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     So far we have developed a 
general description of stress…
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…and a general 
description of 
strain.  We now 
need to tie these 
two together.  
That is, we must 
figure out how 
much strain is 
caused by a given 
stress.
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In a mathematical sense, we can assume that stress and strain are related in some 
functional fashion as shown.  Determining the appropriate function to use, however, is 
a formidable task, since every material will have its own behavior, and this behavior 
can be very complicated.  As long as we restrict ourselves to modest loads, however, 
most materials used by engineers exhibit quite simple behavior: elastic and linear.  We 
have already discussed the concept of elastic versus plastic behavior; we now consider 
linearity.  In simple terms this means that stress = strain * factor.  For our general 
stress and strain descriptions, the picture is more complicated.
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Since there are six stress components and six strain components, it would take 36 
coefficients to relate an arbitrary stress state to the corresponding strain.  Six of these 
constants are shown above.  Fortunately, most materials do not require such a complex 
set of factors.  In fact, we will see that more often than not we only need 2 coefficients.

Isotropic Material
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The important feature a material must have in 
order to allow a 2-parameter characterization is 
isotropy.  This means it exhibits the same 
behavior in all directions.  For example if we 
were to take specimens from the block 
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Isotropic Material
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…in several different orientations, and then 
test each sample…

Isotropic Material
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…we would observe the same behavior for each 
specimen.  (For a material like wood, this would not 
be the case; such materials are called anisotropic.).  
As we are about to see, an important consequence of 
isotropy is that we can decouple shape changes from 
size changes.  

Isotropic Pressure

Hide Text1 1

If we apply uniform pressure to a cube 
of isotropic material…  

Isotropic Pressure
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…its volume will decrease, but it 
will remain a cube.
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Pure Shear
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If we apply pure shear to a cube of 
isotropic material…

Pure Shear
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…its shape will change, but its volume 
will remain constant.
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The linear stress-strain behavior of an isotropic body can be 
characterized by considering these two types of loading separately.  
Any general loading can be decomposed into a pressure part and a 
shearing or shape changing part.  There will be one linear coefficient 
associated with pressure/volume change, and another associated 
with shear/shape change.  These two constants will be all we need 
to characterize the stress-strain behavior of an isotropic material.

Isotropic Pressure
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Consider the case of pure pressure.  We wish to 
obtain a relation between pressure and volume 
change, but we do not yet have a general method 
for measuring volume change appropriately.
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Isotropic Pressure
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In analogy with our definition for basic strain, 
change in length over original length, we define the 
volumetric strain, e, as change in volume over 
original volume.  

Skip the Details

Isotropic Pressure
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To relate the volumetric strain, e, to the basic strain 
components, εx, εy, etc., we will need to examine the 
change in the block dimensions.  Shown here are the 
original block side lengths.

Isotropic Pressure
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The original volume is simple to calculate in terms 
of the original block dimensions.

Isotropic Pressure
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Denoting the block dimensions after deformation with 
primes, we can calculate the final volume in similar 
fashion.
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Isotropic Pressure
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We can use our definition 
of basic strain to relate the  
final dimensions to the 
original dimensions.  Here 
we have the x-dimension 
relation.

Isotropic Pressure
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Here is the similar 
y-dimension result.

Isotropic Pressure
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And the 

Isotropic Pressure
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We can assemble these results to obtain a relation between 
the original and final volume.
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Isotropic Pressure
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Expanding and substituting 
leads to this result.

Isotropic Pressure

Hide Text2 6

We are now ready to substitute this result into our 
expression for e.  In doing so, we will ignore the higher 
order terms.  This approximation will be justified shortly.

Isotropic Pressure
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Substitution leads to this 
simple but important result:  
the volumetric strain is given 
by the sum of the normal 
strain components.

Note On Small Strains
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Let's take a look at the terms we ignored 
previously.  These terms involve products of the 
strain components.  Since (small number)*(small 
number) << small number, we can ignore the 
product terms without significantly effecting the 
result.  Is this a valid assumption?  Let's check 
for a uniform strain of -0.0002.
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Note On Small Strains
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Recall the complete expression for 
the volume change -- including 
the higher order terms.

Note On Small Strains
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This is the corresponding complete expression for the 
volumetric strain, e.

Note On Small Strains
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If we substitute our numerical values from 
above…

Note On Small Strains
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This is the result.
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Note On Small Strains
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Here is our linear approximation to e, 
which is very easy to compute.  Our 
approximation is accurate to within 
0.02%.  This degree of accuracy is 
consistent with our original assumption 
of small strains. 

Isotropic Pressure
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In summary, isotropic pressure causes volumetric 
strain, and this volumetric strain can be computed 
as the sum of the normal strain components.

Detailed Derivation

Isotropic Pressure
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Assuming linear 
material behavior, we 
would observe this 
type of plot if we 
measured p and e as 
we tested a material.

Isotropic Pressure
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The slope of this 
linear plot represents 
the volumetric 
"stiffness"
 of the material.
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Isotropic Pressure

Hide Text3 7

It has a special name Isotropic Pressure
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This is the desired result: a linear relation between pressure and 
volumetric strain, characterized by a single coefficient.  Note that since 
strain is dimensionless, the bulk modulus has the units of stress.

Symmetry & Antisymmetry
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To show how we can use this type of result for more general 
situations, consider the simple structure shown.  Provided 
the behavior is linear, this general load set can be 
decomposed into a symmetric part and an antisymmetric 
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If you checked the reactions, for example, you would see the 
equivalence expressed here.
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We can play similar games with 
stress states.  Here we have a 
general stress state (shown in a 
principal orientation)…
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…which can be expressed as 
the sum of a pure pressure and 
a pure shear.

This is Pure Shear
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The "pressure-part" of any 
stress state can be calculated 
by taking the average of the 
three normal components as 
shown.
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We can combine this 
fact with our previous 
results.
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Here we have the pressure/volume change 
relation expressed entirely in terms of stress and 
strain components.  This equation is valid for 
general stress-strain states.

Pure Shear
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The other primary load/deformation 
response involves pure shear.

Pure Shear
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Here we can use our stress and strain 
components directly.  Note that this is an 
example in which it is convenient to use the 
engineering strain component, γ = 2ε.

Pure Shear
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As before, we imagine we run a 
test and measure the load and 
deformation.
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Pure Shear
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A linear material will respond as shown.

Pure Shear
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As before, it's the slope of this plot which 
is important, and we give this slope a 
special name.

Pure Shear

Hide Text5 1

This is the resulting linear relation between shear stress 
and shear strain.  Note the factor of 2 that always shows 
up when we move from engineering shear strain to 
general shear strain components.  As with the bulk 
modulus, the shear modulus has the units of stress.

Pure Shear
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For an isotropic material we 
would obtain analogous results 
in the remaining directions.
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An isotropic 
material can be 
completely 
characterized by 
these two 
constants.
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To show conceptually how 
we can use these two 
relations for general 
situations, consider the 
stress state shown.
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We can decompose this stress 
into a pressure and shear part.
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We can then map the 
pressure to a volumetric 
strain, and the shear stress 
to a shear strain.  These 
strain states can then be 
combined…
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Thus we can in principle compute the strain 
corresponding to any stress using our two 
constants, the bulk and shear moduli.

Uniaxial Stress
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The procedure just outlined is a bit cumbersome for 
most applications, and so it is useful to consider an 
additional special case of loading, and to introduce 
two other constants we can use to characterize a 
material.  We will show that these new constants can 
be expressed in terms of the old, but the new 
constants are often more convenient to use.
          In particular, we will consider uniaxial loading as 
shown.  When we pull on a material along a single 
direction…

Uniaxial Stress
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…it will extend in the direction we are pulling, 
and contract in the other two perpendicular 
directions.

Uniaxial Stress
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The relation between axial stress and 
axial strain is defined as shown.  E is 
the first of our new constants.
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Uniaxial Stress
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The relation between the extension in the 
direction of pulling and the contraction in the 
perpendicular directions is expressed in terms 
of the dimensionless parameter, ν -- 
pronounced 'gnu'.  (Recall that the modulus 
constants, k, E, and G, all have units of 
stress).  This is the second of our new 

Uniaxial Stress
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It is important to note that even though 
we have applied stress in 1-dimension, the 
resulting strain is 3-dimensional as 
indicated to the right.  This characteristic 
makes general stress analysis very difficult. 
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For an isotropic material, we can 
repeat our experiment in the 
y-direction…
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…and obtain a similar result (note 
which strains have ν, and which 
do not).  
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We can pull in the z-direction…
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…and again end up with similar 
expressions.
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If we have axial stresses in all three 
directions, then we can calculate the 
total strain by adding up the terms for 
each direction individually.
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For x-direction stress we have these 
terms.
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If we add y-direction stress, we add in 
the terms shown.
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And finally if we add z-direction stress, we 
end up with a complete relation for each 
individual normal strain component in term of 
the three normal stress components.  This 
form is more convenient to use than our earlier 
bulk modulus equation, since the strain 
components here are expressed individually.
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Combined with the shear relations, these are the most 
common form for expressing Hooke's Law for isotropic 
materials in three dimensions.

Relations Between the Constants
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Our final task is to relate the "new" constants, E and ν, to our 
original constants, G and k.  We will consider k first, and apply a 
uniform pressure to a block as shown.

Skip the Details
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Relations Between the Constants
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Substituting σx= σy= σz = p  into the 
stress-strain relations gives the result shown.

Relations Between the Constants
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We can sum these three equations to 
obtain the volumetric strain.

Relations Between the Constants
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By definition of the bulk modulus, k, we can relate 
the volumetric strain and pressure as shown.

Relations Between the Constants
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Eliminating p gives the desired 
result: k expressed in terms of 
E and ν.
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Relating G to E and ν
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To relate the shear modulus, G, to E 
and ν, we consider the case of pure 
shear.
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The corresponding Mohr's circle 
is as shown.
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We can break this stress into a 
(zero) pressure and a pure 
shear.
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The zero pressure gives zero 
volumetric strain.

Hooke's Law: 3/30/00



Hide Text8 1

The pure shear causes a pure 
shear deformation expressed in 
terms of G as shown.
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Now we will relate the 
principal stresses, σ1 and σ2, 
to the principal strain ε1.
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Recall the relation between a 
typical normal strain and the 
normal stresses.

Hide Text8 4

This is valid for any 
coordinate system, including 
the principal system.  Here we 
have substituted in the 
principal stresses and strains. 
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We can express the left-hand side 
of this equation in terms of τxy 
by using Mohr's circle for 

→
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We can express the principal 
stresses in terms of τxy using the 
stress circle     →
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We now can factor out τxy , and obtain the desired 
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These relations show that we can always express k and G in terms of E and ν, and 
vice-versa..  
     We can make two other observations based on these equations.  Consider first 
the relation for k.  Note that if ν = 1/2, then k → ∞, and if ν > 1/2 then k<0.  
Negative stiffness is a no-no, since it implies creation of energy.  Thus ν must be less 
than or equal to 1/2, and if  ν = 1/2, the material can not be squished, since it has 
infinite stiffness with respect to volume change.  Such a material is deemed 
incompressible , and common rubber is an example of a material that is nearly so.
     A similar argument for the G relation shows the ν must be greater than –1.  It is 
interesting that there is no theoretical reason why ν can not be negative, but no one 
has yet found a homogeneous material with negative ν.  You will generally find 
Poisson's ratio on the order of 0.2-0.4.

Detailed Derivation
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Summary
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Here is a summary of all our 
results.  These equations are 
both useful and common.
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Pure Shear 
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Recall that the state of pure shear is equivalent to compressive 
and tensile normal stresses at a relative orientation of 45°.  This 
can perhaps be seen best by looking at the Mohr's circle for 
the state of pure shear.

Return
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