Strain Energy I: 1 (3/30/00)

Strain Energy I: 2 (3/30/00)

Strain Energy I: 3 (3/30/00)

Strain Energy I: 4 (3/30/00)

Strain Energy I: 7 (3/30/00)

Strain Energy I: 8 (3/30/00)

Strain Energy I: 9 (3/30/00)

The	<u> </u>
The	
End	

Elastic Strain	Energy Storage Cap	oacities of Se	veral Materials
Material	Working Stress psi	Density Ibs/ft3	Energy Stored ft-lbs/ lb
Cast Iron	10,000	486	0.5
Steel Spring	100,000	486	44
Tendon	10,000	69	840
Rubber	1,000	75	2700
Here a	re some resilience values	for common ma	aterials.
Hide Text		¢	