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Let's begin with a quick review of what we 
have already learned about stress for simple 
cases.  We have seen that for a problem like 
that shown, the stresses can be calculated in 
several simple steps.
       First we take a cut through the body.
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This separates the body into two pieces.  
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On each piece we can identify a 
distribution of internal forces, which we 
have learned to identify as normal and 
shear stress components.
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To compute these stress components 
we need two pieces of information 
related to the cut:  the normal vector, n, 
and the projected area, A'.
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Using the normal vector and the 
resultant force, F, we can calculate 
the normal and shear components 
of the force, Fn and Ft.
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The average shear and normal 
components of the stress are calculated by 
dividing the force components by the 
projected area.  This means that stress has 
units of force per area.
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It turns out that for many applications it is 
necessary to have a more general method for 
describing and analyzing stress.  For example, 
consider a general cut through the element shown.
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As before, we consider the cut pieces as free 
bodies.
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Now we must examine what happens on this general cut.  In 
the Real World material will automatically experience stresses 
on cuts in every possible direction.  If the stresses exceed the 
material strength on one of these cuts it will fail.  As engineers 
we need to be able to investigate this possibility.
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Let's take a closer look at 
one of the pieces
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In this case, the normal vector 
varies along the cut.  What do 
the stresses look like?
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As we can see, the stress 
components vary depending on 
the orientation of the normal.  
Note how the shear components 
actually change directions.
       Since a real material can break 
along any path, as engineers we 
must be able to assess the stress 
on any path.

Hide Text1 4

      To construct a sufficiently 
general description of stress, we 
will consider a small block of 
material and examine the stress 
components for any orientation of 
the block.
      Consider a close-up of the 
small block shown.
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In cutting out the small 
block, we introduce many 
surfaces, each with stress 
components.  We need to  
construct a general means 
for describing these 
components.
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     To construct a general 
description of stress we 
consider an arbitrary body 
with some set of loads.
     We will now make a series 
of orthogonal cuts through 
the body.  First we cut on a 
plane whose normal is the 
x-axis.
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We will focus our interest on 
a particular block of material 
as shown.
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For this plane, the normal vector is simply i.
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     We will call the corresponding traction vector Tx.  
(The subscript "x" refers to the plane we used to 
make this cut; i.e. the plane whose normal is the 
x-axis.)
     Since Tx is a vector, we can express it in terms of 
its i,j, and k components.  Remember, Tx is the 
traction on the small gray patch of material, not the 
entire cut.
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   It turns out the components of this vector are very 
important, and so we give them special names.  The 
normal component is denoted σx, where the "x" 
subscript again refers to the x-axis plane.  The shear 
component in the y direction is denoted τxy.  These 
subscripts can be interpreted as the shear stress 
acting on the x-axis plane in the y-direction.  In similar 
fashion, τxz represents the shear component acting 
on the x-axis plane in the z-direction.
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We can visualize these components as acting on the 
x-surface as shown.  Note carefully how the shears 
are oriented.  The normal to this plane is in the 
positive x-direction, so positive y- and z-components
must also point in the positive y- and z-directions as 
shown.
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Here is another way of viewing 
the stress components.
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We can characterize the stress on the 
x-cut in terms of the components 
shown.  We now need to consider 
additional cuts.
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Here we have made a cut 
perpendicular to the y-axis.
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In this case the normal 
vector is simply j.
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     As before, we can identify the traction 
vector on the plane and break this vector into 
its components.  Note that in this case, the first 
subscript of each component is "y", since this is 
a y-plane.  
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Here we see the components 
drawn in a positive orientation.  
Make sure you understand how 
the sign convention works 
(remember, on a surface whose 
normal is in a positive axis 
direction, positive components 
act in the positive directions)
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     Now we can characterize the 
state of stress on the x- and 
y-planes.  To fully characterize the 
stress in three dimensions, we must 
take one more orthogonal cut.
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Here we have made a cut with a 
plane whose normal is the z-axis.
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The normal is just k.
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The traction vector is Tz, with 
components as shown.  By now you 
should be able explain how the 
subscript labeling works.
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Again, we can show the components 
in a blown up view.  You should be 
able to explain why the components 
shown are positive as drawn.
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     These nine stress components characterize the complete 
state of stress at the point in question.  It is customary to show 
these components together on a single block of material.
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       Consideration of equilibrium of the block will provide further 
information concerning both the stress components shown, and 
the components we can't see that must be acting on the back 
faces of the block.  We will consider first x-direction equilibrium.  
To this end, we will clean up our figure by removing all the stress 
components that do not point in the x-direction....
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To check equilibrium, remember that stress 
components are not forces.  They must be multiplied 
by the area they act on in order to obtain forces.
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To compute the area of the block surfaces, we 
introduce the block dimensions as shown.
     Clearly we have no chance of obtaining 
equilibrium unless we include the stress 
components acting on the back faces.  So...
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Here we show the entire set of stress components acting on the block 
in the x-direction.  The components on the back faces are marked 
with primes, and are shown in positive orientations. Just as positive 
stress components on positive faces point in positive directions,  
positive stress components on negative faces point in negative 
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The net force in the 
x-direction is evaluated by 
multiplying each stress 
component by its area and 
adding as shown.
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We now consider the limit as ∆x goes to 
zero (recall that stress is defined in 
terms of such limits).  Can you identify 
which terms will disappear?
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Only two terms remain.  Dividing 
through by ∆y∆z gives the desired 
result.
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In the limit as the block shrinks 
to a point, the back face normal 
component is equal to the front 
face normal component.
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We can obtain similar results 
for the shear components by 
considering ∆y and ∆z going 
to zero first, instead of ∆x.
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We can obtain analogous results for 
the remaining components by 
considering y- and z-direction 
equilibrium.  Thus back face stress 
components are equal to front face 
components, and so we customarily 
show only the front face.
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We now will examine moment equilibrium.  
Let's consider the moment about the z-axis 
first.  As before, we will clean up the figure 
by removing all the components that cause 
no moment about the z-axis.  (Can you 
predict which ones will disappear?)
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Only the shear components shown cause moments 
about the z-axis.  To compute these moments we 
must multiply the stress components by their area 
to obtain forces, and then multiply these forces by 
their moment arms to obtain moments.
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Note the pattern of (stress x area) x moment arm.
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We can factor out the 
volume of the cube.
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From which we obtain this important result.
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We can obtain similar results 
by taking moments about 
the y- and x-axes.  These are 
fundamental results.  They 
show that the shear stress 
components are not 
independent.
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To describe the stress at a point, we can imagine an 
infinitesimal cube of material surrounding the point.  The 
stress state is characterized by the stress components on the 
three orthogonal faces of the cube, and these stress 
components are given by six independent numbers.
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Stress is a sufficiently complex animal 
that it takes many components to 
describe it.  To describe a scalar quantity 
like temperature requires only one 
component.  To describe a vector 
quantity like force requires three 
components.  Stress is a tensor quantity, 
and we can see that it takes six 
components to describe it.  These 
components are often written in matrix 
form as shown, and since τxy = τyx, etc. 
the resulting matrix is symmetric.
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