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We argue that to best comprehend many data sets, plotting judiciously selected sample
statistics with associated confidence intervals can usefully supplement, or even replace,
standard hypothesis-testing procedures. We note that most social sciences statistics
textbooks limit discussion of confidence intervals to their use in between-subjects
designs. Our central purpose in this article is to describe how to compute an analogous
confidence interval that can be used in within-subjects designs. This confidence interval
rests on the reasoning that because between-subjects variance typically plays no role in
statistical analyses of within-subjects designs, it can legitimately be ignored; hence, an
appropriate confidence interval can be based on the standard within-subject error
term—i.e., on the variability due to the subject-by-condition interaction. Computation of
such a confidence interval is simple and is embodied in Equation 2 on p. xx of this
article. This confidence interval has two useful properties. First, it is based on the same
error term as is the corresponding ANOVA, and hence leads to comparable conclusions.
Second, it is related by a known factor ( 2 ) to a confidence interval of the difference
between sample means; accordingly it can be used to infer the faith one can put in some
pattern of sample means as a reflection of the underlying pattern of population means.
These two properties correspond to analogous properties of the more widely used
between-subjects confidence interval.

Most data analysis within experimental
psychology consists of statistical analysis,
most of which revolves in one way or another
around the question, “What is the correspon-
dence between a set of observed sample
means and the associated set of population
means that the sample means are estimat-
ing1?” If this correspondence were known,
then most standard statistical analyses would
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1For expositional simplicity, we will couch our
arguments using sample means, realizing that
analogous arguments could be made about any sample
statistic.

be unnecessary. Imagine, for example, an
ideal experiment which incorporated such a
vast amount of statistical power that all popu-
lation means could be assumed essentially
equal to the corresponding observed sample
means. With such an experiment, it would
make little sense to carry out a standard test of
some null hypothesis because the test’s out-
come would be apparent from inspection of
the sample means. Data analysis could accord-
ingly be confined to the scientifically useful
processes of parsimoniously characterizing the
observed pattern of sample means and/or de-
termining the implications of the observed
pattern for whatever question the experiment
was addressing to begin with.

With a real, as opposed to an ideal exper-
iment, population means are typically not
known but only estimated, which is why we
do do statistical analyses. Thus, some deter-
mination of how much faith can be put in the
observed pattern of sample means must form a
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preliminary step to be carried out prior to
evaluating what the observed pattern might
imply for the question at hand.

This preliminary step can take one of sev-
eral forms. In the social sciences, the over-
whelmingly dominant form is that of hypoth-
esis testing: one formulates a null hypothesis,
typically that some set of population means
are all equal to one another and, based on the
pattern of sample means along with some ap-
propriate error variance, decides either to re-
ject or to not reject the null hypothesis. In this
article we echo suggestions (e.g., Tukey,
1974; 1977; Wainer & Thissen, 1993) that
graphical procedures—particularly construc-
tion of confidence intervals—can be carried
out as a supplement, or even as a replacement
for standard hypothesis-testing procedures.
Before doing so, however, we briefly consider
the origins of procedures now in common use.

Historical Roots
The hypothesis-testing procedures that

now dominate data analysis techniques in the
behavioral sciences have evolved as some-
thing of an expedient compromise between a
number of ideologically conflicting ap-
proaches to drawing conclusions from statisti-
cal data (see Gigerenzer, Swijtink, Porter,
Daston, Beatty, & Krüger, 1989 for a
thorough discussion of this assertion).
Bayesian Techniques

One of these approaches, which turned
out not to have a strong influence on the
techniques that are widely used in behavioral
sciences today, is based on ideas developed by
Bayes (1763; see Berger & Berry, 1988, and
Winkler, 1993 for clear introductions to
Bayesian statistical analysis; see Box & Tiao,
1973, and Lewis, 1993, for extensive treat-
ments of the Bayesian approach to analysis of
variance). In the Bayesian approach, the goal
is to estimate the probability that a hypothesis
is true and/or to determine some population
parameter’s distribution given the obtained
data.

Computing this probability or probability
distribution requires specification of an analo-
gous probability or probability distribution
prior to data collection (the prior probability)
and, in experimental designs, specification of
the maximal effect that the independent vari-

able can have on changing these prior proba-
bilities. An important feature of the Bayesian
approach is that interpretation of data depends
crucially on the specification of such prior
probabilities. When there is no clear basis for
such specification, data interpretation will
vary across researchers who hold different
views about what ought to be the prior proba-
bilities.
Null Hypotheses and Significance Testing

An alternative to the Bayesian approach
was developed by Fisher (1925, 1935, 1955),
who proposed that data evaluation is a process
of inductive inference in which a scientist at-
tempts to reason from particular data to draw a
general inference regarding a specified null
hypothesis. In this view, statistical evaluation
of data is used to determine how likely is an
observed result under the assumption that the
null hypothesis is true. Note that this view of
data evaluation is opposite to that of the
Bayesian approach, in which an observed re-
sult influences the probability that a hypothe-
sis is true. In Fisher’s approach, results with
low probability of occurrence are deemed sta-
tistically significant and taken as evidence
against the hypothesis in question. This con-
cept is known to any modern student of statis-
tical applications in the behavioral sciences.

Less familiar, however, is Fisher’s em-
phasis on significance testing as a formulation
of belief regarding a single hypothesis, and, in
keeping with the grounding of this approach in
inductive reasoning, the importance of both
replications and replication failures in deter-
mining the true frequency with which a par-
ticular kind of experiment has produced
significant results. Fisher was critical of the
Bayesian approach, however, particularly be-
cause of problems associated with establishing
prior probabilities for hypotheses. When no
information about prior probabilities is avail-
able, there is no single accepted method for
assigning probabilities. Therefore, different
researchers would be free to use different ap-
proaches to establishing prior probabilities, a
form of subjectivity that Fisher found particu-
larly irksome. Moreover, Fisher emphasized
the point that a significance test does not
allow one to assign a probability to a
hypothesis, but only to determine the
likelihood of obtaining a result under the
assumption that the hypothesis is valid. One’s
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degree of belief in the hypothesis might then
be modified by the probability of the result,
but the probability value itself was not to be
taken as a measure of the degree of belief in
the hypothesis.
Competing Hypotheses

In contrast to Fisher’s emphasis on induc-
tive reasoning, a third approach to statistical
inference was developed by Neyman and
Pearson (1928, 1933; Neyman, 1957). They
were primarily concerned with inductive be-
havior. For Neyman and Pearson, the purpose
of statistical theory was to provide a rule
specifying the circumstances under which one
should reject or provisionally accept some hy-
pothesis. They shared Fisher’s criticisms of
the Bayesian approach, but went one step fur-
ther. In their view, even degree of belief in a
hypothesis did not enter into the picture. In a
major departure from Fisher’s approach,
Neyman and Pearson introduced the concept
of two competing hypotheses, one of which is
assumed to be true. In addition to establishing
a procedure based on two hypotheses, they
also developed the concept of two kinds of
decision error: rejection of a true hypothesis
(Type I error) and acceptance of a false hy-
pothesis (Type II error). In the Neyman-
Pearson approach, both hypotheses are stated
with equal precision so that both types of error
can be computed. The relative importance of
the hypotheses, along with the relative costs of
the two types of error are used to set the re-
spective error probabilities. The desired Type
I error probability is achieved by an appropri-
ate choice of the rejection criterion, while the
desired Type II error probability is controlled
by varying sample size. In this view, Type I
and Type II error rates will vary across situa-
tions according to the seriousness of each er-
ror type within the particular situation.

Neyman and Pearson's hypothesis-testing
approach differs from Fisher’s approach in
several ways. First, it requires consideration of
two, rather than just one, precise hypotheses.
This modification enabled computation of
power estimates, something that was es-
chewed by Fisher who argued that there was
no scientific basis for precise knowledge of
the alternative hypothesis. In Fisher’s view,
power could generally not be computed, al-
though he recognized the importance of sensi-
tivity of statistical tests (Fisher, 1947).

Second, Neyman and Pearson provided a pre-
scription for behavior—i.e., for a decision
about whether to reject a hypothesis. Fisher’s,
on the other hand, emphasized the use of sig-
nificance testing to measure the degree of dis-
cordance between observed data and the null
hypothesis. The significance test was intended
to influence the scientist’s belief in the hy-
pothesis, not simply to provide the basis for a
binary decision (the latter, is a stance that
Neyman and Pearson critically viewed as
“quasi-Bayesian”; see Gigerenzer et al., 1989,
p. 103).

The issues raised in the Fisher vs
Neyman/Pearson debate have not been settled,
and are still discussed in the statistical litera-
ture (e.g., Camilli, 1990; Lehmann, 1993).
Nevertheless, there has been what Gigerenzer
et al. (1989) referred to as a “silent solution”
within the behavioral sciences. This solution
has evolved from statistical textbooks written
for behavioral scientists, and consists of a
combination of ideas drawn from Fisher and
from Neyman and Pearson. For example,
drawing on Neyman and Pearson, researchers
are admonished to specify the significance
level of their test prior to collecting data. But
little if anything is said about why a particular
significance level is chosen and few texts dis-
cuss consideration of the costs of Type I and
Type II error in establishing the significance
level. Following the practice established by
Fisher, however, researchers are taught to
draw no conclusions from a statistical test that
is not significant. Moreover, concepts from
the two viewpoints have been mixed together
in ways that contradict the intentions of the
originators. For instance, in current applica-
tions, probabilities associated with Type I and
Type II errors are not used only for reaching a
binary decision about a hypothesis, as advo-
cated by Neyman and Pearson but often are
also treated as measures of degree of belief, as
per Fisher’s approach. This tendency has on
many occasions led researchers to state the
most stringent possible level of significance
(e.g., p < .01) when reporting significant re-
sults, apparently with the intent of convincing
the skeptical reader.

Perhaps the most disconcerting conse-
quence of the hypothesis testing approach as it
is now practiced in behavioral science is that it
often is a mechanistic enterprise that is ill-
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suited for the complex and multidimensional
nature of most social-science data sets. Both
Fisher and Neyman and Pearson (as well as
the Bayesians) clearly realized this, in that
they consider judgment to be a crucial compo-
nent drawing inferences from statistical pro-
cedures. Similarly, judgment is called for in
other solutions to the debate between the
Fisher and the Neyman-Pearson schools of
thought, as in the suggestion to apply different
approaches to the same set of data (e.g., Box,
1986).
Graphical Procedures

Traditionally, as we have suggested, the
primary data-analysis emphasis in the social
sciences has been on confirmation: the inves-
tigator considers a small number of hypothe-
ses and attempts to confirm or disconfirm
them. Over the past twenty years, however, a
consensus has been (slowly) growing that ex-
ploratory, primarily graphical techniques are
at least as useful as confirmatory techniques in
the endeavor to maximally understand and use
the information inherent in a data set (see,
Tufte, 1983; 1990 for superb examples of
graphical techniques, and Wainer & Thissen,
1993, for an up-to-date review of them).

A landmark event in this shifting empha-
sis was publication (and dissemination of pre-
publication drafts) of John Tukey’s (1977)
book, Exploratory Data Analysis which her-
alded at least an “official” toleration (if not
actually a widespread use) of exploratory and
graphical techniques. Tukey’s principal mes-
sage is perhaps best summarized by a remark
that previewed the tone of his book: “The
picturing of data allows us to be sensitive not
only to the multiple hypotheses that we hold,
but to the many more we have not yet thought
of, regard as unlikely or think impossible”
(Tukey, 1974, p. 526). It is in this spirit that
we focus on a particular facet of graphical
techniques, that of confidence intervals.

Confidence Intervals
We have noted that, whether framed in a

hypothesis-testing context or in some other
context, a fundamental statistical question is,
“How well does the observed pattern of sam-
ple means represent the underlying pattern of
population means?” Elsewhere, one of us has
argued that construction of confidence inter-
vals, which directly addresses this question,

can profitably supplement (or even replace)
the more common hypothesis-testing proce-
dures (Loftus, 1991; 1993a, 1993b, 1993c; see
also Bakan, 1966; Cohen, 1990). These au-
thors offer many reasons in support of this as-
sertion. Two of the main ones are as follows.
First, hypothesis testing is primarily designed
to obliquely address a restricted, convoluted,
and usually uninteresting question, “Is it not
true that some set of population means are all
equal to one another?” whereas confidence in-
tervals are designed to directly address a sim-
pler and more general question, “What are the
population means?” Estimation of population
means, in turn, facilitates evaluation of what-
ever theory-driven alternative hypothesis is
under consideration.

A second argument in favor of using con-
fidence intervals (and against sole reliance on
hypothesis testing) is that it is a rare experi-
ment in which any null hypothesis could
plausibly be true. That is, it is rare that a set of
population means corresponding to different
treatments could all be identically equal to one
another. Therefore it usually makes little sense
to test the validity of such a null hypothesis; a
finding of statistical significance typically
implies only that the experiment has enough
statistical power to detect the population mean
differences that one can assume apriori must
exist2.

We assert that at the very least, plotting a
set of sample means along with their confi-
dence intervals can provide an initial, rough-
and-ready, intuitive assessment of (1) the best
estimate of the underlying pattern of popula-
tion means and (2) the degree to which the ob-
served pattern of sample means should be
taken seriously as a reflection of the underly-
ing pattern of population means, i.e., the de-
gree of statistical power (an aspect of statisti-
cal analysis that is usually ignored in social-
science research).

                                                
2Some caveats should be noted in conjunction with
these assertions. First, on occasion, a plausible null
hypothesis does exist (e.g., that performance is at
chance in a parapsychological experiment). Second, in
a two-tailed z- or t-test situation, rejection of some null
hypothesis can establish the directionality of some
effect. (Note, however, that even this latter situation
rests on a logic by which which one tests the validity of
some usually implausible null hypothesis).
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Consider for example the hypothetical
data shown in Figure 1A, which depicts mem-
ory performance following varying retention
intervals for picture and word stimuli.
Although Figure 1A provides the best estimate
of the pattern of underlying population means,
there is no indication as to how seriously this
best estimate should be taken—that is there is
no indication of error variance. In Figures 1B
and 1C, 95% confidence intervals provide this
missing information (indicating that the ob-
served pattern should be taken very seriously
in the case of Figure 1B—which depicts
something close to the ideal experiment de-
scribed above—but not seriously at all in the
case of Figure 1C, which would clearly signal
the need for additional statistical power in or-
der to make any conclusions at all from the
data). Furthermore, a glance at either Figure
1B or 1C would allow a quick assessment of

how the ensuing hypothesis-testing
procedures would likely turn out. Given the
Figure-1B data pattern, for instance, there
would be little need for further statistical
analyses.

Among the reactions to the advocacy of
routinely publishing confidence intervals
along with sample means has been the obser-
vation (typically in the form of personal com-
munication to the authors) that most textbook
descriptions of confidence intervals are re-
stricted to between-subject designs; hence
many investigators are left in the dark about
how to compute analogous confidence inter-
vals in within-subjects designs. Our purpose
here is to fill this gap, i.e., to describe a ratio-
nale and a procedure for computing confi-
dence intervals in within-subject designs. Our
reasoning is an extension of that provided by a
small number of introductory statistics text-
books, generally around page 400 (e.g., Loftus
and Loftus 1988, pp. 411-429; Anderson &
McLean, 1974, pp. 407-412). It goes as fol-
lows.

A standard confidence interval in a be-
tween-subjects design has two useful proper-
ties. First, the confidence interval’s size is de-
termined by the same quantity that serves as
the error term in the ANOVA; thus the confi-
dence interval and the ANOVA, based as they
are on the same information, lead to compa-
rable conclusions. Second an X% confidence
interval around a sample mean and an X%
confidence interval around the difference be-
tween two sample means are related by a fac-
tor of 2 .3 This forms the basis of our asser-
tion that confidence in patterns of means (of
which the difference between two means is a
basic unit) can be judged based on the confi-
dence intervals plotted around the individual
sample means. The within-subjects confidence
interval that we will describe has these same
two key properties.

                                                
3Because we are interested in comparing within- and
between-subjects designs, we restrict ourselves to
between-subjects situations in which equal numbers of
subjects are assigned to all J conditions. We also
assume homogeneity of variance, which implies that
confidence intervals around all sample means are
determined by a common, pooled error term. In a later
section, we consider the case in which this assumption
is dropped.
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Figure 1. Hypothetical data without confidence
intervals (Panel A) and with confidence inter-
vals (Panels B and C).
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In the text that follows, we present the
various arguments at an informal, intuitive
level. The Appendixes to this article provide
the associated mathematical underpinnings.

A Hypothetical Experiment
Consider a hypothetical experiment de-

signed to measure effects of study time in a

free-recall paradigm. In this hypothetical ex-
periment, to-be-recalled 20-word lists are pre-
sented at a rate of either 1, 2, or 5 sec per
word. Of interest is the relation between study
time and number of recalled list words.

Between-Subject Data
Suppose first that the experiment is run as

a between-subject design in which N = 30
subjects are randomly assigned to three groups
of n = 10 subjects per group. Each group then
participates in one of the three study-time
conditions, and each subject’s number of re-
called words is recorded. The data are pre-
sented in Table 1 and Figure 2A. Both figure
and table show the mean number of words re-
called by each subject (shown as small dashes
in Figure 2A) as well as the means over sub-
jects (shown as closed circles connected by
the solid line).

Table 1 and Figure 2A elicit the intuition
that the study-time effect would not be signifi-
cant in a standard ANOVA: there is too much
variability over the subjects within each con-
dition (reflected by the spread of individual-
subject points around each condition mean
and quantified as MSW) compared to the
rather meager variability across conditions
(reflected by the differences among the three
means and quantified as MSC). Sure enough,
as shown in the ANOVA table at the lower
right of Figure 2A, the study-time effect is not
statistically significant, F(2,!27)!< 1.

Table 1
A Between-Subjects Design: Number of Words

Recalled (out of 20) for each of 10 Subjects in each
of Three Conditions. (NOTE: Mj: Mean of

Condition j).

Exposure Duration Per Word (sec)

1 Sec 2 Sec 5 Sec

10 13 13
6 8 8

11 14 14
22 23 25
16 18 20
15 17 17
1 1 4

12 15 17
9 12 12
8 9 12

M1 = 11.0 M2 = 13.0 M3 = 14.2
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Between-Subject Confidence Intervals
Figure 2B shows the 95% confidence in-

terval around the three condition means. This
confidence interval is based on the pooled es-
timate of the within-condition variance, i.e.,
on MSW. It is therefore based on dfW = 27,
and is computed by the usual formula,

CI = Mj ± 
MSW

n   [criterion t(27)] (1)

which, as indicated on the figure, is ±3.85 in
this example.

Figure 2B provides much the same infor-
mation as does the ANOVA shown in Figure
2A. In particular, a glance at Figure 2B indi-
cates the same conclusion reached via the
ANOVA: given our knowledge about the val-
ues of the three condition population means,
we can’t exclude the possibility that they are
all equal. More generally, the confidence in-
tervals indicate that any possible ordering of
the three population means is well within the
realm of possibility. Note that the intimate
correspondence between the ANOVA and the
confidence interval comes about because their
computations involve the common error term,
MSW.
Individual Population Means vs Patterns o f
Population Means

A confidence interval by definition pro-
vides information about the value of some
specific population mean; e.g., the confidence
interval around the left-hand mean of Figure
2B provides information about the population
mean corresponding to the 1-sec condition.
However, in psychological experiments, it is
rare (although, as we discuss in a later section,
not unknown) that one is genuinely interested
in inferring the specific value of a population
mean. More typically, one is interested in in-
ferring the pattern formed by a set of popula-
tion means. In the present example, the pri-

mary interest is not so much in the absolute
values of the three population means, but
rather in how they are related to one another.
A hypothesis that might be of interest, for ex-
ample, is that the population means increase
with longer study times. In short, isolating the
values of the individual population means is
generally interesting only insofar as it reveals
something about the pattern that they form.
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Figure 2. An example of a between-subject
design. Top panel: Means surrounded by
individual data points. Bottom panel:
Confidence intervals around the three data
points.
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Within-Subject Data
Let us now suppose that the numbers

from Table 1 came not from a between-subject
design, but from a within-subject design.
Suppose, that is, that the experiment included
a total of n!=!10 subjects, each of whom par-
ticipated in all three study-time conditions.
Table 2 reproduces the Table-1 data from each
of the three conditions, showing in addition
the mean for each subject (row mean) along
with the grand mean, M = 12.73 (Table 2,
bottom right). Figure 3 shows these data in
graphical form: the individual subject curves
(thin lines) are shown along with the curve for
the condition means (heavy line). Note that
the condition means, based as they are on the
same numbers as they were in Table 1 and
Figure 2, do not change.
E r r o r  V a r i a n c e  a n d  t h e  N o t i o n  o f
“Consistency”

The Figure-3 data pattern should suffice
to convince the reader that an effect of study
time can be reasonably inferred (specifically, a

monotonically increasing relation between
study time and performance). This is because
each of the 10 subjects shows a small but
consistent study-time effect. Statistically, this
consistency is reflected in the small mean
square due to interaction (MSSxC = 0.61) in
the ANOVA table at the bottom right of
Figure 3. And, indeed, the F for the study-time
conditions, now computed as MSC/MSSxC is
highly significant, F!(2,!18) = 42.51.

Constructing a Confidence Interval
Suppose that we wished to construct a

confidence interval based on these within-sub-
ject data. As shown in Appendix A(2), a bona
fide confidence interval—one designed to
provide information about values of individual
population means—would be exactly that
shown in Figure 2B, i.e., ±3.85. That is, if we
wish to provide information about, say, the
value of the 1-sec condition population mean,
we must construct the confidence interval that
includes the same intersubject variability that
constituted the error variance in the between-
subject design.

Intuitively, this seems wrong. An imme-
diately obvious difficulty is that such a confi-
dence interval would yield a different conclu-
sion than that yielded by the within-subject
ANOVA. We argued earlier that the Figure-
2B confidence interval shows graphically that
we could not make any strong inferences
about the ordering of the three condition
means (e.g., we could not reject the null hy-
pothesis of no differences). In the between-
subject example, this conclusion was entirely
in accord with nonsignificant F yielded by the
between-subject ANOVA. In the within-sub-
ject counterpart, however, such a conclusion
would be entirely at odds with the highly sig-
nificant F yielded by the within-subject
ANOVA. This conflict is no quirk; it occurs
because the intersubject variance, which is ir-
relevant in the within-subject ANOVA, par-
tially determines (and in this example would
almost completely determine) the size of the
confidence interval. More generally, because
the ANOVA and the confidence interval are
based on different error terms, they provide
different (and seemingly conflicting) informa-
tion.

Table 2
A Within-Subjects Design: Number Recalled (out of

20) for 10 Subjects in each of Three  Conditions.
Each Row Corresponds to One Subject. (NOTE:
Mj: Mean of Condition j;  Mi: Mean of Subject i).

Exposure Duration Per
Word (sec)

Subj 1 sec 2 sec 5 sec Mi

1 10 13 13 12.00
2 6 8 8 7.33
3 11 14 14 13.00
4 22 23 25 23.33
5 16 18 20 18.00
6 15 17 17 16.33
7 1 1 4 2.00
8 12 15 17 14.67
9 9 12 12 11.00

10 8 9 12 9.67

Mj M1 =
11.0

M2 =
13.0

M3 =
14.2

M = 12.73
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Figure 3. An example of a within-subject
design: Means (connected by the heavy solid
line) are shown with individual subject curves
(other lines).
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A Within-Subject Confidence Interval
To escape this conundrum, one can

reason as follows. Given the irrelevance of
intersubject variance in a within-subject
design, it can legitimately be ignored for
purposes of statistical analysis. In Table 3 we
have eliminated intersubject variance without
changing anything else. In Table 3, each of the
three scores for a given subject has been
normalized by subtracting from the original
(Table-2) score a subject-deviation score
consisting of that subject’s mean, Mi
(rightmost column of Table 2) minus the
grand mean, M = 12.73 (Table 2, bottom
right). Thus each subject’s pattern of scores

over the three conditions remains unchanged,
and in addition the three condition means
remain unchanged. But, as is evident in Table
3, rightmost column, each subject has the
same normalized mean, equal to 12.73, the
grand mean.

Figure 4 shows the data from Table 3; it
is the Figure 3 data minus the subject
variability. As shown in Appendix A(3), there
are now only two sources of variability in the
data: the condition variance is, as usual,
reflected by the differences among the three
condition means, while the remaining
variance—the interaction variance—is
reflected by the variability of points around
each of the three means.

Figure 5A shows the Figure-4 data re-
drawn with the individual-subject curves re-
moved, leaving only the mean curve and the
individual data points. It is evident that there
is an intimate correspondence between Figure
5A and Figure 2A. In both cases, the condition
means are shown surrounded by the individual
data points, and in both cases, the variability
of the individual points around the condition
means represents the error variance used to
test for the Condition effect in the ANOVA.
Intuitively therefore, it is sensible to compute
from the Figure-5A data something very much
like the between-subject confidence interval
that was computed from the Figure 2A data
(cf. Figure 2B). Because the variability in
Figure 5A is entirely interaction variance, the
appropriate formula is, as shown in Appendix
A(3),

CI = Mj ± 
MSSxC

n   [criterion t(18)]

which, in this example, is ±0.52. More gener-
ally,

CI = Mj ± 
MSSxC

n   [criterion t(dfSxC)] (2)

Table 3
Within-Subjects Design: Data  Have.been

Normalized to Remove Subject Variablity. Each
Subject's Deviation Score from the Grand Mean
has Been Subtracted from Each Subject's Score.
Condition Means (Mj) do not Change from the

Table-2 Data.

Exposure Duration Per
Word (sec)

Subj 1 sec 2 sec 5 sec Mi = M

1 10.73 13.73 13.73 12.73
2 11.40 13.40 13.40 12.73
3 10.73 13.73 13.73 12.73
4 11.40 12.40 14.40 12.73
5 10.73 12.73 14.73 12.73
6 11.40 13.40 13.40 12.73
7 11.73 11.73 14.73 12.73
8 10.07 13.07 15.07 12.73
9 10.73 13.73 13.73 12.73
10 11.07 12.07 15.07 12.73

Mj M1 =
11.0

M2 =
13.0

M3 =
14.2

M = 12.73

0

5

10

15

20

25

30

0 1 2 3 4 5 6

Nu
m

be
r o

f W
or

ds
 R

ec
al

le
d

Study Time per Word (sec)

Subject Variability Removed

Figure 4. Subject variability has been removed
from the Figure-2 data using the procedure
described in the text.
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Thus, Equation 2 embodies a within-subjects
confidence interval. Note that there are two
differences between Equations 1 and 2. First,
the “error variance” in Equation 2 is the inter-
action mean squares rather than the within
mean squares. Second, the criterion t in
Equation 2 is based on dfSxC rather than dfW.

Figure 5B shows the resulting confidence
intervals around the three condition means. It
is abundantly clear that the information con-
veyed by Figure 5B mirrors the result of the
ANOVA, clearly implying differences among
the population means. (To illustrate this clarity
a fortiori, the small plot embedded in Figure
5B shows the same data with the ordinate ap-
propriately rescaled.) We emphasize that this
confidence interval, and the associated
ANOVA, now provide concordant informa-
tion because they are based on the same error
term (MSSxC)—just as in a between-subjects
design, the ANOVA and a confidence interval
provide concordant information because they
are both based on the same error term, MSW.

Inferences About Patterns of
Population Means

As we have noted, the “confidence inter-
val” generated by Equation 2 is not a bona-
fide confidence interval, in the sense that it
does not provide information about the value
of some relevant population mean. We have
also noted that in either a between- or a
within-subject design, a bona-fide confidence
interval—one truly designed to provide infor-
mation about a population mean’s
value—must be based on intersubject variance
as well as interaction variance. However, this
Figure-5B confidence interval has an
important property that justifies its use in a
typical within-subject design. This property
has to do with inferring patterns of population
means across conditions.

Earlier we argued that a psychologist is
typically interested not in the specific values
of relevant population means, but instead is
interested in the pattern of population means
across conditions. In the present hypothetical
study for example it might, as noted, be of in-
terest to confirm a hypothesis that the three
condition population means form a monotoni-
cally increasing sequence.

In a within-subject design, as in a be-
tween-subject design, an ANOVA is designed
to address the question: are there any differ-
ences among the population means? The
within-subject confidence interval addresses
the same question. In its simplest form, the
question boils down to: are two sample means
significantly different? In a between-subject
design, there is a precise correspondence be-
tween the results of an ANOVA and the re-
sults of using confidence intervals: as shown
in Appendix A(1) two sample means, Mj and
Mk are significantly different given a particu-
lar a if and only if

|Mj - Mk| > 2  x CI
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Figure 5. Construction of a within-subject
confidence interval. Top panel: the only
remaining variance is interaction variance.
Bottom panel: a confidence interval constructed
on the basis of the top-panel data. Note the
analogy between this Figure and Figure 1.
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where “CI” is the (100 x (1.0 - a ))% confi-
dence interval. As demonstrated in Appendix
A(3), the within-subjects confidence interval
also has the property that it is related by a fac-
tor of 2  to the confidence interval around the
difference between two means.

In summary, a between-subjects and a
within-subjects confidence interval function
similarly in two ways. First they both provide
information that is consistent with that pro-
vided by the ANOVA, and second they both
provide a clear, direct picture of the
(presumably important) underlying pattern of
population means. In addition, they both pro-
vide a clear, direct picture of relevant statisti-
cal power in that, smaller the confidence in-
terval, the greater the power.

Additional Issues
The foregoing constitutes the major thrust

of our remarks. In this section, we address a
number of other issues involving the use of
confidence intervals in general and within-
subjects confidence intervals in particular.

Assumptions
In our discussions thus far, we have made

the usual assumptions (see Appendix A for a
description of them). In this section, we dis-
cuss several issues regarding effects of and
suggested procedures to be used in the event
of assumption violations.

In repeated-measures ANOVAs applied
to cases in which there are more than two
conditions, the computed F-ratio is, strictly
speaking, correct only under the assumption of
sphericity. A strict form of sphericity (called
compound symmetry) requires that population
variances for all conditions be equal
(homogeneity of variance) and that the corre-
lations between each pair of conditions be
equal (homogeneity of covariance). If the
sphericity assumption is violated (and it is ar-
guable that this typically is the case, e.g.,
O’Brien & Kaiser, 1985), two problems arise.
First, the F-ratio for the test of the conditions
effect tends to be inflated (Box, 1954).
Corrections for this problem have been devel-
oped in which the degrees of freedom used to
test the obtained F-ratio are adjusted
according to the seriousness of the departure
from sphericity (Greenhouse & Geisser, 1959;
Huynh & Feldt, 1976).

Second, violation of the sphericity as-
sumption compromises the use of the omnibus
error term (and its associated degrees of free-
dom) when testing planned or other types of
contrasts. The omnibus error term is the aver-
age of the error terms associated with all pos-
sible one-degree-of-freedom contrasts that
could be performed with the set of conditions
that were tested. When sphericity is violated,
these specific error terms may vary widely, so
the omnibus error term is not necessarily a
valid estimate of the error term for a particular
contrast (O’Brien & Kaiser, 1985).

One solution to the problem of violation
of the sphericity assumption is to conduct a
multivariate analysis of variance (MANOVA)
in place of a univariate analysis of variance,
an approach that some advocate as a general
solution (e.g., O’Brien & Kaiser, 1985). The
MANOVA test avoids the problem of
sphericity because it does not use pooled error
terms. Instead, MANOVA is a multivariate
test of a set of orthogonal, one-degree-of-free-
dom contrasts, with each contrast treated as a
separate variable (not pooled as in ANOVA).

The use of MANOVA in place of
ANOVA for repeated measures designs is not,
however, universally recommended. For ex-
ample, Hertzog and Rovine (1985) recom-
mend estimating violations of sphericity using
the measure e as an aid in deciding whether to
use MANOVA in place of ANOVA (e.g.,
Huynh & Feldt, 1970). Huynh and Feldt point
out that such violations do not substantially in-
fluence the type I error rate associated with
univariate F-tests unless e is less than about
0.75. For values of e between 0.90 and 0.75,
Hertzog and Rovine recommend using the F-
tests with adjusted degrees of freedom, and
only for values of e below 0.75 do they sug-
gest using MANOVA.

More important for our purposes is that
the sphericity assumption problem arises only
when considering omnibus tests. As soon as
one considers specific, one-degree-of-freedom
contrasts, as is often done after MANOVA is
applied, the sphericity assumption is no longer
in effect. Thus, a viable solution is to use the
appropriate specific error term for each con-
trast (e.g., Boik, 1981) and avoid the spheric-
ity assumption altogether.
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The problems that result from violation of
sphericity have implications for the implemen-
tation of confidence intervals as graphic aids
and as alternatives to hypothesis testing. The
computation of the confidence interval as
shown in Equation 2 uses the omnibus error
term, and is the interval that would be plotted
with each mean, as in Figure 5. Given that a
crucial function served by the plotted confi-
dence interval is to provide an impression of
the pattern of differences among means, we
must be sensitive to the possibility that viola-
tion of sphericity causes an underestimate of
the interval’s size.

To counteract the underestimation stem-
ming from inappropriately high degrees of
freedom, one could use the Greenhouse-
Geisser or Huynh-Feldt procedure (as com-
puted by ANOVA packages such as BMDP)
to adjust the degrees of freedom used in es-
tablishing the criterion t-value.

It is important to note that although the
confidence interval computed by applying the
adjustment to degrees of freedom may be used
to provide a general sense of the pattern of
means, more specific questions about pairs of
means should be handled differently. If the
omnibus error term is not appropriate for use
in contrasts when sphericity is violated, then
the confidence interval plotted with each mean
should be based on a specific error term. The
choice of the error term to use will depend on
the contrast that is of interest. For example, in
Figure 5 it might be important to contrast the
first and second duration conditions and the
second and third conditions. The confidence
interval plotted with the means of the first and
second conditions would be based on the error
term for contrasting those two conditions. The
confidence interval plotted with the mean for
the third condition would be based on the
error term for the contrast between the second
and third conditions. For ease of comparison,
one might plot both intervals, side by side,
around the mean for the second condition. The
choice of which interval(s) to plot will depend
on the primary message that the graph is
intended to convey. Below we provide a
specific example of plotting multiply-derived
confidence intervals to illustrate different
characteristics of the data.

Another means of treating violation of the
homogeneity of variance assumption!is to

compute separate confidence intervals for the
separate condition means. In a between-sub-
jects design, this is a simple procedure: one
estimates the population variance for each
group, j (MSWj based on nj - 1 degrees of
freedom, where nj is the number of observa-
tions in Group j) and then computes the confi-
dence interval for that group as

CIj = 
MSWj!

!nj   x [criterion t(nj - 1)]

An analogous procedure for a within-
subjects design is described in Appendix B.
The general idea underlying this procedure is
that one allows the subject-by-condition inter-
action variance to differ from condition to
condition; the confidence interval for condi-
tion j is then based primarily on the interaction
variance from Condition j. The equation for
computing the best estimate of this Condition-
j interaction variance ("estimatorj") is,

estimatorj = ËÁ
Ê

¯
˜̂J

J-1  ËÁ
Ê

¯
˜̂MS’Wj!-!

MSSxC!
J  

Here, MSSxC is the overall mean square due to
interaction, and

MS’Wj = 
Â(y’ij!-!Mj)2

!n!-!1   = 
Â

i
y’ij2!-!Tj2/n

n!-!1  

(where Tj is the Group-j total and again n is
the number of subjects). Thus, MS’Wj is the
“mean-square within” obtained from
Condition j of the normalized (y’ij) scores
(e.g., in this article’s example a mean square
within a given column of Table 3). Having
computed the estimator, the Group-j confi-
dence interval is computed as,

CIj = 
estimatorj

n   x criterion t (n - 1)(3)

Mean Differences
Above we discussed the relation between

confidence intervals around sample means and
around the difference between two sample
means. Because this relation is the same
(involving a factor of 2 ) for both between-
subjects and the within-subjects confidence
intervals, one could convey the same informa-
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tion in a plot by simply including a single
confidence interval appropriate for the differ-
ence between two sample means.

Which type of confidence interval is
preferable is partly a matter of taste, but is
also a matter of the questions being addressed
in the experiment. Our examples in this article
involved parametric experiments in which an
entire pattern of means was at issue. In our
hypothetical experiments, one might ask, for
instance, whether the relation between study
time and performance is monotonic, or per-
haps whether it conforms to some more spe-
cific underlying mathematical function, such
as an exponential approach to an asymptote.
In other experiments, more qualitative
questions are addressed (e.g., “what are the
relations among conditions involving a
positive, neutral, or negative prime?”) Here,
the focus would be on specific comparisons
between sample means, and a confidence
interval of mean differences might be more
useful.

Multifactor Designs
The logic that we have presented here is

based on a simple design in which there is
only a single factor that is manipulated within
subjects. In many experiments, however, there
two or more factors. In such cases, all factors
may be manipulated within subjects, or some
factors may be within subjects, while others
are between subjects.
Multifactor Within-Subjects Designs

Consider a design in which there are two
fixed factors, A and B, with J and K levels per
factor, combined with n subjects. In such a
design, there are three error terms,
corresponding to the interactions of subjects
with factors A, B, and the AxB interaction.
Roughly speaking, one of two basic results
can occur in this design: either the three error
terms are all approximately equal, or they
differ substantially from one another.

As discussed in any standard design text
(e.g., Winer, 1971) when the error terms are
all roughly equal, they can be pooled by divid-
ing the sum of the three sums of squares by
the sum of the three degrees of freedom
(which amounts to treating the design as if it
were a single-factor design with JK condi-

tions). A single confidence interval can then
be computed using Equation 2,

CI = Mj±
MSSxAB

n   [criterion t(dfSxAB)] (4)

where SxAB refers to the interaction of sub-
jects with the combined JK conditions formed
by combining factors A and B (based on (n -
1)(JK - 1) degrees of freedom). This confi-
dence interval is appropriate for comparing
any two means (or any pattern of means) with
one another.

As discussed above, the use of the om-
nibus error term depends on meeting the
sphericity assumption. When this assumption
is untenable (as indicated, for example, by a
low value of e computed in conjunction with
the Greenhouse-Geisser or Huynh-Feldt pro-
cedure for corrected degrees of freedom, or by
substantially different error terms for main ef-
fects and interactions involving the repeated-
measures factors), different mean differences
are distributed with different variances, as
shown in the Appendix A(4). For instance, the
standard error appropriate for assessing
(Mjk!-!Mjr) may be different from that appro-
priate for assessing (Mjk!-!Mqk) or
(Mjk!-!Mqr). In such cases, one should adopt
the strategy of plotting confidence intervals
that can be used to assess patterns of means or
contrasts that are of greatest interest. One
might even plot more than one confidence in-
terval for some means, or construct more than
one plot for the data. Finally, one could treat
the design as a one-way design with
“conditions” actually encompassing all JxK
cells; one could then drop the homogeneity-of
variance assumption and compute an individ-
ual confidence interval for each condition as
discussed in the “Assumptions” section above
(see Equation 3). Here the interaction term
would be MSSxAB described as part of
Equation 4.
Mixed Designs

Other designs involve one or more factors
manipulated within subjects in conjunction
with one or more factors manipulated between
subjects. Here, matters are further compli-
cated, as evaluation of the between-subjects
effect is almost always based on a different er-
ror term than is evaluation of the within-sub-
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jects or the interaction effects. Here again, one
could, at best, construct different confidence
intervals depending on which mean differ-
ences are to be emphasized.
Data Reduction in Multifactor Designs

An alternative to treating multifactor data
as simply a collection of (say) JxK means is to
assume a model that implies some form of
preliminary data reduction. Such data reduc-
tion can functionally reduce the number of
factors in the design (e.g., could reduce a two-
fixed-factor design to a one-fixed-factor de-
sign).

An Example. To illustrate, suppose that
one were interested in slope differences be-
tween various types of stimulus materials
(e.g., digits, letters, words) in a Sternberg
(1966) memory-scanning task. One might de-
sign a completely within-subjects experiment
in which J levels of set size were factorially
combined with K levels of stimulus type and n
subjects. If it were assumed that the function
relating reaction time to set size were funda-
mentally linear, then one could compute a
slope for each subject, thereby functionally
reducing the design to a one-factor!(stimulus
type), within-subject design in which “slope”
was the dependent measure. Confidence inter-
vals around mean slopes for each stimulus-
type level could be constructed in the manner
that we have described. Alternatively, if
stimulus type were varied between subjects,
then computing a slope for each subject would
allow one to treat the design as one-way, be-
tween-subjects design (again with “slope” as
the dependent measure), and standard be-
tween-subjects confidence intervals could be
computed.

Contrasts. The slope of an assumed linear
function is, of course, a special case of a one-
degree-of-freedom contrast by which a single
dependent variable can be computed from a J-
level factor as,

y = 
Â

j!
 wjMj

where the Mj are the means of the j levels and
the wj (constrained such that 

Â

j!
 wj = 0) are the

weights corresponding to the contrast. Thus
the above examples can be generalized to any
case in which the effect of some factor can be
reasonably well specified.

The Case of a J x 2 Design. One particu-
lar fairly common situation bears special
mention. When the crucial aspect of a multi-
factor design is the interaction between two
factors, and one of the factors has only two
levels, the data can be reduced to a set of J dif-
ference scores. These difference scores can be
plotted along with the confidence interval
computed from the error term for an ANOVA
of the difference scores. A plot of this kind
addresses whether the differences between
means are different and provides an
immediate sense of (1) whether an interaction
is present and (2) the pattern of the interaction.
Such a plot can accompany the usual plot
showing all condition means.

To illustrate the flexibility of this ap-
proach, consider a semantic priming experi-
ment in which subjects name target words that
are preceded by either a semantically related
or unrelated prime word. Prime relatedness is
factorially combined within subjects with the
prime-target stimulus onset asynchrony (SOA)
which, suppose, is 50, 100, 200, or 400 ms.
Hypothetical response latency data from six
subjects are shown in Table 4. The mean la-
tency for each of the eight conditions is plot-
ted in Figure 6A. Confidence intervals in
Figure 6A are based on the comparison be-
tween related and unrelated prime conditions
within a particular SOA (i.e., on the 5-degree-
of-freedom error terms stemming from indi-
vidual two-level one-way ANOVAs per-
formed at each SOA level). This plot thus il-
luminates the degree to which priming effects
are reliable at the different SOAs.
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Suppose that a further avenue of investi-
gation revolves around the degree to which
priming effects differ in magnitude across the
SOAs. In ANOVA terms the question would
be: is there a reliable interaction between
prime type and SOA? A standard 4x2 within-
subjects ANOVA applied to these data shows
that the interaction is significant , F(3, 15) =
7.08, MSSxC = 95.39. The nature of the inter-
action can be displayed by plotting mean dif-
ference scores (which, for individual subjects,
are obtained by subtracting the latency in the
related prime condition from the latency in the
unrelated prime condition) as a function of
SOA. These difference scores (representing
priming effects) are included in Table 4, and
the mean difference scores are plotted in
Figure 6B. The confidence intervals in Figure
6B are based on the MSSxC term for a one-
factor repeated measures ANOVA of the dif-
ference scores (MSSxC = 190.78). (Note that,
as with any difference score, the error term in
this ANOVA is twice the magnitude of the
corresponding error terms in the full, two-fac-
tor ANOVA that generated the F-ratio for the

interaction.) Examination of the bottom panel
of Figure 6 indicates immediately that indeed,
reliably different priming effects occurred at
different SOAs (consistent with the significant
interaction obtained in the two-factor
ANOVA) and also reflects the range of pattern
that this interaction could assume.

Knowledge of Absolute Population
Means

Central to our reasoning up to now is that
knowledge of absolute population means is
not critical to the question being addressed.
Although this is usually true, it is not, of
course, always true. For instance, one might
be carrying out a memory experiment in
which one were interested in whether perfor-
mance in some condition differed from a 50%
chance level. In this case, the within-subjects
confidence interval that we have described
would be inappropriate. If one were to use a
confidence interval in this situation, it would
be necessary to use the confidence interval
that included the between-subject variation
that we removed in our examples.

Table 4
Data (Reaction Times) from Six Subjects in a Hypothetical Priming Experiment. Four Values of SOA are
Combined with Two Priming Conditions (Colums Labeled R:  Primed; Columns Labeled U: Unprimed).

Columns Labeled D Represent Unprimed Minus Primed Difference Scores at each SOA Level.

SOA = 50 ms SOA = 100 ms SOA = 200 ms SOA = 400 ms
Subject R U D R U D R U D R U D

1 450 462 12 460 482 22 460 497 37 480 507 27
2 510 492 -18 515 530 15 520 534 14 504 550 46
3 492 508 16 512 522 10 503 553 50 520 539 19
4 524 532 8 530 543 13 517 546 29 503 553 50
5 420 409 -11 424 452 28 431 468 37 446 472 26
6 540 550 10 538 528 -10 552 575 23 562 598 36

Mj 489 492 3 497 510 13 497 529 32 503 537 34
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Meta-Analysis
One advantage of reporting the results of

ANOVA and tables of means and standard
deviations is that it makes tasks associated
with meta-analysis easier and more precise. In
cases in which an author relies on graphical
depictions of data using confidence intervals,
as described here, it would be helpful to in-
clude in the Results section a statement of the
effect size associated with each main effect,
interaction, or other contrast of interest in the
design. This information is not typically in-

cluded even in articles that apply standard hy-
pothesis testing techniques with ANOVA. All
researchers would benefit if both the hypothe-
sis testing method and the graphical approach
advocated here were supplemented by esti-
mates of effect size.

Conclusions: Data Analysis as Art,
not Algorithm

In this article, we have tried to
accomplish a specific goal: to describe an
appropriate and useful confidence interval to
be used in within-subjects designs that serves
the same functions as does a confidence
interval in a between-subjects design.
Although we have attempted to cover a variety
of “ifs, ands, and buts” in our suggestions, we
obviously cannot cover all of them. We would
like to conclude by underscoring our belief
that each experiment constitutes its own data-
analysis challenge in which (1) specific (often
multiple) hypotheses are to be evaluated, (2)
standard assumptions may (or may not) be
violated to varying degrees, and (3) certain
sources of variance or covariance are more
important than others. Given this uniqueness,
it is almost self-evident that no one set of
algorithmic rules can appropriately cover all
possible situations.
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Appendix A
We begin by considering a between-sub-

jects design, and providing the logic underly-
ing the computation of the usual standard error
of the mean. We then articulate the assump-
tions of the within-subjects standard error, and
demonstrate its relation to its between-subjects
counterpart. Our primary goal is to show that
the within-subjects standard error plays the
same role as does the standard, between-sub-
jects standard error in two senses: its size is
determined by the error term used in the
ANOVA; and it is related by a factor of 2  to
the standard error of the difference between
two means. Appendix sections are numbered
for ease of reference in the text.

(1) Between-Subjects Designs
Consider a standard one-factor, between-

subjects design in which subjects from some
population are assumed to be randomly sam-
pled and randomly assigned to one of J condi-
tions. Each subject thus contributes one obser-
vation to one condition. All observations are
independent of one another. Because we are
primarily concerned with comparing between-
to within-subjects designs, we lose little gen-
erality by assuming that there are equal num-
bers, n, of subjects in each of the J conditions.
The fixed-effects linear model underlying the
ANOVA is,

yij = m + aj + gij + gij (1)

Here, yij is the score obtained by Subject i in
Condition j, m is the grand population mean,
aj is an effect of the Condition-j treatment (Â

j
aj  

= 0), gij is an effect due to Subject ij, and gij is
an interaction effect of Subject ij’s being in
Condition j. We include both gij and gij for
completeness although they cannot, of course,
be separated in a between-subjects design. We
assume that the gij are normally distributed
over subjects in the population with means of
zero and variances of s2g. We assume that the
gij are likewise normally distributed over sub-
jects in the population with means of zero and
variances of s2g for all J conditions. We as-
sume that for each condition, j, the gij and the
gij are independent and that the gij are inde-
pendent of one another over conditions.
Notationally, we let gij + gij = eij, which, given
our assumptions so far, means that we can de-
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fine “error variance,” s2e, to be s2g + s2g and
that Equation 1 can be rewritten as

yij = m + aj + eij (2)

As is demonstrated in any standard statis-
tics textbook (e.g., Hays, 1973, Chapters 12-
13), the following is true given the model em-
bodied in Equation 2 and the assumptions that
we have articulated.
1. The expectation of Mj, the mean of
Condition j, is mj, where mj, the population
mean given condition j, is equal to m + aj.
2. An unbiased estimate of the error variance,
s2e, is provided by (MSW) based on J(n - 1)
degrees of freedom. The condition means, Mj
are distributed over samples of size n with
variance s2e/n. Thus the standard error of Mj,
SEj, computed as MSW/n , is, determined by
the same quantity (MSW) that constitutes the
error term in the ANOVA.
3. The standard error of the di f ference
between any two means, Mj and Mk, is
computed by,

SEj - k = 2!x!
MSW

n   = 2  x SEj

Therefore, the standard error of the mean and
the standard error of the difference between
two means are related by 2 . A corollary of
this conclusion is that two means, Mj and Mk,
are significantly different by a two-tailed t-test
at some significance level, x, if and only if,

|Mj!-!Mk|
2!x!MSW

n!!!

    >  Criterion t(dfW)

where Criterion t(dfW) is two-tailed at the
(100 x (1.0 - x))% level, or,

|Mj!-!Mk|
! 2   > 

MSW
n   Criterion t(dfW) = CI

where “CI” at the right of the equation refers
to the (100 x (1.0 - x)) confidence interval.
Thus, as asserted in the text, Mj and Mk differ
significantly at the x% level when,

|Mj - Mk| > 2  x CI

(2) Within-Subjects Designs
Now consider a standard one-factor,

within-subjects design in which n subjects
from the population are assumed to be
randomly sampled; however, each subject
participates in all J conditions. Each subject
thus contributes one observation to each
condition. The linear model underlying the
ANOVA is,

yij = m + aj + gi + gij (3)

As above, yij is the score obtained by Subject i
in Condition j, m is the population mean, and
aj is an effect of the Condition-j treatment.
Again gi is an effect due to Subject i (note that
gi now has only a single subscript, i, since
each subject participates in all conditions).
Again, gij is the interaction effect of Subject
i’s being in Condition j. We make the same
assumptions about gi and the gij as we did in
the preceding section.

The mean of Condition j, Mj, has an
expectation of,

E(Mj) = E[
1
n Â

i
(m + aj + gi + gij) ]

= E[m + aj + 
1
n Â

i
(gi + gij) ]

= m + aj + 
1
n Â

i
 E(gi) + 

1
n Â

i
 E(gij)

or, because E(gi) = E(gij) = 0 for all j,
E(Mj) = m + aj = mj (4)

where m j is the population mean given
condition j.

The expectation of (yij - Mj)2 is,

E(yij - Mj)2 =

E[(mj + gi + gij - 
1
n Â

i
(mj + gi + gij) ]2

which reduces to,
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E(yij - Mj)2 = (sg2 + sg2)[(n - 1)/n] (5)

Thus, the variablity of the yij scores around Mj
includes variance both from subjects (gi) and
from interaction (gij).

The variance of the Mj’s around mj is,

E(Mj - mj )2 = E[
1
n Â

i
(mj + gi + gij - mj) ]2

= E[
1
n Â

i
(gi + gij) ]2

= E[
Â

i
 gi2/n + 

Â

i
 gij2/n]

= (sg2 + sg2)/n (6)

That is, over random samples of subjects, the
variability of the Mj’s includes both subject
and interaction variability. An unbiased
estimate of (sg2 + sg2)/n is obtained by
(MSS!+!MSSxC)/n. Therefore, the bona fide
standard error of Mj is (MSS!+!MSSxC)/n  .

(3) Removal of Intersubject Variance
We now consider our proposed correction

to each score designed to remove subject
variance (that resulted in the transformation
from Table 2 to Table 3 in the text). This
correction consisted of subtracting from each
of Subject i’s scores an amount equal to
Subject i’s over-condition mean, Mi, minus
the grand mean, M. Thus, the equation for the
transformed dependent variable, y’ij, is

y’ij = m + aj + gi + gij - Mi + M (7)

It can easily be demonstrated that the
transformed mean of Condition j, M’j, equals
the untransformed mean, Mj. A comparison of
Equations (3) and (7) indicates that M’j and
Mj differ by mean over the n subjects of (M -
Mi), or,

M’j - Mj = 
1
nÂ

i

(M!-!Mi)  = M - 
1
n Â

j
!1JÂ

i

yij  =

 = M - 
1
Jn(JnM)  = 0

which means that Mj = M’j. Therefore, by
Equation (4), we conclude that the expectation
of M’j = Mj, the mean of condition j, is mj, the
population mean given condition j.

Next, we consider the within-condition
variance of the y’ij scores. The variance of the
(y’ij!-!Mj) scores is,

E(y’ij - Mj)2 = E(yij - Mi + M - Mj)2 =

= E[m + aj + gi + gij - 
1
J Â

j
(m + aj + gi + gij)  +

+ 
1
JnÂ

j
Â

i
(m+ aj + gi + gij)  - 

1
nÂ

i
(m + aj + gi + gij) ]2

which can be reduced to,

E(y’ij - Mj)2 = s2g[(n - 1)/n]

Thus the within-cell variance of the y’ij scores
includes only the interaction component.
Moreover, the only additional variance of the
y’ij scores is variance due to conditions.

We have asserted in the text that the vari-
ance of the y’ij scores within each condition
plays a role analogous to the variance of the
individual subject scores within each condi-
tion of a between-subjects design. More pre-
cisely, we consider a “sum of squares within”
over the y’ij scores, which can be computed
as:

SS’W = 
Â

j
!Â
i

(y’ij!-!Mj) 2

= 
Â

j
!Â
i

(yij!-!Mi!+!M!-!Mj) 2

which reduces to,

SS’W  = 
Â

j
!Â
i

yij 2 - JÂ
i

!
Mi 2 - nÂ

j

!
Mj 2 +

JnM2
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which is equal to sum of squares due to the
subject by condition interaction. This means
that the variance of the y’ij scores within each
condition are distributed with a variance that
can be estimated by MSSxC, whose expecta-
tion is s 2g. Therefore the standard error is
computed by,

SEj = 
MSSxC

n  

As in the between-subject case, accordingly,
the size of the standard error is determined by
the same quantity (MSSxC) that constitutes the
error term in the ANOVA.

Now, consider the difference between two
sample means,

(Mj - Mk) =
1
nÂ

i
!(mj + gi + gij)  - 

1
n Â

i
(mk + gi + gik) 

 = 
1
n Â

i
(mj - mk + gij - gik) 

 = (mj - mk) + 
1
n Â

i
(gij - gik) (6)

The gij and gik are assumed to be distributed
independently, with means of zero; thus the
expectation of (Mj - Mk) is (mj - mk). By the
homogeneity of variance assumption, the gij
and gik are distributed identically in
Conditions j and k, with variance s2g. The (Mj
- Mk) are therefore distributed with a variance
equal to 2s2g/n which, in turn, is estimated by
2MSSxC/n. This implies that the standard de-
viation of the difference between any two
means, Mj and Mk, is

SEj - k = 
2!x!MSSxC

n   = 2  x SEj

Therefore the standard error is related to the
standard error of the difference between two
means by 2 , just as it is in a between-sub-
jects case.

(4) Multifactor Designs
Consider a JxK design in which each of n

subjects participates in each JK level. The
model describing this situation is

yij = m + aj + bk+ abjk + gi + gijk + agij +
bgik + abgijk (7)

Here, yij, m , and aj are as in Equation (3),
while abjk is an effect due to the A!x!B
interaction. The subject-by-cell interaction
term, gijk acts like gij in Equation 3, but has an
extra subscript to refer to all JK cells. The agij,
the interaction of subjects with factor A, sums
to zero over the J levels of A, and is identical
at each level k for each subject, i. Likewise,
the bgik, the interaction of subjects with factor
B, sums to zero over all K levels of B, and is
identical at each level j for each subject, i.
Finally, the abgijk, the interaction of subjects
with the AxB interaction sum to zero both
over all J levels of Factor A for each level k
and across all K levels of Factor B for each
level j.

There are three mean squares involving
subject interactions: the AxS, BxS, and
AxBxS interactions which are the ANOVA
error terms for the effects of A, B, and AxB.
As is shown in any standard design text (e.g.,
Winer, 1971, Chapter 7), the expected mean
squares of each of these interactions (MSSxA,
MSSxB, and MSSxAxB) contains both a s2g
and a s 2g component along with another
variance component corresponding to the
specific effect (s2a, s2b, etc.). If, using
standard procedures, one can infer that s2ag =
s2bg = s2abg = 0, then for making inferences
about effects of A, B, or AxB, there remains
only a single source of error, s2g that is
estimated by the pooled variances due to AxS,
BxS, and AxBxS.

We have been emphasizing that
confidence intervals—both standard
confidence intervals and the within-subjects
confidence intervals—are appropriate for
assessing patterns of means or, most basically,
differences between means. Given the model
in Equation 7, the standard error of the
difference between two means depends on
which two means are being compared. In
particular, for comparisons...

Across different columns within a row:

E(SE2jk-qk) = 
s2g!+!s2ag!+!s2abg

!n  
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Across different rows within a column:

E(SE2jk-jr) = 
s2g!+!s2bg!+!s2abg

!n  

Across different rows and columns:

E(SE2jk-qr) = 
s2g!+!s2ag!+!s2bg!+!s2abg

!n  

The standard errors appropriate for for any
arbitrary mean difference will, accordingly, be
equal only when s2ag = s2bg = 0.

Appendix B
In our previous considerations, we have

made a homogeneity-of-variance assumption
for the gij (interaction components). That is,
we have assumed that sg

2
 is identical for each

of the j conditions. We now drop this
assumption, and assume that the variance of
the gij is sgj

2 . Denote the mean variance of the
J sgj

2 ‘s (over the J conditions) as s g
2 .

Consider Group j. The variance of the gij
for that group, sgj

2 , is estimated as follows.
First, the expectation of the variance of the
normalized scores, y’ij is,

E (y’ij - Mj)2 =
= E(m + aj + gi + gij - Mi + M- Mj)2

which (after not inconsiderable algebra)
reduces to,

E (y’ij - Mj)2 =
= f([sgj

2 (n - 1)(J-2)] + [s g
2 (n - 1)],nJ)

Thus the expectation of the sum of squares
within the y’ij scores of group j is,

E 
Î
ÍÈ

˚
˙̆Â

i

(y’ij!-!Mj)2   =

 
[sgj

2 (n!-!1)(J-2)]!+![s g
2 (n!-!1)]

J   

which means that the expectation of the mean
square within Group j, MS’Wj, is,

E Î
Í
Í
È

˚
˙
˙
˘Â

i
(y’ij!-!Mj)2

n!-!1   = sgj
2  ËÁ

Ê
¯
˜̂J!-!2

J   + 
s g

2

J   

or,

E Î
Í
Í
È

˚
˙
˙
˘Â

i

(y’ij!-!Mj)

n!-!1 !ËÁ
Ê

¯
˜̂J!

J!-!2   = sgj
2  + 

s g
2

J!-!2  

Because the first factor in this equation is
MS’Wj,

E MSWj
J

J - 2
Ê 
Ë 
Á 

ˆ 
¯ 
˜ 

È 

Î 
Í 

˘ 

˚ 
˙ = sgj

2 + 
s g

2

J!-!2  (1)

It can be shown that the expectation of the
overall mean square due to interaction, MSSxC
is s g

2 . Therefore,

E ËÁ
Ê

¯
˜̂MSSxC

J!-!2   = 
s g

2

J!-!2 (2)

Substituting the left side of Equation 2 for the
rightmost term of Equation 1 and rearranging
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terms, the estimator of sgj
2 is,

E Î
Í
È

˚
˙
˘

!ËÁ
Ê

¯
˜̂J

J!-!2 !ËÁ
Ê

¯
˜̂MS’Wj!-!

MSSxC
!J   = sgj

2 (3)

as indicated in the text.
There is one potential problem with the

Equation-3 estimator: because it is the
difference of two estimated variances it can
turn out to be negative. In such an instance,
two possible solutions are (1) to use the
overall estimator or (2) to average estimates
from multiple groups which, for some a priori
reason can be considered to have equal
variances.


