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A General Description of Strain
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     In this stack we will develop a general 
characterization of strain in two and three 
dimensions.   As in the case of stress, we 
will find that to completely describe strain 
we use tensors.   

Finite Reference Lines
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      Consider a block of material with two 
reference lines marked on it as shown.    
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Apply Loads
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     As loads are applied to the block, 
deformation will occur…

General Deformation
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     Let's take a closer look at the deformed 
reference lines…

Reference Lines Distort!
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     Note that in general the reference lines do not stay 
straight following deformation.
  What if we consider very short (i.e. infinitesimal) 
reference lines?

Infinitesimal Reference Lines Remain 
Straight
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     As long as we consider vanishingly short reference lines, we 
can assume that straight segments remain straight following 
deformation.  We will use this fact in the figures and derivations 
to follow.  No matter how large we draw our pictures, though, 
remember that they are valid in the limit only.
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A Convention -- Infinitesimal Reference 
Lines
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     Here is a picture to help you 
interpret the figures correctly.

Rigid Body Translation
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     Now that we understand how to interpret the 
reference lines or fibers shown, we can consider how 
the two fibers displace as the block changes shape.  
 
     As before, we can describe the total displacement 
as a combination of rigid body translation…

Rigid Body Rotation
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     ... a rigid body rotation...

Deformation!!
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     ...and a deformation.
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Remove Rigid Body Rotation
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     In order to calculate strain, we must 
separate the deformations from the rigid body 
displacement and rotation.  So let's remove the 
rigid body rotation....

Remove Rigid Body Rotation
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     In order to calculate strain, we must 
separate the deformations from the rigid body 
displacement and rotation.  So let's remove the 
rigid body rotation....

Remove Rigid Body Rotation
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     In order to calculate strain, we must 
separate the deformations from the rigid body 
displacement and rotation.  So let's remove the 
rigid body rotation....

Remove Rigid Body Rotation

Hide Text1 6

     In order to calculate strain, we must 
separate the deformations from the rigid body 
displacement and rotation.  So let's remove the 
rigid body rotation....
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Remove Rigid Body Rotation
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     In order to calculate strain, we must 
separate the deformations from the rigid body 
displacement and rotation.  So let's remove the 
rigid body rotation....

Remove Rigid Body Translation
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    ...and let's remove the rigid body translation...

Deformation Only 
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     The result is a figure that shows the fibers after loading, 
superimposed on the fibers before loading. In this picture, the 
displacements at the end points of the fibers are purely a result of 
deformation.        
     Let's look at the strains that took place during the 
deformation.  There was a stretching of the vertical fiber...

Two Stretches
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     There was a stretching of the horizontal fiber...
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Shear Strain
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     And there was a shearing between 
the two fibers.

Shear Strain
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     And there was a shearing between 
the two fibers.

Shear Strain
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     And there was a shearing between 
the two fibers.

Shear Strain
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     And there was a shearing between 
the two fibers.
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A Closer Look
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      We will now focus our attentions on the fibers 
and consider their geometry more closely.

A Closer Look
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     To help us characterize the strains 
experience by the fibers, we first 
introduce a coordinate system…

A Coordinate System
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     Refering to this coordinate system we 
can define the original (infinitesimal) lengths 
of the fibers as dx and dy…

Undeformed Lengths

Hide Text2 8

     Recalling our basic notions of normal strains 
(ε = ∆L / L), we can express the change in the 
x-fiber in terms of the ε of that fiber…
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x-Direction Normal Strain
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     Note that to obtain length change, we need to 
multiply strain by the length over which it acts.  
This is analogous to multiplying stresses by the 
areas they act on to obtain forces.

     In similar fashion we can identify the length 
change of the y-directed fiber…

y-Direction Normal Strain
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     Now that we have the normal strains identified, we 
need to consider the shear strain.  The shear strain in 
this case is the angle change between the x and y 
directions, and will be denoted γxy.

     From the picture shown we can see that the total 
angle change is made up of two parts…

Shear Strain Components
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     These two angle changes are labeled as shown, 
and they are actually the most fundamental way 
to characterize the shear strain.

Relating the Shear Components
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     The total angle change, γxy, is simply the 
sum of the two sub-angles.
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Relating the Shear Components
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     The general strain components are 
defined such that εxy = εyx.  Therefore, 
we can simplify the above equation…

γ  as Engineering Shear Strain

Hide Text3 4

     Although it is difficult to see from 
this derivation, εxy and εyx are the 
most general shear strain components.  
To avoid confusion, γ is given a special 
name:  engineering shear strain.

2D Strain Tensor
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     The similarity between the subscripts 
for the strain components and the stress 
components we encountered earlier is not 
accidental:  tthe strain components also 
correspond to a second order tensor.
The strain tensor characterizes the strain 
state at a point just as the stress tensor 
characterizes the stress at a point.

Analogy with Stress
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    Here the similarity is apparent.  However, note 
carefully that the physical meaning of the two 
tensors are quite different.  How different?  Think 
about the units of stress vs. the units of strain.
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3D Strain

Hide Text3 7

     The previous discussion of strain was carried 
out for two dimensions.  What happens in three 
dimensions?  Let's see.
     Imagine a cube of material which is loaded in 
many different directions. 

3D Strain
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     The loading in three dimensions will result in 
deformations in three dimensions, and, most 
likely, strain in three dimensions.
     How can we characterize the strain at any 
point in the cube?  We will certainly need  a 
more complete description than we have 
developed for two dimensional strain states.

3D Strain
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     We begin our description of 3D Strain by 
focusing on three infinitesimally short fibers 
emanating from a single point in the cube.

3D Strain
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     We begin our description of 3D Strain by 
focusing on three infinitesimally short fibers 
emanating from a single point in the cube.
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3D Strain
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     We begin our description of 3D Strain by 
focusing on three infinitesimally short fibers 
emanating from a single point in the cube.

3D Strain
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     We begin our description of 3D Strain by 
focusing on three infinitesimally short fibers 
emanating from a single point in the cube.

3D Strain
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    The fibers we are observing are orthogonal to 
each other.  To aid in our description of how the 
fibers strain, we now define an x-y-z coordinate 
system in the direction of the fibers.

3D Strain
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     Recall that we represented stress in 
three dimensions as a 3x3 matrix of stress 
scalars.  We called this the matrix the 
"stress tensor". 
      As we have seen in two dimensions, 
strain and stress at a point can be 
represented with the same mathematical 
formulations.  Therefore, to describe 
strain in three dimensions, we will now 
build the "strain tensor".
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The Strain Tensor
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     How many independent strain components must we account for 
to completely describe the strain in the fibers at the point in 
question?     The fiber in the x-direction can stretch and shorten 
independently of the other two fibers.  This is the normal strain, εx.

Normal Strains
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     Similarly, the fiber in the y-direction can  
stretch and shorten independently of the x and z 
fibers.  This is the normal strain, εy.

Normal Strains
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     Because we are now in three dimensions, 
we must also describe the stretching and 
compressing in the z-direction.     This is the 
normal strain εz.

Shear Strains
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     Recall that to completely describe strain at a 
point we must account for the changes in angle 
between the fibers.  The change in angle 
between the fibers originally oriented in the x 
and y directions is the shear strain εxy.
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Shear Strains
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     Recall that to completely describe strain at a 
point we must account for the changes in angle 
between the fibers.  The change in angle 
between the fibers originally oriented in the x 
and y directions is the shear strain εxy.

Shear Strains

Hide Text5 0

       It is also possible for the fibers originally 
oriented in the y and z directions to shear...

Shear Strains

Hide Text5 1

       It is also possible for the fibers originally 
oriented in the y and z directions to shear...

Shear Strains
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     Finally, we must describe the shear strain 
that occurs between the fibers originally 
oriented in the x and z directions.
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Shear Strains
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     Finally, we must describe the shear strain 
that occurs between the fibers originally 
oriented in the x and z directions.

Shear Strains
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     It turns out that like the 2D strain 
tensor, the 3D strain tensor is symmetric.  

Complete Strain
Tensor
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     These nine components completely characterize 
the strain at a point.  As we just have seen, the 
diagonal terms are stretches of the material (normal 
strains), and the off-diagonal terms are relative 
changes of angle (shear strains). 

Stress Analogy
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     It reminds me of the stress tensor.  
Both strain and stress are represented 
as tensor quantities.
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One Final View of 3D Strain
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     An alternative way to view 3D strain is to 
imagine an infinitesimal sphere of material at a point, 
such as the small sphere inside the cube of material 
shown above.  Let's take a closer look… 

One Final View of 3D Strain
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     An alternative way to view 3D strain is to 
imagine an infinitesimal sphere of material at a point, 
such as the small sphere inside the cube of material 
shown above.  Let's take a closer look… 

One Final View of 3D Strain
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     An alternative way to view 3D strain is to 
imagine an infinitesimal sphere of material at a point, 
such as the small sphere inside the cube of material 
shown above.  Let's take a closer look… 

Very Small Sphere -- Before Deformation
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     Now let's observe what happens to the 
sphere of material when we deform the cube…   
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Very Small Whatsit -- During 
Deformation

Hide Text6 1

     Now let's observe what happens to the 
sphere of material when we deform the cube…   

Very Small Whatsit -- During 
Deformation

Hide Text6 2

     Now let's observe what happens to the 
sphere of material when we deform the cube…   

Very Small Whatsit -- During 
Deformation
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     Now let's observe what happens to the 
sphere of material when we deform the cube…   

Very Small Ellipsoid -- After Deformation
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     The sphere has turned into an ellipsoid!!  
This is a fundamental characteristic of strain: 
spheres in undeformed material deform into 
ellipsoids.
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Very Small Ellipsoid -- After Deformation
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     The orientation and shape of the ellipsoid depend 
on the particular deformation in the material.
     As you may recall from high school, an ellipsoid is 
simply a sphere which has been stretched along three 
axes.  Let's identify these three axes on our 

Perpendicular Directions
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     The important thing about these axes is 
that they are mutually perpendicular. 

Perpendicular Directions
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     If we look at the same axes 
before deformation…

Perpendicular Before Deformation
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 …we see that they were perpendicular to 
start with.  These axes have not experienced 
any shear strain!
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Principal Axes
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     The directions between which no shear strains 
occur are principal directions.   We can visualize the 
principal strains -- and the entire strain state -- by 
superposing the deformed ellipsoid on the sphere…

Strain as Art
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     As seen in the figure above, the principal directions experience only stretching or 
shortening.  In fact, the deformed ellipsoid is completely defined by the orientation of 
the axes and the magnitude of the three stretches (principal strains).  This means  that 
the strain at a point is completely defined by three normal strains in three directions.

Strain in the Plane
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     In two dimensions, a similar picture of strain can be 
drawn using circles and ellipses.  There are now only two 
principal directions and two principal strains.  This is 
consistent with what we observed previously.
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