
Bending Stresses in Beams

Hide Text1

OverView

Hide Text2

In this stack, our goal is to develop 
a means for determining the 
stresses in a beam.
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We will proceed by first determining the 
strains due to bending…
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…and then use Hooke's law to determine 
the stresses.
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Beam
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     To begin our detailed look 
at the deformations of a bent 
beam, consider a beam with a 
symmetric cross section.

Centroid of Section
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     We can calculate the 
location of the centroid by 
setting the first moment of 
area to zero.  The centroid 
will always lie on the axis of 
symmetry.

Neutral Axis!
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     We define the neutral axis 
of the beam as a line which 
experiences no strain as the 
beam is bent.  As we will 
demonstrate at the end of this 
stack, the neutral axis passes 
through the centroid of the 
section at any point along the 
beam.

Plane Section
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     Let's now look at the material which lies in a 
plane passed through the beam.  This particular 
plane is normal to the neutral axis.
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Apply Load
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     We now load the beam 
and allow it to deflect.

Deformed Beam
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     After deformations, we observe that the plane section we were viewing remains 
plane, and further, it remains normal to the neutral axis.  
     This observation is the fundamental assumption in the derivation of the beam 
bending equations.  Note that we will not observe this same behavior for very large 
deformations.

Two Adjacent Sections
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     Let's take another look at the deformation of 
the loaded beam, only this time we will look at the 
material which lies between two adjacent planes. 

After Loading
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     As we have observed before, the sections 
remain plane and normal to the neutral axis 
after deformation.
     For clarity, we will continue by looking at a 
side view of the deformed beam.
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     As we have assumed, the sections remain 
plane and normal to the neutral axis after 
deformation.
     For clarity, we will continue by looking at a 
side view of the deformed beam.
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     As we have assumed, the sections remain 
plane and normal to the neutral axis after 
deformation.
     For clarity, we will continue by looking at a 
side view of the deformed beam.
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     As we have assumed, the sections remain 
plane and normal to the neutral axis after 
deformation.
     For clarity, we will continue by looking at a 
side view of the deformed beam.
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     What we are really interested in is the displaced 
shape of the element lying between the two planes.  We 
focus in on this particular element.
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     This is the displaced shape of the 
element after loading.  Note that the 
two planes defining the element are 
normal to the neutral axis.
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    Here the element is shown 
before and after deflection.  
     How can we relate the 
position of a point in the 
material before deformation to 
the position of the same point 
after deformation?
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     In order to rigorously 
define how a point in the 
material moves when the 
beam is loaded, we must first 
define a coordinate system.
     Here we define the x axis 
to run along the neutral axis.  
We also assume that the 
length of the beam element is 
some value dx.
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     The distance of the point 
above or below the  x axis 
(neutral axis) we will define 
as "y".   y  is positive when 
the point lies above the 
neutral axis.
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     The displacement of the 
neutral axis from the 
undeformed to the 
deformed configuration is 
described by the function υ 
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     If υ(x)  is the 
displacement of the 
beam at any point, x, 
then the first 
derivative of the 
displacement,υ'(x) , 
is the slope of the 
beam at the point x.
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     Let's compare υ'(x)  
(the slope) of one side 
of the deformed 
element to the other.  
To do this we extend 
the undeformed 
orientation of the two 
planes down onto the 
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    At this point we need to 
assume that the left face of 
the element is located a 
distance x along the beam.  
From this assumption we 
calculate that the right face 
of the element is located a 
distance x + dx along the 
beam.
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     The angle between the 
plane defining the left face 
of the deformed element 
and its undeformed 
orientation is simply the 
slope of the beam at that 
point, υ '(x).
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     Similarly, the angle 
between the plane defining 
the right face of the 
deformed element and its 
undeformed orientation is 
the slope of the beam at that 
point,  υ'(x + dx)  .
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     We can expand this 
expression as shown below.  
We will neglect the higher 
order terms since we are 
dealing with small 
displacements, and therefore 
small changes in slopes.
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     The previous few steps 
may have been a bit 
confusing, so let's go through 
them again with a bigger 
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     We begin by projecting 
the deformed element onto 
the undeformed element.
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     We were able to 
calculate the angle 
between the 
undeformed and 
deformed planes as 
shown above.
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     Recall that the length of an arc 
may be calculated as the angle 
defining the arc times the radius 
of the arc.
     Using this knowledge we are 
able to calculate the horizontal 
displacement of the upper-left 
corner of the element as:
                        yυ'(x)  .
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     We can calculate the 
displacement of the 
upper-right corner of the 
element in a similar fashion.

Hide Text3 4

     The change in length of the 
top chord of the element can 
now be calculated as the 
difference between the 
displacement of the upper-left 
and upper-right corners.
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     Eliminating like terms, we 
find that the change in length 
of the top chord is given by:
 
             – yυ''(x)   dx  
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     Recall that strain is 
calculated as change in length 
divided by original length.
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The strain of the material at the top 
of the element is then calculated as 
the change in length of the top 
chord divided by the original 
length of the top chord.
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     Note that we have actually kept the location where we calculate the strain in terms 
of the y coordinate.   Our equation tells us that when y is zero there is no strain.  We 
can confirm this by noting that the element does not change length at the neutral axis.  
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     Now that we have an 
expression for the strain at any 
point in the beam, how do we 
calculate the stress?
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     Hooke's Law tells us that 
stress is linearly related to strain 
by the material constant, E.

Beams I -- Bending Stresses:  10



Hide Text4 1

     Combining the two equations 
we can relate the stress at a point 
in the beam to the displaced 
shape of the beam and Young's 
Modulus.
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     Plotting the stress on the 
element, we see that it varies 
linearly with y, the distance 
from the neutral axis.  Also, if 
the functionυ''(x)   (the 
curvature of the beam) is not 
constant, then the stress 
varies along the length of the 
beam as well.
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     Since it is not common that 
we begin with an expression 
for the displaced shape of the 
beam, let's try to manipulate 
our equation for stress due to 
bending until it is more useful.
     Here we introduce the 
notion that internal moment, 
M, is actually the sum of many 
smaller moments caused by 
stress acting away from the 
neutral axis.
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     Next, we substitute  our 
expression for stress.
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    Rearranging terms...
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     Recall the expression for 
moment of inertia.
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     Performing the 
substitution we find that 
internal moment is related to 
the curvature of the beam.
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     How can we use this result 
to simplify our expression for 
stress in the beam?
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     We use the second 
expression to eliminate υ''(x)   
from the stress equation and 
we arrive at the famous 
relationship:

               σ = –M y/ I
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     Here is a summary of the important 
relationships we have derived using 
the displacement assumption that 
"plane sections remain plane, and 
normal to the neutral axis."

Hide Text5 1

So far we have worked on the assumption 
that the neutral axis and the centroidal axis 
coincide.  We will now demonstrate the 
validity of this assumption.  To this end, 
consider the net horizontal force, P.
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The net force can be calculated by integrating the 
stresses over the cross section.  Since no horizontal 
loads have been applied to the beam, the net force 
must be zero.
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Using our previous results, we can 
express the stresses in terms of the 
displacement and material 
properties as shown.
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We can pull E and υ''   out of the 
integral, since they do not vary 
over the cross-section.

Location of Neutral Axis
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Since E and υ''   are not 
zero in general, the 
boxed result must hold.  
This is simply the 
definition of the centroid, 
and so the proper place 
from which y is 
measured is the centroid.  
Thus, the neutral axis and 
the centroidal axis are 
coincident.

Summary
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          The relation between bending moment and the resulting 
stresses is extremely important, and you are likely to encounter 
it again and again.  You should store σ = My/I somewhere in 
your brain near F = ma.
          Remember, the linear distribution of stress predicted by 
this equation is based on the assumed "plane sections remain 
plane and normal to the neutral axis" assumption, which is an 
approximation (but a darn good one as long as the beam's 
length is more than about 3 to 4 times its depth).

Beams I -- Bending Stresses:  14



End
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