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       The same structure is loaded two different ways.  On the left it is loaded by 
a 50 k axial force applied between the two elements.     On the right it is loaded 
by a 4 k-in moment, again applied between the two members.
     We want to calculate the stresses in the elements for both loading cases.   
Because the structure is statically indeterminate, we cannot solve for the stresses 
using equilibrium alone.  How do we go about finding the stresses?

General Strategy
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     One strategy for solving 
indeterminate problems is to reduce the 
indeterminate structure to a determinate 
one by replacing supports with unknown 
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General Strategy
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     For the axially loaded 
structure, we replace the 
bottom support with an 
unknown vertical force, FB.  
It represents the vertical 
reaction that would be in the 
support we removed.
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      Similarly, we replace the 
bottom support in the structure on 
the right with an unknown 
moment, MB.  
     It is important to note that 
these unknown forces represent 
the reactions provided by the 
support.  In many cases, this means 
that each support must be replaced 
by more than one unknown force.  
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     Next, we use equilibrium to 
establish a relationship between 
the external loads and the 
member forces.
     Here we see that the axial 
force in the two elements must 
add up to the 50 k applied load.

General Strategy
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     In the structure on the right, 
equilibrium requires that the internal 
moments in the two members, MA 
and MB, equate the 4 k-in load.
     In both loading cases,  we now 
have one equation and two 
unknowns.   Equilibrium alone is not 
enough to solve these problems.
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General Strategy
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     We now enforce 
compatibility,  requiring that 
the deflections in each 
modified structure reflect the 
actual support conditions.  
     Specifically, this means that 
the structure on the left has 
no vertical displacement at the 
bottom, and the structure on 
the right has no rotation at 
the bottom.

General Strategy
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     Finally, we use the 
load/displacement relations 
of the structure to link the 
unknown forces to the 
enforced displacements.

Superposition
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     Using the load/displacement relations to 
correlate the unknown forces to the enforced 
displacements is not a trivial task.  An easy way 
to accomplish this task is to use superposition.

Superposition
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     The principal of superposition says that for a linear 
relationship (such as our load-displacement relationship) we 
can break a complex loading case into several simpler 
loading cases, and then add the solutions.
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Superposition
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     In this example, the two loading cases on the 
right are equivalent to the loading case on the left. 
     For a more detailed look at superposition, click 
on the "More About Superposition" button below.

More About Superposition

Superposition
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    For each loading case, we can 
solve for the deflection at "B" .

Superposition
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     Finally, we enforce compatibility for 
the real loading case (the one on the left) 
to arrive at the relationship shown.  

Superposition
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     Superposition and compatibility 
work in a similar fashion when the 
structure is loaded with a torque.
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     In order to calculate the deflections 
necessary to solve this problem, we need to 
know (1) the geometery of the structure, (2) 
the geometery of cross-section, and (3) the 
material properties of the steel and aluminum 
from which the elements are made.
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     Here are the values for Young's 
Modulus, the shear modulus, and the 
cross-sectional area for each element.

Solution: Axial Case
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     Let's begin with the case of axially loading.

Solution: Axial Case
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     After we replace the bottom support 
with an unknown force, FB, the principle 
of superposition allows us to split up the 
loading into two separate cases.
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Solution: Axial Case
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     First we calculate the deflection at 
the bottom of the structure due to the 
real load of 50 k.

Solution: Axial Case
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  Remember, deflection in an axially loaded member is PL/AE.

Solution: Axial Case
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    That was easy enough.

Solution: Axial Case
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     Second, we calculate the deflection 
at the bottom of the structure due to 
the unknown force, FB.
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Solution: Axial Case
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     Again, the deflection equals PL/AE.

Solution: Axial Case
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Solution: Axial Case
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     We have solved for the 
deflections, what do we do 

Solution: Axial Case

Hide Text2 8

     That's right!  We enforce compatibility.  In this case we 
must make sure that the total deflection at the bottom of the 
structure is zero.  After all, there is a support there.
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Solution: Axial Case
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     We can substitute in 
the calculated values.

Solution: Axial Case
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     And we find that the 
unknown force at the 
bottom support is 33.33 k.

Solution: Axial Case
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     At this point we have eliminated one 
unknown from the problem, so we may 
now proceed to calculate the forces in 
both elements using equilibrium.

Solution: Axial Case
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     If we draw a free body 
diagram of the structure, we see 
that the only unknown remaining 
is the force in the upper element.   
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Solution: Axial Case
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     Performing the calculations...

Solution: Axial Case
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   ... we find that the force in 
the upper bar is 16.67 k in 
tension.

Solution: Axial Case

Hide Text3 5

     By constructing free-body diagrams of each 
portion of the shaft, we can determine the internal 
forces from statics.

Solution: Axial Case
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     Now that we 
know the member 
forces we can 
proceed to calculate 
the stresses.
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Solution: Axial Case
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     For an axially loaded element the 
stress is simply Force/Area.

Solution: Axial Case
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     SO SIMPLE!  We used equilibrium, 
compatibility, and load-displacement 
relations to calculate the stresses in this 
indeterminate structure.

Solution: Torsion Case
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     Now let's consider the torsion case.  As 
we proceed, you will see that this solution 
very closely parallels the solution for the axial 
case.

Solution: Torsion Case
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     We begin by splitting the loads into those 
which are actually applied, and those due to the 
unknown reaction force.
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Solution: Torsion Case
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     The section property we needed 
to calculate displacement due to axial 
load was the area.  For a torsion load, 
we use the polar moment of inertia, J.

Solution: Torsion Case
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     Here we calculate J 
for each element.

Solution: Torsion Case
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     Now, we calculate the 
deflection at the bottom due 
to the actual loading.

Solution: Torsion Case
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     Remember, we 
calculate the twist 
in a shaft due to 
torsion as TL/JG.  
If this looks 
unfamiliar, 
perhaps you 
should review the 
torsion stack.
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Solution: Torsion Case
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     As is usually the 
case in this course, 
the math is really 
simple.

Solution: Torsion Case

Hide Text4 6

     The second step in 
calculating deflections is to 
find the twist at the bottom of 
the structure due to the 
unknown moment, MB.

Solution: Torsion Case
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     Again, twist is 
calculated as TL/JG, 
where T is the applied 
torque, L is the length of 
the shaft, J is the polar 
moment of inertia, and G 
is the shear modulus.

Solution: Torsion Case
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     The result of this 
calculation is the twist at 
'B' in terms of the 
unknown reaction, MB.

Torsion/Axial Illustration: 12 (3/30/00)



Solution: Torsion Case
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     Once we have solved for 
the two displacements, we 
can enforce compatibility.

Solution: Torsion Case
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     Here, compatibility requires that the 
total twist at the bottom of the 
structure is zero.

Solution: Torsion Case
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     Some simple 
mathematics...

Solution: Torsion Case

Hide Text5 2

...lead us to a useful result.
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Solution: Torsion Case
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       We can now 
reassemble the structure.   

Solution: Torsion Case
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     And we find that 
the structure is now 
statically determinate.  
Time for equilibrium!!!

Solution: Torsion Case
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     Applying moment equilibrium 
to the structure we can solve 
for the remaining unknown 
reaction, MA.

Solution: Torsion Case
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Solution: Torsion Case
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     We find that the moment 
reaction at the upper support 
is 1.28 k-in.

Solution: Torsion Case
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     We now look at each element individually.   Since 
we know the internal torque acting on each 
element, we can solve for the stress in each element.

Solution: Torsion Case
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     Recall that the maximum 
shear stress due to torsion 
loading occurs at the 
outside of the shaft.

Solution: Torsion Case
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     Shear stress is 
calculated as torque times 
radius, divided by polar 
moment of inertia.
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Another Look at the Axial Case
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     Let's now solve the axial problem 
a second time, but change the 
materials used to make the structure  
and observe the effect.

Both Sections made of Steel !
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This time, both sections are 
made of steel.

Superposition
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The analysis proceeds as 
before.

Deflection for First Loading Case
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These equations are as before, 
except now E is 30,000 throughout.
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Deflection for First Loading Case
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     This deflection must be countered by FB.

Deflection for Second Loading Case
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The displacement due to FB can be 
calculated as shown.

Deflection for Second Loading Case
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After crunching the numbers.

Deflection for Second Loading Case
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     Now we enforce compatibility !!

Torsion/Axial Illustration: 17 (3/30/00)



Compatibility
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The net deflection must be zero at point B, 
the location of the bottom support.

Compatibility
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     Enforcing compatibility 
provides a means of calculating 
the redundant force.

Solve for Unknown Reaction
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     Once we have determined the 
bottom reaction, the problem 
becomes statically determinate, 
i.e. it is now possible to compute 
the internal forces and stresses 
using simple statics.

Solve for Unknown Reaction
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The top reaction is 
determined by requiring the 
net vertical force to be zero.
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Calculate Stresses
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The stresses are computed by 
considering each element as a free-body.  
Normal stress is calculated as P/A.

Stresses for All Steel Structure
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     These are the stresses 
for the all steel structure.   
     How do they compare 
to the stresses in the 
steel/aluminum structure 
with the same geometry 
and loading?

Stresses Change with Material
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Previous Solution

The stresses are different for 
the two different cases.  This is 
important stuff!!

     For indeterminate 
problems, the stresses depend 
not only on the applied load 
and geometry, but also on the 
material and cross-sectional 
dimensions of the 

Alternative Approach
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We will now solve the original problem using an 
alternative approach.  In this case we do not alter the 
structure or supports to determine the solution.
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Consider Displacements
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The previous method of solution is called the force method, because 
our unknown was the force or moment at a redundant support.  This 
time we will use a displacement as our unknown, and so this approach 
is called a displacement method.
    For brevity, we will focus on the axial problem only; the torsion 
solution would proceed in an entirely similar fashion.

Calculate Internal Forces
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Our basic strategy is to assume a 
displacement of ∆ as shown, and then 
calculate the resulting force in each 
piece or component of the structure.  
     We implicitly assume that both the 
top and bottom pieces are subjected 
to the same ∆, so we are using 
compatibility right away rather than 
saving it for the end. 

Calculate Internal Forces
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Focusing on the top piece first, we recall 
the basic load-displacement relation.  For 
present purposes, we need to rearrange 
this relation so it gives force in terms of 
displacement.  Solving for P…

Calculate Internal Forces
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…gives the desired result.  Since A, E 
and L are all known element properties, 
we can compute the coefficient relating 
force to displacement.  This coefficient is 
called the stiffness of the element.
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Calculate Internal Forces
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Substituting values.

Calculate Internal Forces
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Doing the calculation.  Note the units of the 
stiffness coefficient: force per distance.  For a 
torsion problem the units would be moment 
or torque per radians.

Calculate Internal Forces
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We now have a means for 
determining the force in the top 
member, once we know the 
deflection, ∆.

Calculate Internal Forces
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We repeat the procedure for 
the bottom component or 
element.
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Calculate Internal Forces
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These are the relevant 
properties.

Calculate Internal Forces
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And this is the result of 
the calculation.

Combine Components
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Now comes the crucial step: we use equilibrium to 
obtain the total stiffness for the structure.  In words, 
the above equation states:  To cause a displacement of 
∆, it is necessary to apply enough force to stretch the 
top member by ∆ (which we just calculated to be 981.25 
∆) plus the force necessary to compress the bottom 
member by an amount  ∆ (calculated to be 1964 ∆).

Structure Load/Displacement
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Thus, the net stiffness of the structure can 
be expressed by the simple relation above.
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Given P
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Of course, we do not know ∆, we know P.  You 
can see that this is no problem, however, since 
our relation can be solved easily for ∆ in terms of 

Solve for ∆
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Putting in the given load, P = 50k, …

Solve for ∆
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and solving for ∆ …

Solve for ∆
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…gives this result.  The hard part of the 
solution is now over.  Since we already 
expressed the member forces in terms of 
∆, we need only do a few simple 
substitutions to calculate the stresses.
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Calculate Internal Forces
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Recall our earlier results.

Calculate Internal Forces
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Substituting ∆ gives the member forces 
directly.  These member forces are the same 
as before; we omit the stress calculation since 
it is no different from the previous solution.

Previous Solution

More General Case
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The displacement method is a general and powerful 
means for solving all kinds of stress analysis problems.  
The basic process of breaking a structure into pieces, 
calculating the force contribution of each piece due to a 
set of specified displacements, and then assembling 
these various force contributions can be computerized 
quite elegantly.  In a computerized context, the 
approach is called the Finite Element Method, since a 
given body is analyzed in terms of a bunch of 
finite-sized pieces or elements.
      To give a flavor of how this approach generalizes, 
consider the structure shown to the left.  To solve this 
problem using the original force method, the procedure 
is identical to the previous case.  To use the 
displacement method, however, there are a few 
additional nuances.

Assume Displacements
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Instead of identifying a single 
unknown displacement, it is necessary 
to work with two unknown 
displacements.  The more complex the 
structure, the more unknown 
displacements need to be included.
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Compute Element Stiffnesses
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This structure is broken into 
three pieces (elements) rather 
than two.

Compute Element Stiffnesses
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Calculating the 
stiffness of the top 
piece is the same as 
before.

Compute Element Stiffnesses
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Calculating the middle piece is 
slightly more complicated, since both 
displacements must be included.  
You should convince yourself that 
the net ∆ in b is the difference in the 
end ∆'s as indicated.

Compute Element Stiffnesses
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The stiffness of member c is 
straightforward to calculate.
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Equilibrium
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By equilibrium, the net force at each 
junction of the structure must be the 
sum of the forces in each connecting 
element.  Can you see why Pb has a 
minus sign in the P1 equation?

Why?

Combine Results
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These various results 
need to be assembled.

Combine Results
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Direct substitution leads to these 
equations, which can be rearranged…

Two Equations: Two Unknowns
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…to this form, which can be recognized as a 
simple system of two equations with two 
unknowns (remember that we assume we know 
the loads and the member properties, but the 
displacements are unknown).
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Expressed in Matrix Format
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These equations can be written in matrix form as shown.  The matrix with the stiffness 
coefficients, kij, is called a stiffness matrix.  This matrix characterizes the elastic 
behavior of the structure. 
        To solve a particular problem, it is necessary to invert the stiffness matrix.  This 
can be accomplished easily  by a computer, even for very large matrices.

Summary
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     Do not worry if you do not feel that you have thoroughly 
mastered all the concepts and methods covered in this stack.  
In subsequent courses you will revisit these topics, and have 
a chance to explore them much more fully.  You will also learn 
systematic methods for handling very complex systems.  
Nevertheless, the two basic notions of adjusting redundant 
forces to satisfy compatibility and adjusting displacements to 
satisfy equilibrium will be at the heart of these more advanced 
treatments.

     For the simple problems presented here, note the inherent 
similarity between the torsion and axial problems, and the 
nearly identical solution process used to generate internal 
stresses.

Hide Text107

Torsion/Axial Illustration: 27 (3/30/00)


