

i=1

∑k
j=i+1 θ

−1
i θ−1

j . There are k(k−1)
2 such pairs, each of which could be

as large as w(B−1)2 (although the results of Theorem 3.1 might preclude all of the

reciprocal roots from being equal to w(B−1)), so it is difficult to rule out the possibility

that the term |d̃21 + d̃2| ‖B2‖ in (3.27) could be quite large.

One thing that can be said about DGMRES convergence is that if GMRES applied

to a problem with coefficient matrix B and initial residual r̂0 obtains the exact solution

after K steps, then DGMRES applied to the corresponding index α linear system

Ax = b obtains an exact solution to Aα+1x = Aαb after K steps. [This is the Drazin

inverse solution ADb if the projection of x0 onto the null space of Aα is 0, which is

certainly the case if x0 = 0. See [12, 13].]

Theorem 3.3. Let A be an n by n matrix with index less than or equal to α

and assume that A can be written in the form (2.3), where B is a nonsingular m by

m matrix, m ≤ n. Suppose the GMRES algorithm applied to a linear system with

coefficient matrix B and initial residual r̂0 consisting of the first m entries of Q∗Aαr0

obtains the exact solution after K steps. Then DGMRES applied to the linear system

Ax = b obtains an exact solution to Aα+1x = Aαb after K steps.

Proof. Since GMRES obtains the exact solution after K steps, it follows from

(3.6) that

(3.28) r̂0 ∈ span{Br̂0, B
2r̂0, . . . , B

K r̂0}.

To show that DGMRES finds an exact solution to Aα+1x = Aαb after K steps, we

must show, based on (3.3), that r̂0 lies in

(3.29) span{Bα+1r̂0, . . . , B
α+K r̂0}.

For α = 0, this is immediate. Otherwise, multiplying (3.28) by Bα, then Bα−1 , etc.,

we find that Bαr̂0 is in the subspace defined in (3.29), as is Bα−1r̂0, . . . , as is Br̂0.

12



Therefore r̂0 lies in this subspace.

Note that the converse of Theorem 3.3 is not true. If DGMRES obtains the exact

solution after K steps (that is, if r̂0 lies in the space (3.29)), it does not follow that

GMRES finds the exact solution after K steps (i.e., that (3.28) holds). A simple

example is the companion matrix

B =







0 1 0

0 0 1

1 0 1






,

whose minimal polynomial is z3 − z2 − 1. Since I = −B2 + B3, it follows that

DGMRES with α = 1 obtains the exact Drazin inverse solution to any linear system

with coefficient matrix equal to the direct sum of B and a nilpotent matrix of index

1 in two steps. Yet, if r̂0 = e1, for instance, then the GMRES algorithm makes no

progress in the first two steps. Of course, if DGMRES finds the exact solution after

K steps, then GMRES always finds the exact solution after K + α steps.

4. Numerical Results.

4.1. Neumann Problem for Poisson’s Equation. Figure 1 shows the con-

vergence of DGMRES applied to a 5-point difference approximation to the problem

−∆u = f in [0, 1]× [0, 1],

with homogeneous Neumann boundary conditions: ux = 0 when x = 0 or x = 1,

uy = 0 when y = 0 or y = 1. The finite difference matrix has zero row sums; that is,

the vector of all 1’s lies in its null space, corresponding to the fact that the soution

is determined only up to an additive constant. A grid with h = 1/32 was used,

resulting in a 312 by 312 matrix equation for the solution at the interior nodes, using

the approximation that solution values at boundary nodes are equal to those one line

in. A random right-hand side f was used, with a zero initial guess. The DGMRES

convergence curve is marked with ◦’s, and the convergence curve for GMRES applied

to the nonsingular part (B in (2.3)) is plotted with a solid line. Also plotted, with a

dash-dot line, is the upper bound (3.13) using the computed value of |d̃1|. The dashed

line in the figure is the rightmost upper bound in (3.15). The condition number of

B is 777.6, and it can be seen from the figure that the factor k κ(B) in (3.15) is a

significant overestimate of |d̃1| ‖B‖ in (3.13). Still, all curves show the same general

convergence pattern.

Like GMRES, the DGMRES algorithm can be used with a nonsingular precondi-

tioner to improve convergence. Preconditioning can be done on the left or the right

or on both sides, resulting effectively in the DGMRES algorithm being applied to the

linear system L−1
1 AL−1

2 (L2x) = L−1
1 b. Based on the analysis of the previous section,
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Fig. 1. Convergence of DGMRES for a matrix of index 1 arising from a Neumann problem for
Poisson’s equation (◦’s) and GMRES applied to the nonsingular part (solid). Upper bounds (3.13)
(dash-dot) and (3.15) (dashed).

one might expect faster convergence from DGMRES applied to the preconditioned

system if the nonsingular part of the preconditioned matrix is better suited for fast

GMRES convergence.

Although the matrix for the Neumann problem is singular, it has a nonsingular

incomplete Cholesky decomposition. That is, there is a nonsingular lower triangular

matrix L with the same sparsity pattern as the lower triangle of A such that LLT

matches A in places where A has nonzeros but has some nonzero entries in places where

A has zeros. Applying DGMRES to the linear system L−1AL−T (LTx) = L−1b, again

with a random right-hand side b and a zero initial guess resulted in the convergence

curve marked with ◦’s in Figure 2. The solid curve shows the convergence of GMRES

applied to the nonsingular part of L−1AL−T , and the dash-dot and dashed lines in the

figure show the upper bounds (3.13) and (3.15), respectively. The condition number of

B is now 67.4, resulting in less of a difference between the computed value of |d̃1| ‖B‖
on which the dash-dot curve is based, and the upper bound |d̃1| ‖B‖ ≤ kκ(B), on

which the dashed curve is based.

4.2. Computing the Drazin Inverse. Although one frequently wishes to com-

pute the product ADb of the Drazin inverse with a given vector b, one sometimes needs

to know the entire matrix AD. One way to compute AD is to apply DGMRES (with

a 0 initial guess) to linear systems whose right-hand sides are each of the n unit vec-

tors. The resulting solution vectors will form the columns of the Drazin inverse. As
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Fig. 2. Convergence of DGMRES for the matrix of Figure 1 with an incomplete Cholesky
preconditioner (◦’s) and GMRES applied to the nonsingular part (solid). Upper bounds (3.13)
(dash-dot) and (3.15) (dashed).

a simple example, consider the matrix

A =























1 −1 0 0 0 0

−1 1 0 0 0 0

−1 −1 1 −1 0 0

−1 −1 −1 1 0 0

−1 −1 −1 0 2 −1
−1 −1 0 −1 −1 2























which was studied in [2]. The index of this matrix is 2 and its exact Drazin inverse is

AD =























1/4 −1/4 0 0 0 0

−1/4 1/4 0 0 0 0

0 0 1/4 −1/4 0 0

0 0 −1/4 1/4 0 0

0 0 −5/12 −7/12 2/3 1/3

0 0 −7/12 −5/12 1/3 2/3























.

Using DGMRES with the unit vectors as right-hand sides, we were able to com-

pute AD with a relative error in Frobenius norm of 1.3e−15, which is near the machine

precision. For each right-hand side, at most 4 iterations were required, since this is

the maximum number of iterations required by the GMRES algorithm applied to the

4 by 4 nonsingular part (Theorem 3.3). [In fact, for these specific right-hand side

vectors, even fewer iterations were required.]
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5. Summary and Related Problems. We have shown that the convergence

of DGMRES to the Drazin inverse solution of a possibly inconsistent linear system

Ax = b (i.e., to a solution of Aα+1x = Aαb, where α is greater than or equal to the

index of A) is closely related to that of GMRES applied to the nonsingular matrix B in

(2.3). The difference is that the terms Br̂0, . . . , B
αr̂0 (or B, . . . , Bα) that are present

in the GMRES minimization problems (3.6 - 3.8) are not present in the DGMRES

minimization problems (3.3 - 3.5). An interesting question, independent of the study

of DGMRES, is how important are these first terms in the GMRES approximation

problem.

Suppose, for instance, that B is Hermitian and positive definite (as it is for the

Neumann problem of Section 4.1) with eigenvalues densely distributed in an interval

[a, b], so that the worst-case or ideal GMRES polynomial is essentially the polynomial

with value one at the origin that minimizes the maximum deviation from 0 on [a, b].

This polynomial has the equioscillation property, taking on its maximum absolute

value with alternate signs at each of k + 1 points in the interval if the degree of the

polynomial is k. The first degree polynomial is the one that satisfies pG1 (a) = −pG1 (b);
i.e., pG1 (z) = 1 − 2z

a+b . The worst-case or ideal GMRES residual norm reduction at

step one is

max
z∈[a,b]

|pG1 (z)| =
b− a

b+ a
=

κ− 1

κ+ 1
, κ =

b

a
.

When the DGMRES algorithm is applied to a problem with index α and nonsingular

part B, it also constructs a polynomial that equioscillates on the interval [a, b]. The

first polynomial is determined by requiring that pD1 (a) = −pD1 (b); that is, pD1 (z) =

1− 2zα+1

aα+1+bα+1 . The worst-case or ideal DGMRES reduction in Aα times the residual

at step one is

max
z∈[a,b]

|pD1 (z)| = bα+1 − aα+1

bα+1 + aα+1
=

κα+1 − 1

κα+1 + 1
.

For κ large, this means much slower convergence for DGMRES at the first step. [This

is not seen in Figures 1 and 2 of Section 4.1 because the random initial residual is not

close to the worst-case initial residual.]

When B is Hermitian, the ideal GMRES or DGMRES polynomials (i.e., the

minimax polynomials on the set of eigenvalues of B) can be computed using the

Remez algorithm [11]. For an interval [a, b], the GMRES polynomials are shifted and

scaled Chebyshev polynomials, leading to the familiar bound

‖rGk ‖
‖rG0 ‖

≤ 2

(√
κ− 1√
κ+ 1

)k

.
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Beyond k = 1, however, we know of no analytic estimates for the size of the polynomial

of the form pk(z) = 1− cα+1z
α+1 − . . . − cα+kz

α+k whose maximum deviation from

zero on [a, b] is as small as possible. This could be an interesting question, independent

of its connection to DGMRES. Of course, in certain cases the GMRES and DGMRES

polynomials are the same. For example, if the matrix B is Hermitian indefinite and

has eigenvalues densely distributed throughout two intervals [−b,−a]∪[a, b] symmetric

about the origin, then the ideal GMRES polynomial involves only even powers of B.

Hence if α ≤ 1 in the DGMRES algorithm, then the DGMRES polynomial will be

the same as that of GMRES.

Throughout this paper, we have estimated the importance of the terms Br̂0, . . . , B
αr̂0

(or B, . . . , Bα) by first finding the linear combination of all the terms Br̂0, . . . , B
αr̂0, B

α+1r̂0, . . . , B
kr̂0

(or B, . . . , Bα, Bα+1, . . . , Bk) that best approximates r̂0 (or I) and then asking how

well the first α terms in that linear combination can be approximated by a linear

combination of the remaining terms. A problem with this is that those first α terms

may have large norm. For example, in the Neumann problem of Section 4.1, we were

surprised to see that the two upper bounds (3.13) and (3.15) depicted in Figures 1

and 2 got closer together rather than further apart as k increased, since the larger

bound depended explicitly on k while the smaller one depended only on the coeffi-

cient |d̃1| of B in the GMRES polynomial. This coefficient (times ‖B‖) increased with

k at a faster rate than k κ(B). Another approach is to first construct the optimal

linear combination of the terms Bα+1r̂0, . . . , B
kr̂0 (or Bα+1, . . . , Bk) and then ask

how much better one can do by adding in the lower degree terms. This leads to an

estimate in the other direction:

‖rGk ‖ ≤ min
d1,...,dα

‖(I −
α
∑

j=1

Bj)‖ ‖AαrDk−α‖.

If B is Hermitian and positive definite, for instance, with condition number κ, then

we have the bound

‖rGk ‖ ≤ 2

(√
κ− 1√
κ+ 1

)α

‖AαrDk−α‖.
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