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A Balloon
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     Imagine that we isolate a small 
element of an inflated balloon.  

An Element from a Balloon
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     Most of the stresses found in a 
balloon run parallel to the surface of the 
balloon.  Therefore, for this problem 
we will ignore any stress that occurs 
normal to the surface of the balloon.
     Assume that we can calculate these 
stresses in the plane of the balloon. 
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With Known Stresses
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     Specifically, assume that we can 
calculate the stresses σx, σy, and τxy 
on the surface.  
     Remember, τxy always equals τyx, 
so we only need to calculate one of 

A  Small  Aside
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      Just to remind you in case you don't 
remember....
       The stresses  σx and τxy are 
actually the normal and tangential 
components of the traction vector Tx.  
Similarly, the stresses  σy and τyx are 
the normal and tangential components of 
the traction vector Ty. 

Element Orientation
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     Let's formalize the orientation 
of the element we isolated from 
the balloon.  A normal vector has 
been drawn on one side of the 
element.  By observation it should 
be clear that this normal vector is 
equivalent to the unit vector i.
 
     Now let's rotate the element...
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     What is the new orientation 
of the element?

Calculating a Normal Vector 
for the Rotated Element
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     If we assume that we have 
rotated the element θ degrees 
counter-clockwise, as shown at 
the left, then we can express the 
normal vector, n as:
    
     n  =  cosθi + sinθj.

Stress Transformation?
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     The question we must answer when 
dealing with stress transformation is:
    "Knowing the value of the stress 
components for the original orientation 
of the element, what are the stresses on 
the element after it has been rotated?"  
     Specifically, given  σx, σy, and 
τxy, what are the values of  σx', 
σy', and τx'y' for a given rotation, 
θ.
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      In our derivation of the stress 
transformation equations, we use the 
traction vector Tx' instead of its 
components.  Not only does this simplify 
the algebra, but it also provides an 
outline for deriving the stress 
transformation equations in three 
dimensions (although that is beyond the 
scope of this tutorial.)
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     We begin the derivation by 
passing a plane normal to the  y axis 
through the element...
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     ...and focusing on the material 
above the plane.
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     Next, we pass a plane through the 
element which is normal to the  x  axis.
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     What remains is a sub-element which has 
faces normal to the x , y, and x' axes.
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     Recall that one of the assumptions 
in this derivation is that we know 
the traction vector Ty. 
      Further, we can express the area 
Ty acts on -- Ay -- as  Asinθ.
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     We also assumed that we knew 
the value of the traction vector Tx.  
     Again, we can express the area it 
acts on -- Ax -- as  Acosθ.  
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      It is interesting to note that in 
general we can calculate Ax and Ay  
(and Az if n had a z component)  
simultaneously by multiplying A by its 
normal vector, n.
     
     All of the stresses on the element 
occur in the  x-y plane, so to make our 
picture a little less cluttered, let's rotate 
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     Before we go any further, lets 
take stock of what we know.  We 
have assumed that we know the 
two traction vectors Tx and Ty.  
We have also developed 
expressions for Ax and Ay in 
terms of A.  What we don't 
know, and are trying to discover,  
is the value of the traction vector 
Tx'.
     How would you go about 
solving for the unknown traction 
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     As with most problems of 
this nature, we begin by 
applying equilibrium to the free 
body diagram.  To keep our 
little element  from accelerating 
off the page, all of the forces 
acting on it must sum to zero.
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     Very Important!  Remember 
that stress is force divided by area. 
Therefore if you are going to use 
stress in a force equilibrium 
equation you must first multiply the 
stress by the area on which it acts.
     The negative signs in front of 
the second two terms comes from 
the fact that the traction vectors 
Tx and Ty act on faces whose 
normals are in the negative x and  
y directions.

     Let's make a little room on the 
screen before performing some 
algebra tricks....
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     We begin by substituting our values for 
Ax and Ay into the equilibrium equation.
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     Next, we divide through by A....
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     Finally, we solve for the unknown 
traction vector Tx'.

Hide Text3 0

     Ta Da!
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     We now have an expression for our unknown traction vector, 
Tx', in terms of the two known traction vectors.

Hide Text3 2

     What do we do now?  You 
should remember that by 
definition the traction vectors 
Tx and Ty  are related to their 
component stresses as shown 
above.
     Before we make the obvious 
substitution, lets clean up the 
screen again...

Stress III:  8



Hide Text3 3

     We now proceed by substituting the 
expressions for Tx and Ty  into the 
equilibrium equation.
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     Grouping the i and j terms...
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     ....we arrive at an expression for the unknown traction 
Tx'  in terms of the known stress components σx, σy, 
and τxy.
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     Compare the terms in the equation above to 
the quantities depicted on the figure.  Does the 
equation make sense?  Remember, at this point 
the sines and cosines come from the relative 
areas on which the stresses act.
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     The final step in deriving our 
stress transformation equations is 
to calculate the two stress 
components of the traction vector 
Tx'.  They are σx' and τx'y'.

     Recall the general relationship 
between normal stress and the 
traction vector:    
            σ  =  T • n
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     We can write a similar expression 
for the normal stress  σx'.  
     Recalling our expression for the 
normal vector n, we can substitute 
it into the equation above....
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   ....and then substitute in the expression for Tx' at the 
top of the page.  At this point we will skip a step, but if 
you wish you can perform the dot product yourself 
and verify the result.
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     Finally!  We have an expression for the normal stress on 
the rotated element in terms of the stresses on the 
un-rotated element.   This is an important result!  It would 
not be half bad if you could produce this result yourself.
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     We now have an expression for  σx', but 
what about the shear component  τx'y' ?   

Hide Text4 2

     Since we are working in only two 
dimensions, τx'y' must act in the  y' direction.   
To solve for τx'y'  we need only perform the 
simple dot product shown above.
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     Confirm for 
yourself that the j' 
is expanded as 
-sinθi + cosθj.
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      Lastly, if we substitute in the expression for the traction Tx' 
at the top of the page and perform the dot product we will arrive 
at the boxed result.
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      These two equations are known 
as the two-dimensional stress 
transformation equations.  Given 
the stresses at one orientation of 
the element you can use these 
equations to calculate the stresses 
for any other orientation.
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     We could end our derivation here, 
but for completeness we will go on 
and solve for the unknown normal 
stress in the  y' direction.  
     This is not completely necessary, 
however, for we could also solve for 
the stress in the  y' direction simply 
by rotating the element  90° ccw and 
solving for σx'.
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     Let's begin our quest for σy' 
back at the point when we were 
slicing the element.

Hide Text4 8

     Recall that we developed the 
expression for the normal vector 
shown above.
      This time instead of ignoring the 
material to the left of the plane, let's 
look at the stresses that occur on 
this portion of the element.
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     The left surface is normal to the y' axis 
so the traction vector that acts on it is Ty'.
 
    Compare the normal to this surface, 
ny', to the normal nx'.  Notice that since 
these two vectors are oriented at 90° to 
each other we can get from one to the 
other by making the following 
replacements: 
       cosθ is replaced by -sinθ, and
       sinθ is replaced by cosθ.
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     If we recall the stress transformation equation for σx'.....
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....we can extrapolate to the stress transformation equation for σy' 
simply by replacing cosθ with -sinθ, and  sinθ with cosθ.

Stress Transformation Equations
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     These are the complete results of the preceding derivation.  Here we 
call them the stress transformation equations, but they are also the 
transformation equations for any second-order tensor in two dimensions.
     As a final addendum, if we use the following identities:
                          sin2θ  =  2sinθ cosθ
               cos2θ  =  sinθ^2 - cosθ^2
we can write the transformation equations in terms of double angles as 
follows.
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Stress Transformation Equations
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Plotting the Equations

Hide Text5 4

     Now that we have these equations, let's plot them to see if 
anything interesting happens.  Rather than plotting the shear and 
normal components with respect to θ, let's plot  shear versus 
normal stress with θ as a parameter.

Plotting the Equations
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     Here is a part of a 
spreadsheet set up to do this 
plotting (you should do this 
yourself if you can).   Columns 
D and E contain the x' and x'y' 
stress components calculated 
for 0 < θ < 180°.  Guess what 
happens when we plot τ vs. σ.

Plotting the Equations
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    We get a circle!   If you make your own 
spreadsheet, you will be able to see that this 
is always true (just be sure to get equal scales 
on your axes).  Note also that θ went from 0 
to 180°, but the plot is a full 360°.  These are 
important observations, so let's state them 
clearly...
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Important Facts
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    It is possible to show these results algebraically 
by manipulating the transformation equations, 
but we will not take the time to do that here.

1.  The normal and shear components of stress acting on 
planes with aribitrary orientations form a circle when 
plotted with respect to one another.

2.  A 180° range of plane orientations corresponds to a 
360° circle.

Concluding Remarks
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 As engineers, we need to be able to determine the stress 
components in a material on any plane so that we can find 
critical cases (or else the material will find it for us with 
potentially dire consequences).  The tranformation equations 
provide the needed tool.
       We also learned that a stress tensor has associated 
invariant properties analogous to the magnitude of a vector.  
This fact is useful in more advanced contexts, so you may 
encounter it again.
          Finally, we saw that the stress transformation equations 
plot as a circle. This amazing but true result will allow us to 
construct another useful tool for analyzing stress.  Stay tuned.
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