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How to solve the Torsion Problem
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1) Equilibrium for equating forces and moments on free 
body diagrams,

2) Kinematics (or geometry of deformations) for 
postulating displacements and developing strain-displacement 
relationships, 

3) Constitutive Relations for relating the stresses to 

     In this stack we will investigate Torsion in Circular Shafts using the three major 
components from the study of mechanics of materials.  They are listed above. 

Sign Convention

Hide Text

     In order to apply the equations we are 
about to develop, we must develop a sign 
convention for the rotation of an object about 
a given axis.  To do this we will use the 
right-hand rule.  Specifically, if the thumb is 
directed outward from the shaft → then the 
fingers will indicate the direction of positive 
rotation and torque.→

It is should be noted that the right hand rule 
may be applied to any cut.→

3-D Equilibrium Equations

Hide Text

Σ  F x =  0,  Σ  FY =  0,  Σ  FZ =  0 ,
Σ  M x = 0,  Σ  M Y = 0,  Σ  M Z = 0 .

     Recall that in three dimensions 
there are six potential equations of 
equilibrium.  They are the three 
force equilibrium equations and the 
three moment equilibrium equations.
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     Although there are six potential 
equilibrium equations, the torsion 
problems we will be addressing (as is 
shown in the figure) will only require one 
of these equilibrium equations.  Which 
equation do you think it is? 
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     The fact that our torsion problems are 
governed by a single moment equilibrium 
equation implies that, for a statically 
determinate system, there can be only one 
reaction.  It also follows that this reaction 
must be a moment about the X-axis.

Torsion at a Section: 
The Torsion Diagram
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     Once we have determined the reaction, 
we must next calculate where in the shaft 
the internal torsion force is a maximum .  
This is done by using the method of sections..
      Recall that to use the method of sections 
we  must first solve for the reaction at the 
support. The reaction in a torsion problem is 
determined by applying moment equilibrium 
about the X-axis. → → →

Take a Cut Between Loads
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     Once we have determined the 
reaction at the support we may now use 
the method of sections to determine the 
internal torque at any point along the 
member.  To do this we first take a cut 
at any section →
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Calculate Internal Torque
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                 .... and look at moment 
equilibrium for the portion of the 
member which is remaining.→ → →

Take a Second Cut
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     A final cut will give us all the information 
we need to draw the torsion diagram for 
this element.→

More Internal Torque

Hide Text

     Using moment equilibrium once again, 
we find internal torque in the shaft 
between the 10 k-ft load and the wall.→

Torsion Diagram
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     Once we know the value of the 
internal moment in the shaft between 
each change in load, we are ready to 
plot the torsion diagram.
     The torsion diagram plots just like 
the shear diagram for a beam.→ →
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     The first use of equilibrium in our examination of the torsion 
problem is to calculate the internal torque in the shaft given the external 
loadings.  Once we have plotted the torsion diagram, it is then easy to 
read off the maximum internal torque experienced by the shaft.

1) Equilibrium for equating forces and moments on free 
body diagrams,

Part II: Stresses Induced by Torsion          

Hide Text

     This section examines the stresses 
induced by torsion loading in members 
having circular solid and tubular cross 
sections.  Shafts with non-circular 
sections are not considered in this 
course.  
     To relate the stresses to internal 
torque we will first make several 
assumptions about the deflected shape of 
a torsion member.    
     Using these kinematic assumptions, 
along with Hooke's Law for linear elastic 
materials, we will them derive a formula 
which can be used to calculate shear 
stresses for known sections and internal 
torques.

How Does a Shaft Deform?
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     As stated previously, it is necessary to 
make two assumptions about the deflected 
shape of the torsion element in order to 
establish the relationship between internal 
torque and the stresses resulting from the 
torque.  In this section we will discuss the 
type of deformation that occurs when a 
torque is applied to a circular shaft made of 
a homogeneous material.  
     We can illustrate physically what 
happens when a torque is applied to a 
circular shaft by considering a shaft made 
of a highly deformable material, such as 
rubber.   If we create a grid on the shaft, 
then when a torque is applied, the circles 
and longitudinal grid lines will distort.→

How Does a Shaft Deform?
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     What conclusions about the 
deflected shape of the shaft can we 
make by looking at the deformed grid 
above?
     Do the circles appear to have 
changed shape?  Are the longitudinal 

     As stated previously, it is necessary to 
make two assumptions about the deflected 
shape of the torsion element in order to 
establish the relationship between internal 
torque and the stresses resulting from the 
torque.  In this section we will discuss the 
type of deformation that occurs when a 
torque is applied to a circular shaft made of 
a homogeneous material.  
     We can illustrate physically what 
happens when a torque is applied to a 
circular shaft by considering a shaft made 
of a highly deformable material, such as 
rubber.   If we create a grid on the shaft, 
then when a torque is applied, the circles 
and longitudinal grid lines will distort.
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(1) Plane Sections Remain Plane
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A  plane  section  before  loading 
remains  plane  after  loading,

     If you were looking closely, you 
should have seen that the circles 
drawn on the undeformed torsion 
bar remained circles after loading.  
     Based on this observation we 
will assume a plane section of 
material perpendicular to the axis 
of a circular member→ remains 
plane after the torques are 
applied,→ → and that no warping 
of the section occurs.→

(1) Plane Sections Remain Plane
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A  plane  section  before  loading 
remains  plane  after  loading,
and  does  not  warp  or  distort !!!

     If you were looking closely, you 
should have seen that the circles 
drawn on the undeformed torsion 
bar remained circles after loading.  
     Based on this observation we 
will assume a plane section of 
material perpendicular to the axis 
of a circular member→ remains 
plane after the torques are 
applied,→ → and that no warping 
of the section occurs.→

(2) Radial Lines Remain Straight and 
Rotate Through the Same Angle

Hide Text

A   radial  line  on  the  
undeformed  section....

     The second assumption we 
make about the deflected shape 
of the shaft is that any line drawn 
from the neutral axis to the 
outside edge of the shaft → will 
remain straight after the torques 
are applied → →, and all such 
lines at a given section will rotate 
through the same angle, φ. →

(2) Radial Lines Remain Straight and 
Rotate Through the Same Angle

Hide Text

A   radial  line  on  the  
undeformed  section will  
remain  straight after  
deformations, and all 
radial  lines  will  rotate  
through  the  same  

     The second assumption we 
make about the deflected shape 
of the shaft is that any line drawn 
from the neutral axis to the 
outside edge of the shaft → will 
remain straight after the torques 
are applied → →, and all such 
lines at a given section will rotate 
through the same angle, φ. →
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Angle of Twist, φ, Varies Linearly
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     Furthermore, we can see that a 
radial line located a distance x from the 
fixed end will rotate through an angle 
φ(x).  The angle,  φ(x), is called the angle 
of twist, and will vary linearly with 
position x along the shaft as shown.
     This is consistant with our 
observation the longitudinal lines remain 
straight after loading.

Focus on Small Element
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     To understand how this distortion 
strains the material, we will look at a 
small element a distance x from the 
fixed end and a distance ρ  from the 
neutral axis.→ 

Focus on Small Element

Hide Text

     To understand how this distortion 
strains the material, we will look at a 
small element a distance x from the 
fixed end and a distance ρ  from the 
neutral axis. →

Focus on Small Element

Hide Text

     To understand how this distortion 
strains the material, we will look at a 
small element a distance x from the 
fixed end and a distance ρ  from the 
neutral axis. →
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Focus on Small Element

Hide Text

     To understand how this distortion 
strains the material, we will look at a 
small element a distance x from the 
fixed end and a distance ρ  from the 
neutral axis. →

Focus on Small Element

Hide Text

     To understand how this distortion 
strains the material, we will look at a 
small element a distance x from the 
fixed end and a distance ρ  from the 
neutral axis. →

Apply Torsion Loading
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     How will this little element 
deform if we now apply a torsion 
load?  →
     (1) The front and rear surfaces 
will remain plane →, (2) the radial 
edges of the element will remain 
straight →, and (3) the longitudinal 
edges of the element will also remain 
straight due to the linear variation of 
the angle of twist, φ. →

Apply Torsion Loading

Hide Text

     How will this little element 
deform if we now apply a torsion 
load?  →
     (1) The front and rear surfaces 
will remain plane →, (2) the radial 
edges of the element will remain 
straight →, and (3) the longitudinal 
edges of the element will also remain 
straight due to the linear variation of 
the angle of twist, φ. →
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Apply Torsion Loading
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     How will this little element 
deform if we now apply a torsion 
load?  →
     (1) The front and rear surfaces 
will remain plane →, (2) the radial 
edges of the element will remain 
straight →, and (3) the longitudinal 
edges of the element will also remain 
straight due to the linear variation of 
the angle of twist, φ. →

Apply Torsion Loading

Hide Text

     How will this little element 
deform if we now apply a torsion 
load?  →
     (1) The front and rear surfaces 
will remain plane →, (2) the radial 
edges of the element will remain 
straight →, and (3) the longitudinal 
edges of the element will also remain 
straight due to the linear variation of 
the angle of twist, φ. →

Strains Induced by Torsion
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      As a result of this deformation, 
both the front and back face of this 
element will undergo a rotation.  
The back face will rotate through 
the angle φ(x), and the front face will 
rotate through a larger angle,
               φ(x) + dφ dx/dx  
The difference in rotation between 
the two faces is then:
                    dφ dx/dx   

Strains Induced by Torsion
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     Looking at the element we can see 
that an angle α →, which was 90° before 
deformation,  is now α'  <  90° in the 
deformed element → .   Furthermore, 
the difference between α and α' is by 
definition the shear strain, γ. →
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Strains Induced by Torsion

Hide Text

     The shear strain, γ, can be related to 
the the length of the element, dx, and the 
difference in angle of rotation, dφ, by 
looking at the length of the arc BC→.    
From the figure we have: →

Strains Induced by Torsion

Hide Text

Solving for γ we get an expression for 
shear strain in terms of distance from 
the centroid of the section and angle 
of twist of the section.

Strains Induced by Torsion

Hide Text

     Noting that the angle of twist is 
constant at any section (all radial lines 
rotate the same amount) we now have 
an expression for shear strain which 
varies only with the distance from the 
centroid of the section, ρ.
     In other words, the shear strain 
varies linearly along any radial line... →.

Strains Induced by Torsion

Hide Text

     Noting that the angle of twist is 
constant at any section (all radial lines 
rotate the same amount) we now have 
an expression for shear strain which 
varies only with the distance from the 
centroid of the section, ρ.
     In other words, the shear strain 
varies linearly along any radial line.... →.
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Strains Induced by Torsion
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     Noting that the angle of twist is 
constant at any section (all radial lines 
rotate the same amount) we now have 
an expression for shear strain which 
varies only with the distance from the 
centroid of the section, ρ.
     In other words, the shear strain 
varies linearly along any radial line..... 
→

Strains Induced by Torsion
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     .... the shear strain varies from zero 
at the neutral axis → , to a maximum at 
the outside edge of the shaft → .
  
          ** note **  
    From now the symbol "c" refers to the 
distance from the centroid to the 
furthest point of the section.

Strains Induced by Torsion
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2) Kinematics (or geometry of deformations) for 
postulating displacements and developing 
strain-displacement relationships, 

Stress Induced by Torsion

Hide Text

     We have just shown that a torque applied 
to a circular shaft will result in linear shear 
strains in the shaft varying from zero at the 
neutral axis to a maximum at the outer 
surface.  
     In order to relate these shear strains to 
shear stresses we need to recall the 
constitutive relationship between shear stess 
and shear strain; namely...
                               τ = G γ   
... where G, the shear modulus, is a 
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Stress Induced by Torsion
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     This relationship reveals to us that a 
linear variation in shear strain will lead to a 
corresponding linear variation in shear 
stress along any radial line of the cross 
section.   The figure at the right shows a 
plot of the shear stress as a function of 
radius, ρ. 

Stress Induced by Torsion
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     As a result of the linear variation in 
shear stress we can express the shear 
stress at any distance ρ from the 
center of the shaft as shown above.

Longitudinal Stress                

Hide Text

Recall from our discussion of stress at a 
point that a shear stress on any one 
face of an isolated element must, by 
reason of both force and moment 
equilibrium, also develop equal shear 
stresses on the three adjacent faces →.  
Consequently, if we isolate a 
vanishingly small element of material 
from the rest of the shaft →  we 
should expect to see the following 
stresses → .
     From this we can conclude that an 
internal torque, T,  induces shear 
stresses in the plane of the cross 
section, and associated shear-stresses 
along each longitudinal plane →.

Longitudinal Stress   
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    It is interesting to note that because of 
this axial shear stress, shafts made of 
wood tend to split along the axial plane 
when subjected to large torques. 
      This is because wood is an anisotropic 
material.  Its shear strength parallel to its 
fibers (directed along the axis of the shaft) 
is much less than its shear strength 
perpendicular to the fibers.
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The Torsion Formula
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     Using the relationship we just 
derived for shear stress we will now 
require that the torque produced by 
the stress distribution over the entire 
cross section be equilvalent to the 
internal torque, T, at the section. 
     Specifically, each element of area 
dA →, located a distance ρ from the 
center →, is subjected to a differential 
force dF = τ dA → .  

Differential Force
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    The differential force can be calculated 
as the differential area times the shear 
stress acting on the area.  If the 
differential area is small enough, it is 
alright to assume that the shear stress 
acting on the area is constant.

Differential Torque
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     From somewhere in your studies you 
may recall that we calculate torque as 
force times distance.

Differential Torque
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     Therefore, to calculate the torque 
caused by the differential force about 
the centroid of the section we need 
only to multiply the force, τ dA, times 
it's distance from the centroid, ρ.
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Total Torque on Section
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     To get the total torque caused by all 
the shear stresses in the cross-section, 
we integrate the expression for 
differential torque over the area of the 
cross-section.

Recall Linear Stress Distribution                
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     Recall our expression for shear stress in terms of 
the maximum shear stress in the section.

Sutstituting for   τ  ...
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     We now substitute this expression 
for τ  into the integral.

Bring out Constant Terms
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     Because the outer radius of the section 
and the maximum shear stress are constant 
for any section, we can bring them outisde of 
the area integral.
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Solve for Maximum Shear Stress               
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Solving for the τmax , we 
have an expression for 
maximum shear stress in 
terms of internal torque 
and section geometry.

The Torsion Formula
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      Using this formula, we can calculate 
the shear stress given the loading and 
the section geometry.
     Do you recognize the integral in the 
denominator of the formula?

Polar Moment of Inertia
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     The second moment of area in a 
polar coordinate system is called the 
polar moment of inertia, J.

The Torsion Formula
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     Using the fact that shear stress varies 
linearly with respect to radial distance, we can 
calculate the shear stress at any distance, ρ, 
from the centroid of the section as Tρ/J.
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J  for a Solid Circular Section
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     Let's calculate the polar 
moment of inertia for a solid 
circular section.

J  for a Tubular Section       
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     Let us now consider a shaft whose 
cross section is tubular, with inner radius 
r1 and outer radius r2.   As with the solid 
shaft, the polar moment of inertia  is 
calculated as the second moment of area 
radially about the centroid of the section.

Differential Area      
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     Recall that the differential area 
element we use in this integration is an 
annulus (i.e. a ring).

Integration Limits 
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     The only difference between the 
tubular and the solid section are the 
integration limits.
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Integrating....      
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     Performing the integration....

J  for a Tubular Section       
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     Note that this expression is equal to J for the outer 
circle minus J for the inner circle.

Hide Text

Torsion I: 16


