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Displacements

Rigid Body vs Deformation

Normal & Shear Strain

Experimental Mohr's Circle
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A DISPLACEMENT is a vector quanitity used to 
measure movement of a point in an object from 

one location to the next.

    Whether we know it or not we are all intuitively familiar with the concept 
of displacement.   Every time you move from one place to another your 
entire body is experiencing a displacement.  Wiggle your finger;  watch it 
displace.  
     When we use the word displacement in a technical context there is also 
an associated technical definition.  This technical definition  may be boiled 
down to:

Gadget Man

     This is gadget man.  Drag him to a new location.  
Gadget man has a built in displacement meter on 
his utility belt, so he will tell you exactly how 
many pixels you have displaced him.
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A Moving Car
Arnold Schwarzenegger

A Car Accident
Pillsbury Dough Boy

Rigid Body Deformation

     For engineering purposes, we distinguish between two types of displacements.  They 
are rigid body displacements  and deformations .    
     To demonstrate rigid body motion, imagine that you are speeding down the freeway 
in your AMC Pacer on your way to the Poconos.   The car is experiencing displacement, 
but it is not changing shape.  We say that the car is traveling as a "Rigid Body".
     Now imagine that while traveling, the car plows into a charter bus.  The remaining 
bits of twisted steel and broken glass are no longer in the same shape as the original car. 
We say that the car has been deformed.
     In most cases, total displacement is composed of a rigid body translation/rotation 
and a deformation.  For example, the distance from here to the Poconos would 
constitute the rigid body component of the radiator's displacement, and the distance 
from the front of the car to the right passenger's seat would constitute the deformation 
component of the radiator.
     For this class we will be interested in deformations  only.  Rigid body motion is 
treated under a different subject known as dynamics or kinematics.
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Rigid Body Translation
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Rigid Body Motion

     As another example of rigid body motion versus deformation, 
consider the rubber sheet shown above.  For reference we have 
drawn rectangular and polar grids on the sheet.
     If you subject the sheet to a rigid body motion -- (go ahead and 
click the button) -- the grids remain undeformed.

Deformation
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     If, however, we fix the left edge of the sheet and then subject the 
sheet to the same loading,  it will deform.  This time the grids change 

Deformation

Rigid Body Rotation
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     It is important to note that rigid body motions include rotations as well 
as translations.  Imagine we place the rubber sheet on a turntable and 
then apply the load...

Rigid Body Rotation

Rigid Body Rotation
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     As with the previous case of rigid body 
motion, the grids remain undeformed.
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General Displacements
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     In general, displacement are a combination of rigid body 
motions and deformations.  To see this, consider a block of 
material near the end of the cantilever beam above.  Let's apply 
a load at the end of the beam...

General Displacements
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       How can we describe 
the change in the block?

Rigid Body Translation
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     Part of the change was a rigid 
body translation of the block.

Rigid Body Rotation
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     The block also 
experienced a rigid body 
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Deformation
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     Most importantly for our purposes, the 
block experienced deformation,  i.e. 
changed shape and volume.  
     It is this deformation that changes the 
material's internal state, causing stresses, 
cracks, failure, etc..

General Displacements
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     So we see that general displacements can be separated into a rigid 
body translation, a rigid body rotation, and a deformation. 
    Because we are studying the mechanics of materials, we will be 
interested in deformations  only  Rigid body motion is treated under 
a different subject known as dynamics or kinematics.
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     Since our focus is on the deformation experienced by materials, let's take a 
closer look at that case.  Note that we have drawn two reference lines on 
our old friend, the rubber sheet.  Now let's deform the sheet.
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      To see what has happened, let's superimpose 
the deformed sheet on the undeformed sheet...
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    ....we can make two important observations.  First, consider the lengths 
of the line segments.
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    Note that the lengths have changed 
from the undeformed to the deformed 
sheet. 
     Second, consider the angle between the 
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        The angle  has also changed.  Here is a timely 
question:  If we want to fully describe the deformation of 
the rubber sheet, what factors should our description 
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     A comprehensive measurement of deformation must 
account for both the change in length of lines drawn on 
the body, and the change in angle between them.

     This simple 
conclusion will be the 
basis for our detailed 
description of 
deformation.
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Change in Length -- 
Defining Average Normal Strain
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Before we look at strain in depth, we will first 
consider some simple concepts of average strain.
 
Consider first stretching or normal strain.  The bar 
shown above is deformed by stretching…

Change in Length -- 
Defining Average Normal Strain
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The final length is L.  What we want to do is normalize 
this deformation, similar to our normalizing of forces in 
the case of stress.

Change in Length -- 
Defining Average Normal Strain
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We accomplish this by quantifying the total change 
in length, ∆L, as shown, and then imagine this 
length change averaged over the entire length of 
the bar.

Change in Length -- 
Defining Average Normal Strain
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The result is this simple definition for 
average normal strain.  This 
definition is analogous to our earlier 
σ = P/A result for normal stress.  
Note that the units of strain are 
dimensionless, i.e. Length/Length.  
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Change in Angle --
Defining Average Shear Strain
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Consider next the simple characterization of shape 
changing deformations: i.e. shear strain.  In this case a 
block of material is sheared …

Change in Angle --
Defining Average Shear Strain
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Note that the volume of the block does not change; 
only the shape has changed.  To quantify this shape 
change, we identify the change in the 90° angles.

Change in Angle --
Defining Average Shear Strain
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The angle change is the shear strain, γ, and can be 
computed easily in terms of ∆ and h.

Change in Angle --
Defining Average Shear Strain
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As we will discuss in more detail later, we will always 
consider small strains, and so we can use the simplified 
expression without the inverse tangent.
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Calculating Shear Strain
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     Now that we have a basic idea about normal and shear 
strains, let's reconsider the rubber sheet.  In particular, we will 
compute the shear strain at the point P.  To do this we will 
draw two perpendicular reference lines...

Calculating Shear Strain
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  Recall, that to compute the shear 
strain in the rubber sheet we simply 
calculate the angle change of the two 
reference lines after deformation.  

Calculating Shear Strain
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    We begin our calculation of the shear 
strain by establishing the original angle 
between the reference lines..

Calculating Shear Strain
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perpendicular

     In order to determine the deformed 
angle, we must first load the rubber sheet.
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Calculating Shear Strain
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     We can now measure the deformed angle 
and calculate the shear strain.
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Calculating Shear Strain

   Note that the solution is negative.  This implies that the angle between the 
two line segments opened up, which is confirmed by the figure above.  
     Let's run another experiment with the same sheet...

Shear Strain:  Same Point, New Angle
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     Using the same loading conditions, let's draw our perpendicular line 
segments at the same location in the rubber sheet as before, but at a 
different orientation.

Shear Strain:  Same Point, New Angle
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    Do you expect the same value for shear stress as in the 
previous example?  Let's load the sheet and see...
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Shear Strain:  Same Point, New Angle
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     How about that!?  This time after deforming the 
sheet our reference lines are still perpendicular.   
Calculating the shear strain becomes trivial.

Shear Strain:  Same Point, New Angle
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    Recall our expression for calculating shear strain.   
As before the original angle is π/2.  However, in this 
case the deformed angle is also  π/2 ...

Shear Strain:  Same Point, New Angle
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 Yup, that's right, the shear strain now 
appears to be zero at the same point 
where it was previously non-zero..
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No Shear Strain
Perpendicular

Shear Strain = -0.471

     Let's review our recent discovery.  When we drew the reference lines 
parallel to the edges of the rubber sheet we found that the shear strain was 
zero.  Yet when the reference lines were oriented approximately 45° to the 
edges we calculated a shear strain of -0.471.
     This means that the shear strain at a point varies with the orientation in 
which it is measured!!  Let's investigate this further.

Perpendicular
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      If the strains vary with orientation, then somehow we must check every 
possible orientation of our reference axes to determine maxima and minima.  This 
is analogous to our experience with stress, and the motivation is similar: the 
behavior of many materials depends on how they are strained, and if we expect 
to predict how such materials will behave in applications, then we must be able to 
calculate the extremes of what the material experiences.  
    We will do a more detailed experiment with our rubber sheet to investigate 
the case of general orientations.

An Experiment in Strain
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      In this experiment, we will draw several lines on the 
rubber sheet.  Each line will start at the point where we 
wish to calculate the strain, and will be drawn π/12 radians 
counter-clockwise from the previous line.→ → 
      After loading, your job is to calculate the shear and 
normal strain for each line segment drawn on the rubber 
sheet.→

Calculating the Normal Strain
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     We begin our analysis of the deformed rubber sheet by 
calculating the normal strain at the point in the B  direction.  
To acquire the data necessary to calculate this strain, click 
on the letter labeling line segment B. →   
     Recall the equation for normal strain.→  From the 
information provided by Gizmo Woman it is now possible 
to calculate the normal strain in direction B. → →  

Calculating the Shear Strain
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     To calculate the shear strain we must determine 
the new angle between two lines which were 
originally perpendicular.  Recall our equation for 
calculating shear strain. →  The line originally 
perpendicular to B is H. Therefore, the "New Angle" 
is the angle between lines B and H.→  The value of 
this new angle, α , can be calculated from the 
orientations of lines B and H. → → →  Substituting 
the value of α back into the equation, we arrive at 
the value for shear strain in the B and H 
directions.→ →
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Calculating the Strains in the Remaining 
Directions

Hide Text4 5 Undeformed Configuration

0 . 6 2 5 -0 .3871

     Your job is to calculate the normal and shear strains for 
the directions indicated by line segments A to G and enter 
them in the appropriate box at the right.  Remember, the 
original length of each line segment was 40 pixels.
     If you get stuck at any point, review the previous pages 
to see how the normal and shear strains were calculated for 
line segment B.

Analyzing the Strain Data
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0 . 0
-0 .387
-0 .671
-0 .775
-0 .671
-0 .387

0 . 0

Let's continue analyzing the data you have 
just recorded. 
     To begin, we divide the shear strain by 

Plotting Normal Strain vs Shear Strain
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     Next, we plot the normal strain vs. the 
shear strain.  We begin by plotting the 
normal and shear axes.→   Note that positive 
shear strains are plotted downward.

Plotting Normal Strain vs Shear Strain
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B
A

C
D

EFG

0 . 6 7 5
0 . 6 2 5

0 . 4 8 2 5
0 . 2 8 7 5
0 . 0 9 5

-0 .10
-0 .047

0 . 0
-0 .1936
-0 .3356

-0 .3356
-0 .3875

-0 .1936
0 . 0

Let's now plot points A 
through G on the graph we 
have just created.
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Plotting Normal Strain vs Shear Strain
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HI
J

K
L
M

If we had calculated the
strains for directions H
through M they would 
have plotted like this...

Mohr's
Circle

Double Angle Relationship
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     Comparing the labels on the rubber sheet 
with those on Mohr's circle, we see that 
whatever angle we measure on the sheet is 
doubled in Mohr's circle.
    For example, the angle between lines G 
and A is 90° on the rubber sheet,→   but it is 
180° on Mohr's circle.→ 

Mohr's
Circle

Double Angle Relationship
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How can you apply this 'double angle relationship'?
Assume that you had calculated the shear and 
normal strain along line segment C only.  But your
boss asks for the strains in direction E.  What to do?

Mohr's
Circle

Double Angle Relationship
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Measure the angle between direction C and
direction E (it is 30°) ....

Mohr's
Circle
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Double Angle Relationship
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If you now travel twice that angle (i.e.60°) on the Mohr's
circle, you will arrive at the strain state in direction E.  
The shear and normal strains can be read off the plot.

Mohr's
Circle

Double Angle Relationship
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For Example, γ/2  in the E  
direction is -0.3356.

Mohr's
Circle

Double Angle Relationship
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And the normal strain in 
the E direction is 0.095.

Mohr's
Circle

Interpreting Mohr's Circle
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Mohr's circle is quite a handy tool.  Not
only does it allow you to compute the 
shear and normal strains in any direction
at a given point, it also reveals important
facts about the state of the material
essential to design.  

Mohr's
Circle
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Maximum Normal Strain
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To determine the maximum normal strain
in the material, simply find that point on
Mohr's circle with the greatest value for
epsilon.  In this case it is points A and M.

Mohr's
Circle

Zero Shear Strain
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Also, you can see that when the normal
strain is a maximum, the shear strain is
zero!!  
     Wow.  There is always some direction 
in

Mohr's
Circle

Minimum Normal Strain 
and Zero Shear Strain
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But wait, there is another direction in the
material where the shear strain is zero.
And this direction corresponds to the 
maximum negative normal strain.  In the
rubber sheet we labeled this direction G.

Mohr's
Circle

Angle Between Maximum and Minimum 
Normal Stresses
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Did you notice?  The points representing 
the largest and smallest values of normal
strain are on opposite sides of Mohr's
circle.  Using your 'double angle' wisdom,
What can you conclude?Mohr's

Circle
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Angle Between Maximum and Minimum 
Normal Stresses
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CORRECT!!
The direction of line segment A, in which 
normal strain is a maximum, is oriented at 90° 
to line segment G, where the normal strain is a 
minimum.
     These two directions can be found for all 
points in the material, and they will always be 
oriented at 90° to each other.

Mohr's
Circle

Principal Directions
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The directions of min & max normal strain are  
called the 'Principal Directions'.  Also, notice 
that they form a right-handed coordinate 
system known as the 'Principal Axes'.

Mohr's
Circle

Maximum Shear Strain
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It is also possible to read the maximum value for 
shear strain from Mohr's circle.  Point D here is 
actually the maximum negative value for shear 
strain;  the maximum positive shear strain occurs in
direction J.

Mohr's
Circle

Maximum Shear Strain
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    You're a smark cookie.  This is something to 
remember. The maximum shear strain always 
occurs ina direction oriented 45° to the principal 
axes.

Mohr's
Circle
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Maximum Shear Strain vs
Principal Directions
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       This is something to remember. 
The maximum shear strain always 
occurs in a direction oriented 45° to 
the principal axes.

Mohr's
Circle

Undeformed Configuration

A Brief Review
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    What have we learned about 
Mohr's Circle so far?   We can read 
the values for maximum and 
minimum normal strain from Mohr's 
Circle.  The directions of maximum 
and minimum normal strain form the 
principal directions in the material, 
and in these directions the shear 
strains are zero.
    Further, we can also read the 
values for the maximum shear stress 
from the circle.  The maximum shear 
strains (positive and negative) are 
oriented at 45° from the principal 
directions in the material.

Mohr's
Circle

Constructing Mohr's Circle
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     As in the case of stress, to construct 
Mohr's Circle we only need to know the 
normal and shear strains associated with 
any two orthogonal directions.
     If you need a refresher on the 
process involved in constructing the 
circle, click on the button below.

Constructing Mohr's Circle

Summary
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     In this stack we have presented the basic definitions 
relevant to describing internal deformations in solids.  
Normal strains measure stretching, while shear strains 
measure angle changes. 

We have also seen how similar strain is to stress from the 
perspective of transformations.  We will explore this further 
in Strain II.  
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