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In this stack we will investigate additional features of stress.  
To go straight to any of the topics listed above, click on the 
corresponding text.  Choose "Stack Contents" from the 
"Navigation" menu to return to this page at any time.

Principal Stresses

Maximum Shear Stress

Mohr's Circle
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Consider the traction vector on the x-face as shown.  For this 
entire stack we will make an important limitation on our 
stress state, namely that it is 2-Dimensional.  (This makes it 
possible to generate useful results without relying on results 
from linear algebra, which not all students have taken.)  The 
traction vector shown lies in the x-y plane, and we will 
change the orientation of the block by rotating about the 
z-axis only.
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We know that the traction vector on a given surface 
depends on the orientation of the surface.  We might 
ask if we can find an orientation such that the traction 
vector is parallel to the normal.
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In this case it appears we have found such an 
orientation.  Note that for this orientation there 
is no shear component.  

Stress Block
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The normal component, σx', is equal in 
magnitude to the traction vector and the 
shear vanishes.  Such stress components 
are very important since they turn out to 
be the maximum and minimum normal 
components, and so we give them a special 
name: Principal Stresses.
     To calculate such stress components it is 
necessary to determine the proper block 
orientation.  For this we will need the 
stress transformation equation for shear.

Hide Text8

By definition, the principal stresses occur on planes for which the shear 
stress vanishes.  Therefore, we can use this equation to solve for the θ for 
which τx'y' = 0.
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The algebra is not difficult, and we can 
obtain the relation between the principal 
orientation angle and the basic stress 
components as shown.
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We now can calculate the orientation of the 
principal plane, but we still need to 
determine the corresponding stresses.  For 
this purpose we will use the remaining 
stress transformation relations.
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These are the stress transformation equations from before.  
We now need to do a little algebra…
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First we add these two relations.
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We can simplify the right hand side by 
factoring.
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This can be simplified further to this 
result.  Let's clean up a little and see 
what this means.
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This result states that regardless of the orientation of the stress 
block, the sum of the normal components does not change.  Since this 
quantity does not vary with our point of view, we call it an invariant. 
Such quantities are very important, since they provide a means of 
capturing the important features of a physical quantity without 
reference to any particular coordinate system.  For vectors, the 
important invariant is the length.  For stress tensors there are actually 
three invariants, but in two dimensions we only need to use two of 
them.  The first invariant is what we just calculated; the second we 
will state without proof…

Hide Text1 6

…but those of you with a background in linear algebra might recognize this as the 
determinant of the 2x2 matrix of the stress components.  The relation above could be 
verified by direct substitution into the transformation equations, but the algebra 
would get rather involved.
     We can use these two invariants to find the principal stresses.  In particular we 
substitute the principal stress expressions on the left hand side.
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By definition, we know that the shear stress is 
zero in the principal directions.
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We can simplify the above into a simple 
system of two equations and two unknowns.
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These equations can be solved for the unknowns, σ1 
and σ2, in terms of the known quantities σx, σy, and τxy.
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We substitute equation (i) into 
equaiton (ii).
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We now have a single equation for σ1.  We can expand this 
equation to put it into a recognizable form.
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This is a standard quadratic equation.
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The solution can be obtained from the quadratic formula.  
In fact, it turns out we get both σ1 and σ2 from this 
quadratic equation. 
     Let's clean up a little and look at our result.
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 After reducing the term under the square root, we arrive at 
what we have been persuing: an equation for calculating 
principal stresses in terms of the basic stress components.
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Together with our previous equation for the principal 
direction, this provides a general means for calculating  
principal stress information.  It is not difficult to show that 
the term in the square root is always positive, so it turns out 
that for any stress state, we can find principal stresses and 
directions; i.e. directions for which the shear stress vanishes.
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We have seen how to calculate 
the principal normal stresses, but 
what about maximum/minimum 
shear stress?

Hide Text2 7

To determine a way of calculating the maximum shear stress in 
terms of a given set of basic components,σx, σy, and τxy , we 
begin with the stress transformation equation for shear.
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Since this transformation equation can be used with respect to any 
original coordinate system, we choose the principal system as our 
reference system without loss of generality.  This makes our 
calculations easy; we just need to remember that any angle 
measurements are made with respect to the principal axes rather 
than the original x-y system.  Thus, we introduce theta hat to 
account for the necessary offset.
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We already know from earlier work how to find the maximum of 
something times the sine of 2 times an angle.  This leads us to the 
expression for the maximum shear above.  We still need to express 
this result in terms of σx, σy, and τxy, however.
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This can be done by means of our earlier relation between the principal 
stresses and σx, σy, and τxy.  Substituting this into the maximum shear 
equation above gives the desired result.
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Voilá!
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An alternative method for determining 
principal stresses, the maximum shear stress 
and the principal directions is to construct a 
plot of all the stress component combinations 
for a given set of σx, σy, and τxy.  The 
resulting plot is a circle as shown, called 
Mohr's circle after Otto von Mohr, who first 
published these ideas. 
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Once the circle is constructed, it is simple 
to read off the maximum and minimum 
normal and shear stresses directly.
     The main advantages of Mohr's circle 
are its pictorial nature and the fact that 
you do not need to remember a bunch of 
equations to construct it. 
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To construct Mohr's circle for a given set of stresses, 
σx, σy, and τxy,  we begin by laying out a set of axes as 
shown.  The only trick is to note that the shear axis 
points down, not up.  This is an arbitrary convention 
that makes some later results come out a little easier.
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Next, we use the fact that the normal and shear components 
for every orientation lie on the circle, and so we plot the points 
we know: first σx and τxy…
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… and then σy and τyx.  We now need to 
construct the appropriate circle passing 
through these points.
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For Mohr's circle, points that correspond to faces 
90° apart (such as the x- and y-faces we have 
plotted here) lie 180° apart on the circle.  That is, 
the two points we have plotted can be connected 
to form the diameter of the circle.
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Given the diameter, it is 
straightforward to 
construct the circle.
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Now that we have the circle, we need 
only simple geometry to obtain the desired 
information.  Essentially we need the 
center and radius of the circle, from which 
we can extract any other required 
quantity.
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The center of the circle is denoted 
σavg, and can be computed directly 
from the figure.
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 This gives the location of the circle's 
center (note the relation to the first 
invariant we discussed earlier).
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We now need to compute the radius of 
the circle, which as we saw earlier is equal 
to τmax.  We can calculate this using 
simple right triangle relations.
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Using the Pythagorean theorem for the triangle shown gives 
the relation above.
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Substituting for σavg and taking 
the square root of both sides 
leads to this result.  This is the 
same result we arrived at earlier 
for maximum shear stress.
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We now need to calculate  σ1 and σ2  as shown.  Given the 
center and radius of the circle, this is quite simple to do.
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We have this simple result.
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To determine the orientation angle 
corresponding to the principal stresses, we 
use the relation shown on the figure.  Note 
the factor of 2.
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This equation can be determined from 
the triangle shown.  The direction of 
the angle is as shown on the figure.
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Although the equations below were 
determined using Mohr's circle, in practice 
it is easier to simply start from scratch 
each time, and to use the numerical values 
in the problem to construct the circle and 
calculate the geometric properties.
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     Problem solving techniques are best illustrated using an example 
problem, as presented in a the stack "Stress Transformation Examples".  
The important ideas from this stack are the basic notions of principal 
stresses, maximum shear stresses, and Mohr's circle being a plot of 
displaying the complete set of stress component/orientation combinations.

Stress Transformation Examples


