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     Here is a different design for the 
milk truck.  The picture here depicts the 
milk container supported by a yolk 
placed on the beam, and also by the cab 
of the tractor/trailer.
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     To model this load on the beam we would use a point load.  As 
with the uniform distributed load, this idealization will give us fairly 
accurate results.
     One of the most difficult parts of being an engineer is deciding 
on the correct model for a particular loading condition.  In this case 
the decision was easy, but in many cases it is not.
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Determine υ(x)
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     We will solve this problem without 
assigning numbers to the dimensions or 
load.  We can then apply the result to any 
simply supported beam subjected to a single 
point load.

Reactions
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     We begin this problem as we begin all beam 
solutions;  by solving for the reactions.  These 
values for the reactions we arrived at by 
applying force and moment equilibrium to the 
structure as a whole.

Shear
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     Our next step is to draw the shear diagram.  Remember, 
since the internal shear force is related to the integral of the 
load, wherever there is a point load on the structure there will 
be a step function  in the shear diagram.

Shear
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     The shear diagram begins by stepping up a 
value equal to the left reaction.  It then remains 
constant up to the point load, since there is no 
load on the beam in this region.
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Shear
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     The shear diagram then steps 
down an amount, P, equal to the 
concentrated load on the beam.

Shear
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     Again, the shear diagram is 
constant since there is no load between 
the point load and the right support.  
At the right support it steps up a value 
(Pa/L ) equal to the right reaction.
     Plotting the shear diagram was 
never so easy.

Moment
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     Once we have the shear diagram we 
are ready to plot the moment diagram.  
Keep in mind that the slope of the moment 
diagram is equal to the value of the shear 
diagram at every point along the beam.  A 
discontinuity in value in the shear diagram 
will result in a discontinuity in slope for 
the moment diagram.

Moment
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    The internal moment at the left support 
of the beam is zero.  The internal moment 
is always zero at a pin support unless the 
pin support is not at the end of the beam.
     The moment diagram then increases 
linearly with a slope of +Pb/L , the 
value of the shear diagram in this region.
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Moment
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     At a distance a from the left 
support the internal moment has a 
value equal to the slope of the 
moment diagram, Pb/L , times 
the distance along the beam, a.

Moment
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     At this point there is a discontinuity in 
the slope of the moment diagram.  This is 
related to the discontinuity in the value of 
the shear diagram.  
     The moment diagram then continues 
with a slope of –Pa/L , the value for the 
shear diagram in this region. 
     At the right support the internal moment 
is again zero, which is consistent with the 
pin support at this end of the beam.

M(x)
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     In order to find the displaced shape of 
this beam we integrate the function M(x) 
twice, where M(x) is a function describing 
the value of internal moment along the 
beam.  
     Because of the discontinuous nature of 
the moment diagram, we are going to write 

M(x)
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     The internal moment for the portion of the 
beam to the left of the load is the slope, Pb/L 
, times the distance from the left end, x.
     The internal moment for the portion of the 
beam to the right of the load may be calculated 
as the value of the moment at x = a , Pab/L, 
plus the distance beyond a, (x-a), times the 
slope, –Pa/L. 
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M(x)
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     We can reduce this expression to that 
shown below.  
     Note that we could have arrived at 
the same expression by choosing a 
coordinate which ran from the right end 
of the beam (L-x), and multiplying it by 
the slope coming from the right end of 
the beam, +Pa/L .

Moment  vs  Deflection
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    Recall the expression relating 
the deflected shape, υ(x), to the 
internal moment, M(x).

Slope
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     Here we integrate 
the first expression for 
M(x).  Have we done 
our integration 

Slope
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     That's right, we forgot 
the integration constant 
that comes along with all 
indefinite integrals.
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Slope
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     We proceed by 
integrating the 
second expression 
for M(x).

Slope
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     Are the two integration constants, C1 and C2 independent?  
     Because that the slope of the beam at point "a" must be continuous, we 
require that the two expressions for the slope equal each other at x = a.
     Note that this is an "extra" boundary condition that we did not have to 
enforce for the distributed load.   

Slope
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     Here we substitute in the 
value x = a and equate the two 
expressions for the slope.  It 
appears that C1 and C2 are not 
independent.

Slope
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     Solving for C2 we get an 
expression for C2 in terms of the 
C1.  We can substitute this back into 
the second expression for the slope 
in the beam.

PtLoad Deflection: 6



Slope
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Displacement
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     We continue by integrating the 
first expression for the slope of the 
beam.  This yields our first 
expression for the deflection of the 
beam.

Displacement
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     At this point we apply the 
boundary condition that the 
deflection of the beam at x = 0 must 
be zero.  This boundary condition 
reflects the fact that there is a pin 
support at the left end of the beam.

Displacement
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     From this boundary condition we can 
conclude that the constant C3 must be zero.
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Displacement
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     Next, we integrate the second 
expression for slope in the beam to 
arrive at an expression for the 
beams deflection to the right of the 
load. 
    Is there a boundary condition 
you can think of that can be used to 
solve for C4 ?

Displacement
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     We will use the second 
displacement boundary condition -- 
that the deflection of the beam at 
the right pin support must be zero 
-- to solve for the integration 
constant C4.

Displacement
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     Substituting (x = L)  into the 
expression for the deflection of the 
beam to the right of load we find 
that:
    C4  =  –L (Pab/2  + C1)

     This leaves us with one 
unknown in our equations;  C1.

Displacement
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     How can we solve for the unknown, 
C1?  The boundary conditions we have 
used so far are that the moment is zero at 
each end of the beam, that the slope is 
continuous under the load, and that the 
deflection is zero at each end of the beam.
     Can you think of a final condition that 
can be used to solve for C1?

PtLoad Deflection: 8



Displacement
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     The one condition that we have not yet enforced upon our expressions for the 
deflection of the beam is that they must be equal at (x = a).
     Notice that six boundary conditions are required to solve for deflection of the 
beam when it is loaded with a point load.  When the beam was loaded with a 
continuous load we needed only four boundary conditions.  We have actually 
treated this beam as if it were made of two sub-element, each with its own 
expression for shear, moment, slope and deflection.

Displacement
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     Substituting (x = a) into the two 
expressions for the deflection, we then set 
them equal to each other.

Displacement
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     We perform the necessary algebra.

Displacement
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     And find the value for 
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Displacement
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     We substitute the value for 
C1 into our expressions for the 
deflection of the beam.

Displacement
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     The result is two expressions for the 
deflection in the beam in terms of the 
beams geometry and loading.  The first 
expression is valid for all points on the 
beam to the left of the load and the 
second expression is valid for all points 
on the beam to the right of the load.  
Under the load, both expressions are 
equal (we enforced this as a boundary 
condition, remember?)   

Summary
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     Here is a summary of the procedure we just followed to solve for the 
deflection of a beam subjected to a point load.  Note that the two steps which 
differ from our solution for a continuous load are steps 3 and 6, which enforce 
continuity in the beam at the point load.

• Statics to construct the Moment Diagram

• Integrate to obtain the Slope

• Use Slope Continuity at the Point Load to eliminate a 
    constant

• Integrate to obtain Displacement

• Use Displacement b.c's to determine constants

• Use Displacement Continuity at the Point Load to
    eliminate the final constant

The End
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