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This paper describes a software system called PLE that is designed to turn a Data General
Corporation computer system into a sophisticated infinite-channel tachistoscope. We describe
hardware and software characteristics of the PLE system and evaluate its performance in
comparison to a typical tachistoscope. Additionally, we describe two example experiments
that have been implemented in the PLE system.

Several characteristics of a typical tachistoscope
might be considered when comparing an actual tachisto-
scope with a computer system as tachistoscope. First,
a tachistoscope affords fairly precise control over
stimulus timing. Similarly, a tachistoscope generally
affords fairly precise control over stimulus luminance.
Third, a tachistoscope allows the use of any visual
stimulus that can be printed on a piece of paper. Fourth,
a tachistoscope is (in practice) limited in the number
of channels that can be independently presented. Fifth,
a tachistoscope is limited with respect to the flexibility
of stimulus presentation order and response collection.
And sixth, a tachistoscope is generally limited in the
sense that it can be used to run only a single subject at
a time.

In this paper, we describe a programming language
(PLE, an acronym for programming language for experi-
mentation) developed at the University of Washington
(cf. Burkhardt, 1976, Note 1, for more complete
descriptions). PLE is a high-level, FORTRAN-like, easy-
to-learn-and-use language whose purpose is to turn a
computer system into a highly sophisticated tachisto-
scope. Our description will compare the PLE system
with a tachistoscope, focusing on the various character-
istics of tachistoscopes enumerated above. The paper has

four major sections. We first describe the hardware
environment within which PLE is currently running.
Second, we describe some of the principal characteristics
of the PLE software itself. Third, we provide two
examples of standard experimental paradigms as they
are implemented in PLE. And, finally, we remark on
the performance characteristics of PLE.

Visual Displays
We will concentrate here primarily on an arrangement

that uses a computer-controlled cathode-ray tube (CRT)
as a stimulus display device. We note briefly, however,
that the computer can also be used to control a slide
projector equipped with a tachistoscopic shutter. As
currently implemented on the University of Washington
system, there is one on-line projector/shutter in each
experimental booth. Such a configuration is useful in a
situation where complex visual stimuli (e.g., color
photographs) are used. Timing is quite good: Rise and
fall times of the shutters are about 1 msec. However, this
configuration loses power with respect to luminance
control, interval timing, number of potential fields, and
flexibility of stimulus presentation.
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PLE’s use is restricted to Data General Corporation
computers because of large amounts of machine-
dependent code. However, the PLE language is currently
implemented on two different systems and could be
useful in a variety of peripheral environments. The
common elements of the systems are 24K memory
NOVA minicomputers supported by Ball Computer
disk systems and software. The two systems both
use Tektronix 604 scopes with the fast-decay P-11
phosphor, but differ in their scope controller hardware
and software. The PLE language was initially designed
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on a system with a powerful IKON scope controller
(Burkhardt, Palmer, & Waddington, 1976) and later
was extended to operate on a second system’s more
primitive, custom-built controller. The IKON system
generates and maintains character displays completely
with hardware; the second system requires software to
convert characters into coordinates and to maintain the
display. Because of PLE’s modular design, the extension
to the more primitive system was reasonably simple
and only occupied a fraction of the original implementa-
tion time. Thus, while PLE is currently implemented on
quite specific equipment, it can be modified to fit other
Data General systems.

SOFTWARE

The usefulness of the computer as a tachistoscope is
determined primarily by the flexibility and usability of
its software. To optimize flexibility and usability, PLE
includes common FORTRAN-like commands as well as
special-purpose commands needed in tachistoscopic
experiments. The latter commands include formatting
for fast-phosphor CRTs, millisecond timing functions,
and multiprogramming capabilities to asynchronously
control eight stations.

Basic Concepts
Data types. Several data types exist in PLE. First,

explicit data types are defined along three binary
dimensions: Variables and constants are either integers
or strings, variables are either scalars or vectors, and
variables are either global or local. Briefly, global
variables refer to all experimental stations, whereas
local variables refer to individual stations, a distinction
that will be described in more detail below. By default,
variables are global scalar integers, but may be declared
any combination of the possible data types.

Display graphics are represented as an implicit data
type. Line endpoints can be used to generate strings of
graphic characters, which in turn can be output in strings
to display the line graphics. This representation allows
an interchangeable treatment of alphanumeric and
graphic strings. In practice, this means the same
programs can display sentences or line drawings as
stimuli. For a further treatment of PLE graphics, see
Burkhardt et al. (1976).

Operations. A number of operations are possible on
both integer and string data types. Integer operations
include the usual arithmetic functions: addition (+),
subtraction (-), multiplication (*), and division (/).
String operations include string assignment (SASSIGN),
string addition (CATONATE), and string subtraction
(SUBSTR). In addition, there are a few special-purpose
operations, including a random-number generator
(RAND), a vector permutation command (PERM),
logical "and" (LAND), logical "or" (LOR), and a
routine to define endpoint graphics (GRAPH).

Branching statements. The branching statements are
similar to those used in FORTRAN and ALGOL. A loop
control command (DO), directional statements (GOTO),
and comparison statements (CMP--compare two integers)
are analogous to the FORTRAN DO loop, GO TO, and
IF statements, respectively. In addition, a convenient
ALGOL-like IF-THEN-ELSE-DONE branching com-
mand, coupled with subroutine calls (CALL), permits
use of a highly efficient block structure (see Visual
Search Example, below).

Asynchronous control. The most novel feature of
PLE is its multiprogramming capabilities. PLE can
execute a program in each of eight stations with little
additional programming effort and minimal decrease in
timing accuracy. These eight stations are controlled
through a single program that specifies the procedures
and data structures that are to be shared and those
that are to be independent for each of the stations.
Programming simplicity results from restricting PLE’s
multiprogramming to one of two modes, global or local.
Global mode restricts the program to a single execution
of the procedures and data common to all stations, while
local mode allows independent execution for each of
the independent stations. Execution mode is easily
controlled by the user. Programs initially enter global
mode, but may be placed into local mode by the FORK
command and later returned to global by the JOIN
command. In a similar fashion, every variable is classified
as either a global variable or a local variable. Local
variables and station-specific I/O devices (CRTs and
response keys) can be accessed only in local mode.
Global variables and common I/O devices (TTY and
disk) can be accessed from either mode.

Formatted I/O
A PLE I/O statement consists of a command word,

a format literal or a label referencing a format statement,
and an associated variable list. The command word
selects a particular I/O device, such as the CRT output
(WRITSCOPE) or the Teletype keyboard input
(READTTY). Individual I/O operations are specified
with format characters accompanied by idiosyncratic
arguments and associated variables. A combination of
format characters followed by arguments enclosed in
carets constitutes a format literal, or format statement.
Examples of several format characters, together with
their functions, arguments, and associated variables,
are presented in Table 1.

As an illustration, to output the string constant
"HELLO" to a scope, the following command is used:

WRITSCOPE "Z~0) A(5) ....HELLO"
In this command, the character size has been set to the
large size (0 in the Z format) and the variable has been
specified as alphanumeric (the A format). The digit 5
in the argument following the A format sets the field
length of the associated variable to five characters; a
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Table 1
Partial List of Format Commands

Formatting Function Character Argument Associated Variable

Expect an alphanumeric variable A Field length String variable
Close a disk f’fie C File number None
Expect a double-precision integer D Field length Integer
Reference a disk file F File number None
Open (get) a disk file G File number File name string
Expect a single-precision integer I Field length Integer
Clear CRT screen K None None
Output a line (CR,LF) L Number of lines None
Purge all scope storage P None None
Rewind a disk file R File number None
Output an alphanumeric constant W "String" None
Output spaces X Number of spaces None
Set character size Z Size None

field length of zero would allow free formatting. Free
formatting is convenient in scope displays where the
size of stimuli may vary widely; however, tLxed formats
are required for disk and TTY output.

More complex displays may be constructed with
equal ease. As an instance, a number-word paired
associate can be output to the center of the screen by
detaining the following formats: the character size (Z),
the number of lines (L), the number of spaces (X), an
integer variable (I), and string variable (A). Consider
the command:

WRITSCOPE "Z<0) L<7> X<4) I<2) X<2) A(0>" NUMBER WORD

where the variables NUMBER and WORD might be "89"
and "SHIRT." This will produce an image on the CRT
that is seven lines down from the top, four spaces
to the right, the number 89, two spaces, and the string
"SHIRT." Additional formats are available for the
special functions of scopes, disks, and Teletypes. For
example, to erase a scope, the clear screen (K) and purge
scope memory (P) formats must be used, as:

WRITSCOPE "K P"

The formats already presented are sufficient for most
experiments.

Timing Statements
There are a number of ways to time events using the

PLE language. A millisecond clock is available to the
user in the reserved double-precision variable, TIMEO,
but it is usually more convenient to use one of four
special timing commands. The timing commands control
the program by delaying execution for a specified
number of milliseconds, delaying execution until a
particular keypress is made and recording that response
and reaction time, recording a response and time
without delaying program execution, or delaying
execution until either a response or a specified amount
of time has passed.

In local mode, the basic timing command (WAIT)
delays program execution at a particular station for
the number of milliseconds specified by its single

argument. For example, this command may be used to
control the duration of a CRT display:

WRITSCOPE "A<0) ....READY"
WAIT 200
WRITSCOPE "K P"

This sequence displays"READY," waits 200msec,
and then clears the screen.

Three alternative commands, WAITK, RECDK, and
WAITR, record keypresses and reaction times. These
commands each require three arguments: the desired
key(s), the key actually pressed, and the reaction time.
The desired key variable must be defined in the program,
while the other two will be returned to the program
when the subject presses a key. Keypresses are identified
by a convention whereby each of the eight least signifi-
cant bits represents a separate key response (e.g.,
1 = fight key, 200s = 100000002 =left key, and
3778 = 11 111 1112 =all eight keys). This code is used
to represent both the desired key and the response
variables. A reaction time is represented as a double-
precision integer that must be stored in two successive
elements of an integer vector. For the reaction time
variable, RT(0), the most significant half of the reaction
time is stored in RT(0) and the least significant half is
stored in RT(1). This requires that RT be dimensioned
to two.

The wait-for-keypress command (WAITK) delays
further execution of the program until a desired key
is pressed. The WAITK command has the three basic
arguments already described: a desired key variable,
a reaction time variable, and a response key variable.
In the following example, the three statements display
a message to the subject until he or she presses any key,
and the scope is then cleared.

WRITSCOPE "A C0) ....PRESS ANY KEY WHEN READY"
WAITK 377 RT(0) RESP
WRITSCOPE "K P"

The record-keypress command (RECDK) does not
delay program execution while recording the desired
keypress and reaction time. Instead, it permits program
execution to continue uninterrupted. To detect when a



PLE: COMPUTER AS TACHISTOSCOPE 767

RECDK 200 RT (0) RESP
DO XX. FOR I = 1, 20
WRITSCOPE "A<0)" STIM(I)
WAIT 100
WRITSCOPE "K P"
IF (RESP. NE. 0)

THEN GOTO YY.
ELSE
DONE

XX: CONTINUE
YY:

Table 2

; display the Ith stimulus.
;wait for 100 msec.
; dear screen.
;check if a response has been made.
; yes, go on and process it.
; no continue with stimulus sequence.

; continue with do loop.

response is finally made, the program must check if
the response variable has been changed from its initially
zeroed state. RECDK’s arguments are identical to those
of WAITK. To illustrate RECDK’s potential, the
example shown in Table 2 displays a sequence of stimuli
until the leftmost key is pressed.

The fourth timing command (WAITR) waits until a
response is made or a time criterion is past and branches
as a result of which of these two events occurred.
WAITR, like WA1TK and RECDK, also records the
response and reaction time. It has six arguments; the
desired keypresses, a time criterion, a reaction time,
a response, a keypress-exit label, and a time-up-exit
label. This command may be used to limit the time that
a program will wait for a keypress. Further examples of
these timing commands may be found in the sample
experiments below.

TWO EXAMPLES

To illustrate the use of PLE in a tachistoscope setting,
we present two sample programs. The first is the
Sternberg (1966) memory scanning task, the standard
example in this collection of papers. Following this is
a more complex program, the Sperling (Sperling,
Budiansky, Spivak, & Johnson, 1971) high-speed search

task. These examples are provided to develop some of
the basic PLE properties introduced in prior sections
of this paper.

The Memory Scanning Example
The Sternberg (1966) paradigm is used for examining

time to scan brief lists in short-term memory. In the
"fixed-set" version presented here, the subject memorizes
a short list of from one to five digits read by the
experimenter. Following memorization, a single probe
digit is presented on the CRT. As soon as possible,
the subject presses a key to indicate whether that digit
is or is not in the memory set.

By looking at mean reaction time to probes for
memory set sizes of from one to five digits, the time to
scan each digit in the set can be estimated. For the
average college student, each extra digit in the set adds
between 30 and 40 msec of scanning time. This is true
regardless of whether the probe digit is or is not in the
set, suggesting that subjects always search the memory
set exhaustively.

The PLE program implementing this simple task is
shown in Figure 1. Basically, the program selects and
displays a probe digit to each subject, after a warning
that the trial is beginning. When a subject responds, the
data are output to the disk in the form of the probe

Figure 1

[.EC LFIF’AT I ON STATEMENTS

[’IMENSION E:UF,’IO,.RT(2)

STRING FILEN

~BLIF IS THE BUFFEP AREA TO HOLD THE
NAME OF "FHE STRING VARIABLE FILEN.

,AT NEEDS DIMENSIONIN~-~ <IN OCTAL> TO
SIMULATE R [~OUBLE PRECISION INTEGER.

~SET UF’ FILEN AS A STRING

LOCAL TRL. SEED,. S. F’T. F’ESP FOP EACH OF THESE VRRIRE:LES, SUBJECTS
MUST HAVE I{~DEPEN[~ENT YRLUES.

E;IEC UTABLE STATEMENTS
INITIALIZE

READTTY "W’FILENBME’A.IO1 ,, FILEN BLIF,.’O’~ ;ACCEPT FILEN~ME FROM TTY
WRITDISK "G-.’.i>" FILEN                 ;OPEH FILE #i ON DISK FOR DATA STORAGE

PEA[,TT"r’ "W’SEED " I ,:0:.’" GSEE[.

FORF

SEED=GSEED

E>;ECIJTE iOE~ TPIALS OF THE E’,~F’EF’IMENT
DO ETF’L    FOP TRL=I, lOCi

ACCEPT FF’OM TTY A GLOBAL SEED TO
~ INITI~LIZE R~NDOI’] NUMBER GENERATOR
;ENTEP LOCAL MODE FOR SUBJECT SPECIFIC

E OM[’IRNDS.
SEE[~ MUST HAVE LOCRL YRLUES OTHERWISE
F’AN[~OM SEOUENCE COLILD NOT BE F’EF’ERTED.

~ETRL IS A LABEL (DESIGNATED BY ~
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S=PFIND(’SEE[~, 9 )

WRIT 500

WR I TSCOPE "ZKO;’.’L ZT’.’>: :,ZT."A-’;O>"

ETPL:

WRIT 500.

WPITSCOPE "KF’"

WRITSCOPE "Z<O>L<7>X<7>IK&>" S

WFIITK 201 RT~O) F’ESP

WRITSCOPE "KP"

WF’ITDISK F INSLIB S F’TKI> RESP

CF~NCLI_I[~E F’ROGF’FIM
JOIN

I,IF’IT[’ISK "C ".’it:-’"

E~’;I T

100 IS C, ECIMF~L KF~LSO [,ESIGNFITE[, E:Y
NUMEPIC CONSTANTS FiRE OCTSL 89 [,EF~ULT
SET STIMULUS TO A R~NDOM NUMBER 0 TO

W~IT 500 MS E’.ETWEEN TF’I~LS

.DISF’LSY ~ L~F’GE "+" ~S H WSF’NING
~T THE CENTER OF THE SC’REEN

W~PNING I NTEPV~L

ERRSE WRRNING STIMULUS.

[’ISF’LRY F’ROBE DIGIT RT SCREEN CENTER

W~IT FOR RESPONSE FF’OM LEFT OR RIGHT
FEY ONLY (SET BY 201, ~N OC’TRL t’I~SK).
EF’~SE SC F’EEN

OUTPUT PF’OBE DIGIT, F’T, ~N[~ VEY MUMBER
TO DISK    INSUB CONTAINS SUBJECT
IDENTIFIER FORMAT IS BT F BELOW

W~IT FOR ~LL SUBJECTS TO FINISH
EXF’ER I MENT
CLOSE [,ISF FILE

F’ETURN TO SYSTEM MONITOR

presented, the key pressed, and the reaction time for
that trial. Each line of output is identified with a station
number.

This simple experiment performs the three functions
common to most tachistoscopic experiments: stimulus
selection, display generation, and response collection.
The stimulus for each trial is chosen randomly using a
pseudorandom-number generator (RAND). The display
sequence consists of a fLxation field, warning interval,
erase command, a number stimulus field, response
interval, and fmal erase command. Each of these steps
is accomplished by a single statement. The responses
are collected by the command WAITK, which records
the response and reaction time, after delaying program
execution until the response is made. The response and
reaction time are then written to the disk along with
the stimulus presented and a station identifier. To
replicate this experiment on a manual tachistoscope
would require three fields and three timers, in addition
to the response collection equipment.

The Visual Search Example
The second sample program is considerably more

complex. It represents the high-speed visual search task
introduced by Sperling etal. (1971) and recently
modified by Schneider and Shiffrin (1977). This task is
used to determine how quickly subjects can search for

particular symbols. As is shown in Figure 2, a target
stimulus appears before the search set is presented to
the subject, rather like reversing the Steinberg (1966)
paradigm. The search set consists of a series of visually
presented arrays (or frames), one of which may contain
the target stimulus. The critical manipulation in this
example program is the time interval between successive
frames on a given trial; this interval is varied across
blocks of trials by inputting intervals from the Teletype.
Longer interframe times permit more of the stimuli on
a given frame to be searched. Unlike the Sternberg
task, both the speed of the response and its accuracy
are of interest in this task. Accuracy becomes a crucial
dependent variable when interframe times are short and
subjects cannot search all of the elements of the display.

This experiment performs the same kinds of
functions as the memory scanning experiment, but in
a considerably elaborated manner. Three routines are
~nvolved in stimulus specification and selection. The first
is the initialization (INIT)subroutine: Among its several
functions, this routine reads a stimulus t’de and calcu-
lates the stimulus display positions. Another subroutine
(BALANCE) sets up a vector specifying a counter-
balanced sequence of target and distractor trials. The
first half of the third subroutine (TRIAL) determines
from the counterbalancing vector which trials will
include the target. TRIAL then randomizes target
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Figure 2

¯ F’POAF’IZHi TO F’F’ESEHT VAF’IE[,-HAF’PING, MIJLTIF’LE-FF:AHE VISUAL SEAF’CH TAS~
; ± ....................... [,ECLARATION SIATEMENTS ........................
[JlMENSIOq COHD,.144 ,, IH[,E>’,, 144~,E:IJF,;IE~},F’C’ 2’, F’T, 2’,SE:IJF’4704"
bLHEHSIOH ISI’12,, STIM,.Z20,.LOC¢5~, >;F’T’ 5".’r’PT’ 5~
STF’IHG STIH, SH~I’IE. DUMMY
LC"]RL    F’ESF. TAF’G, F’T. F’[, E:LI- , TF’L. HTF’L, I, ~, SEE[’, COND, IN[’E’,-:, CF’IT, PEP, LOC

E’,-:EC IJTAE:LE STATEHEHTS
E:A~, i C F’~F’~HETEF’S

[,UF’=I2 ,12 ~’IS SUFFICIENT FOR 2 PEFF’ESHES
HDTF’L=IZ~ , NUME:EF’ OF DATA TF’IALS
HE:LI’=4 , NUME:ER OF BLOCKS

HAI N F’ROC E[,LIF’E
CALL INIT ,CALL INITIALIZATION SUBF’OUTIHE
FOF’Y
DO EE:LK. FOP BU.=O, ’ NE:LK-I ~
HTF’L=£O
CALL E:ALAHC E
DO F’TF’L    FOF’ TF’L=O, I

PTRL     CALL TF’I AL
HF’ITSCOF’E "~<200>L’£2>A 10[-" "EH[’

NTPL=NDTRL
CALL BALANCE
DO ETF’L    FOP TF’L=~, (NDTF’L-I>

ETF’L: CALL TRIAL
W~ITSCOPE "Z<2OZ<~L<2>A<@> .... END OF BLOCK"

;HRITE OUT DATA SUMMARY, INCLV[,ES SUBIECT ID, ISI, HITS, ,~ FALSE ALARMS.
EE:LK.    NF’ITTTY "IK~>I<~>I.ZT>I<~>L<~>" INSUB ISI<BLK> F’C<O> PC(1)

~OIN
; FINISH UP

WPITTTY "A<O>L<~> .... PROGRAM COMPLETE"
EXIT

¯ START BLOCK LOOP.
~F’ASS THIS ARGUMENT

, STAPT PRACTICE LOOP.

OF E:LOCt "
;PESET THESE SLIMS TO

; PASS ARGUMENT

;STAF’T E>:F’ERIMENTAL TRIALS.

; IHIT SUBROUTIHE    SETS UP STIHULI AND INF’UTS PARAMETERS.
INIT-     PEADTTY "W’STIMULUS FILE"A-’.’EO" SNAME E,’UFKIO)      ;GET STIMULUS FILE.

PEADDISK "G<EOIKT>X<I>I<7>XKI>IKT>X~I>" SNAME NSTIM VSIZE HSIZE
DO INITI. FOR A=8, (NSTIM-I>     ~READ IN EACH STIHULUS
F’EADDISK "F<O>AKEO" STIM<A> SE:IJFKA~2E~ ) ;39 CHARINIT±

INIT~"

INIT4

NRITTTY "R<O;~ .... ISI LIST"
DO IHIT2    FOR A=EI, <NBLK-i>
READTTY "I<0>" ISI(A)
RERDTTY "W’SEED"I<O>" GSEED
FORK
SEED=GSEED
~O INIT~
I NDE>~( I ):I
JOIN

DO INIT4. FOR X=e, ~
DO INIT4.    FOR Y=e,~
R=A+I
XPT < R ) =F-VS I ZE+X~ < VS I ZE+I )
YPT(R.)=F-HSIZE+Y~ ’:HSIZE+I)
WPlTTTY "R<O>L{I>" "    SUE:3
RETURN

FOP I=O: <NSTIM-E)

;F’EAD IN EACH ISI    VALUE

¯ CREATE LOCAL SEED
;DEFINE INDEX VECTOR FOR LATER USE.
~HILL BE USED TO SELECT STIMULI.

;SET UP POSITION PARAMETERS.
;DEFINE SCREEN LOCATIONS FOR
;EACH DISPLAY POSITION.

;VERTICAL SPACING
;HORIZONTAL SPACING

ISI     HITS      FAS" ;TABLE HEAD.

FORK
BALANCE SIJBROUTINE    PASS IT NTRL AND

8ALANC:E : DO BALi.    FOP I=0., <NTPL-i>
BALl" COND( I )=I/(NTRL/2’)

F’EF’M COND<O) tlTPL SEED
PETUPN

;LOCAL SUBROUTINES FOLLOW.
IT RETURNS PERMUTEO CONDITION VECTOR.

,SET FIRST HALF TO 0,    SECOND HALF TO ±.
,PERMUTE THIS BINARY LIST.

., TF’IAL SUE:F’OUTINE    F’ASS IT TF’L, COND, IN[~E>I, STIM., VSI---’E, HSIZE, ,":F’T, V4T, DLIF’, ISI,
~:LI-, [!~TI/’I. SEE[:, AND IT E>:ECI.ITES A TRIAL AND STORES RESULT IN PC ’

"~F’IAL    !.,IF’ITSC.OF’E "Z.’.208".,.L<14 -".;~112 :>A.’O:~" "F:EA[,Y"        ;GIVE WARNING.
HAIT!" _--.TF F’T,O, F’ESP HHEN READY, SI_IE:.IECT PRESSES ANY YEY
HPITSCOF’E "I P" " ’
F’EF’M IH[,E: :/0 , NSTIM SEED CHAOSE TAF.’GET. (IN[)EN<O.’.,.)
T~F’G = I N[,E:-: ,." 0"
CPIT=F’AH[,,SEED, 6,+2 rHOOSE FRAME TA OISF’LRY TARGET.
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DISF’LR’/ TSF’GET IN CENTER OF SCREEN
NOTE THAT FOPMST RF’GIJMENTS OF 277 IHDIESTE THST THE 8CTI_ISL 8F’GUMENT
NILL ~F’F’E~F’ IN THE ~SSOCI~TED ’v’~RI~E:LE LIST

HF’ITSEOF’E "Z,:OZL’:377:,>’,:S7’T: ~:0: " ,,7-VSIZEi’2~ (7-HSIZE,,’2~ STIM,’T~F’G)
N~IT iOOO
HF’ I TSC OF’E "LF’"
HAIT 250
F’EC[,F 20.L RT, 0., F’ESP
DO TF’L±.    FOF’ REP=£, 10
I F , RESP t’4E 0,,

THEN GOTO FEED
ELSE
DONE

. LET SI_IE:.IEET STI_ID’T’ TAF’AEr FOR A SECON[,

START RESPONSE RECORDING F’OI_ITINE
NON F’F’ESENT 10 VISUAL £RRR’r’S
CHECI IF PESPONSE YET
9ES SKIF’ £HE~D
NO

SET UF’ V ISLI~L I~F’F’I~YS
IF. (PEP

THEN LOC(i)=INDEX,,O )
ELSE LOC (:1.) = Iiq[.EX(
DONE

DO TRL2 FOP I=2, 4
TRL2: LOC’," I )=INDEX(I )

F’ERM LOC(’t’) 4 SEED
bO TF’L3.    FOR I=i,4

USE £LL [,ISTR£CTORS, E>:CEF’T ON TSPGET TRI£LS.
<COND,’TF’L~ EO. 0)) .:TEST IF TIME FOR TFIRGET.

¯ YES. F’LFICE T~3F’GET INDEk: INTO LOC
;NO. INSERT FIF’ST DISTF’BCTOR INSTERD

;CHOOSE REST OF bISTRACTORS.

PERMUTE F’OSITION OF STIMULI
LOFt[, E£CH STIMULUS.

;LOAD STIMI_ILI INTO SCOPE SOFTW£RE STORAGE WITHOUT DISPLRYING THEM <U).
;NOTE" THE ~’LOC(I>+O, EXPF’ESSION IS IIECESSARV BECAUSE F’LE DOES
~NOT ALLOW VECTOR AS SUE:SCRIPTS BUT DOES ALLOW E,~:F’F.’ESSIONS AS SUBSCRIPTS
TRLZ~.    NF’ITSCOPE "Z<OZ~LEZ, TT>>I:Z.TZ>A<O:HJ" >-:F’T<I~ YPT(I) STIM,:LOC<I)+~b

NF:ITSCOPE "J" ;LO~ ~LL STIMULI INTO HRRDN~PE
I=ISI(BLK)-DUR-}.8. ;CORRECTED ISI (EMPIRICALLY DERIVED)
N~IT I ;W~IT CORRECTED ISl.
WRITSCOPE "S" ; TUF:N ON REFRESH.
NSIT [,UR ;W~IT STIMULUS DURBTION

TRLI: WRITSCOPE
WWW: IF (F’ESP . EO. O) ,WRIT FOREVER TILL RESPONSE

THEN NBIT 20. ~NO RESPONSE YET.
GOTO WWW.

ELSE ; RESPONSE, GO ON
DONE

FEED: IF<COND<TRL) . EQ O) ; PROCESS RESPONSE.
THEN IF (RESP

THEN WRITSCOF’E FD. "OK" ~HIT
PC(O~=PC, O>+I ~ INCREMENT HIT COUNT.

ELSE WRITSCOF’E F[, "NO" ~ MISS
DONE

ELSE IF (RESF’ . EO. 200>
THEN WRITSCOF’E FD "OK" ~CORRECT REJECTION
ELSE ~RITSCOPE FD "NO" ~FBLSE RL~RM

PC(i):PC<I)+I               ~ INCREMENT FB COUNT.
DONE

DONE
WSIT 500.
WRITSCOPE "KP"
RETUPN

FORMBT STBTEMENTS

END

position over separate visual arrays as well as within an
array. Consequently, there are three types of counter-
balancing: The target’s frequency, its temporal position,
and its spatial position are all specified in the program.

Display generation, the second function, is also more
elaborate than in the previous example. Each trial now
consists of two displays, a study display and a multiple-
frame test display. The major problem is ~e frame
interval timing in the test display. Because timing is
a general problem, it is described further in a later
section on PLE performance characteristics.

The third function is response collection. Responses
are collected through RECDK, which allows continued
program execution while recording the response.
Because RECDK does not interrupt program execution,
the response variable (RESP) must be checked
frequently for the occurrence of a response. Once a
response is detected, the display sequence is terminated
and feedback is provided to the subjects. Both the
feedback and the display sequence termination are
examples of displays made contingent upon responses.

The visual search example makes particularly clear
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the potential of PLE for block-structure programming.
The subroutine calls (e.g., CALL BALANCE) and the
ALGOL-like IF-THEN-ELSE logic allow a program to
be broken easily into subunits, facilitating both writing
and debugging. Also, all of the input is handled in a
single subroutine (INIT), as are the counterbalancing
(BALANCE), stimulus presentation, and data collection
(TRIAL). Like a tachistoscope, the program can accept
stimuli ranging from digits to letter strings to graphic
figures.

PERFORMANCE CHARACTERISTICS

Four characteristics are fundamental to PLE’s
performance as a tachistoscope: the temporal response
of the system, including CRT offset timing, CRT onset
timing, and interval timing; the spatial properties of the
stimulus display, especially the spatial resolution and
capacity; the intensity of the stimulus display; and the
ability to def’me and present multiple fields. Each of
these characteristics will be discussed below.

Temporal Properties
CRT offset timing. The offset timing of a CRT is

determined entirely by the refresh interval and the
phosphor decay time. The refresh interval of the IKON
scope controller is 10msec, with the refreshing of
individual points occurring at 5-microsec intervals.
The P-11 phosphor decays approximately exponentially
to 10% of its original intensity in 80 microsec and .1%
in 20 msec. To calculate the offset function entirely,
one must know when the last refresh occurred relative
to the offset. The IKON system makes this easy, because
it always initializes a refresh clock at the beginning of
each display. This gives one the ability to calculate
exactly the number of refreshes in a display. For
example, the 12-msec duration in the visual search
experiment gives time for exactly two refreshes of the
stimuli.

CRT onset timing. The onset delay of the CRT
displays is a joint result of delays in PLE software and
the IKON scope controller. Specifically, there is a fixed
10-msec hardware delay and a software delay that varies
from 2 to 20 msec as the number of output characters
varies from 1 to 120. However, the uncertainty of onset
is very small, because the CRT refresh is begun only at
the conclusion of the display generation. From this time,
the only delay is the point-by-point display rate of
200 kHz. (The average character is 20 points and takes
100 microsec to display.) This allows millisecond timing
of display durations and interdisplay intervals despite
a fixed timing error.

Interval timing. Errors in interval timing come from
delays due to intervening PLE statements and conflicts
between operations at multiple stations. The former
type of error is fixed for each instance and can be
measured and corrected for when critical. The visual

search example gives an illustration of this problem.
Since the selection of individual displays takes 24 msec
and their generation another 13 msec, this constant of
37 msec is subtracted from the display intervals to
provide a corrected interval good to the millisecond.
The only drawback with this strategy is that it places
a lower bound on the possible display intervals (SOAs).
When the duration of the displays is added to the
selection and generation times, SOA is 50 msec.

The timing problems caused by multiple stations
can only be understood through the nature of PLE’s
multiprogramming. Unlike most timesharing systems,
PLE does not use timeslicing (i.e., placing a fbxed limit
on the processing duration of any one station). Instead,
PLE allows each station to continue executing code
until a timing, TTY, or SCOPE I/O command is
encountered. These commands all suspend a particular
station’s control of the computer and allow other
stations a turn. This scheme works because over 99%
of the time in most programs is spent waiting for the
clock or I/O. If this is not true, as is the case in the
visual search experiment, the system starts to slow
down. The problem begins when one station’s I/O is
completed during a second station’s processing. The
size of this delay is related to the duration of whatever
code is uninterrupted by timing and I/O commands.
Because the visual search experiment has 37 msec of
uninterrupted code, the maximum possible delay to
other stations is the number of other active stations
times 37. For the visual search experiment, this error
is too large, and therefore, this experiment can be run
on only a single station.

Response timing. PLE’s response timing is handled
completely apart from the interval timing discussed
above. The reaction times returned by the WAITK,
RECDK, and WAITR statements are accurate to the
millisecond.

Spatial Properties
Characters and graphics are represented by point

plotting on a 256 by 256 dot matrix. With the CRT
display subtending 14deg (10cm at a distance of
40 cm), the interpoint distance is about 3 rain of arc
(.4 ram). Adjacent points form a nearly continuous
line on the CRT. The capacity of the display is set by
the memory and refresh rate of the IKON controller.
Currently, it can refresh 2,000 points in 10msec,
allowing for the simultaneous display of approximately
120 alphanumeric characters.

Intensity
The CRT intensity is manually calibrated using a

knob on each scope and not under program control.

Field Selection
The basic advantage of any computer-controlled

tachistoscope is the availability of an essentially
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unlimited number of display fields. These fields may be
constructed from separate components that can be
combined in an infinite number of different patterns,
thereby providing the potential for diverse and complex
stimuli that would be impossible in a manual tachisto-
scope. Stimuli may be constructed to move about the
screen or to change over time, as illustrated in the
memory scanning example. Additionally, display fields
may be made contingent upon the subject’s response.
The example experiments illustrate this capability in
their use of feedback and the early termination of
display sequences.
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