
COGNITIVE PSYCHOLOGY 21, 363-397 (1989) 

The Phenomenology of Spatial Integration: 
Data and Models 

GEOFFREY R. LOFTUS AND AURA M. HANNA 

University of Washington 

A briefly presented visual stimulus followed by darkness seems to persist be- 
yond its physical offset. We are concerned here with the relation between two 
characteristics of this visible persistence: first, its phenomenological resemblance 
to the stimulus that spawned it and second, its usefulness as a basis for integrating 
visual stimuli that are separated in time. We describe two experiments using a task 
in which two halves of a visual stimulus were presented successively and observ- 
ers reported how complete the stimulus appeared to be. Stimuli appeared less 
complete with increases in both the duration of the interval intervening between 
presentation of the two halves and the duration of the initially presented stimulus 
half. This data pattern is similar to that obtained in tasks in which spatial inte- 
gration of two temporally disparate stimuli is necessary for correct responding. 
On the basis of this similarity, we argue that phenomenological appearance and 
ability to integrate stimuli over time are two facets of the same perceptual events. 
We describe a formal model to account for these and other data. 0 1989 Academic 

Press, Inc. 

A briefly presented visual stimulus followed by darkness seems to per- 
sist beyond its physical offset. The mental representation that corre- 
sponds to this poststimulus perceptual activity has two salient character- 
istics. First, the representation looks like a literal (albeit a fading) exten- 
sion of the stimulus that it follows. Second, the representation can be 
used as a basis for performing tasks that require knowing the spatial 
relations of features within the stimulus. Such tasks include temporal 
integration (e.g., Di Lollo, 1980; Eriksen & Collins, 1967) and partial 
report (e.g., Di Lo110 & Dixon, in press; Sperling, 1960.) 

This article is concerned with both empirical investigation of persis- 
tence and with theoretical accounts of it. Accordingly, the article is di- 
vided into two major sections. In the first section, we describe a new 
method for investigating visible persistence. In particular, we are con- 
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cemed with effects on a stimulus’s phenomenological presence of three 
variables: stimulus duration, time since stimulus offset, and stimulus 
complexity. In the second section, we describe a picture-perception 
model developed by Loftus and Hogden (1988) and show how it accounts 
for our data as well as for partial-report data reported by Di Lo110 and 
Dixon (in press). We compare this model to a model presented by Di 
Lo110 and Dixon and show that there is a good deal of formal similarity 
between them. 

To provide a foundation for discussing these issues we will start by 
briefly describing some characteristics of visible persistence, and some 
models that have been developed to account for the characteristics. 

PERSISTENCE AS A BASIS FOR 
PHENOMENOLOGICAL EXPERIENCE 

The visible persistence that follows a briefly presented stimulus seems 
like a genuine extension of the physical stimulus. Indeed, naive observers 
think that visible persistence is an extension of the physical stimulus. 
When shown a IO-ms stimulus followed by darkness, for example, ob- 
servers often express the belief that the projector bulb responsible for 
displaying the stimulus is extinguishing slowly, and they are subsequently 
astonished to learn that what they had seen existed only in their minds. 

The time course of visible persistence can be investigated in a variety 
of ways. A common technique is the synchrony-judgement task, wherein 
a briefly presented stimulus is followed after its offset by a variable in- 
terval, and then by some salient synchrony signal, such as an auditory 
click. The variable interval is under the observer’s control, and the ob- 
server’s task is to adjust the interval’s length such that the synchrony 
signal seems to just coincide with the stimulus’s complete disappearance. 
The interval duration that satisfies this requirement constitutes an esti- 
mate of persistence duration. Investigators using this technique have 
found persistence duration to be an inverse function of stimulus duration 
(e.g., Efron, 1970a, b; Loftus & Hogden, 1988) and usually (but not al- 
ways) an inverse function of stimulus luminance (Bowen, Pola, & Matin, 
1974; Sakitt, 1976; see Coltheart, 1980, for a review of both duration and 
luminance effects). 

PERSISTENCE AS A BASIS FOR PRESERVING 
SPATIAL INFORMATION 

The mental representation that corresponds to visible persistence can 
be used to perform certain tasks that require knowledge of spatial rela- 
tions within the stimulus. A common such task is the temporal-integration 
task reported first by Eriksen and Collins (1967). In a temporal-integration 
task, two halves of a stimulus are presented in succession. Each stimulus 



PHENOMENOLOGY OF SPATIAL INTEGRATION 365 

half is itself meaningless. However, the halves are spatially related such 
that, when spatially superimposed, they form a meaningful pattern, some 
aspect of which must be reported by the observer. For example, Eriksen 
and Collins used stimuli whose halves looked like random-dot patterns, 
but which, when superimposed, formed letter strings. 

The experiments that we will report in this article are based on a variant 
of a temporal-integration task called the missing-dot tusk, which was 
developed by Di Lo110 and his colleagues (e.g., Di Lollo, 1980; Di Lo110 
& Woods, 1981; Hogben & Di Lollo, 1974). The basic stimulus in the 
missing-dot task is an array of 24 dots that occupy 24 of the 25 cells in an 
imaginary 5 x 5 grid. Thus, one of the cells is missing a dot, and the 
observer’s task is to report that cell’s location. Performance is virtually 
perfect when all 24 dots are presented simultaneously; the question is, 
how good is performance when the 24 dots are not presented simulta- 
neously? 

To answer this question, the 24-dot array is randomly divided into two 
12-dot stimulus halves. On each of a series of trials, the two halves, half-l 
and half-2, are presented successively, and the observer’s task is to report 
the location of the missing-dot cell. Performance under such circum- 
stances declines as half-l/half-2 interstimulus interval (ISI) increases (Di 
Lo110 & Woods, 1981; Hogben & Di Lollo, 1974). Holding all other rel- 
evant factors at their optimal levels, performance asymptotes when IS1 
reaches about 150 ms. 

This effect makes sense; as the time since the offset of the physical 
stimulus increases, stimulus visibility decreases, and the intrinsically vi- 
sual missing-dot task becomes more difficult. Somewhat less intuitive, 
however, is the finding that the duration of the first half affects perfor- 
mance just as strongly as does ISI. Di Lo110 (1980) found that, with a 
constant IS1 of 10 ms, performance dropped from virtually perfect to 
asymptote as half-l duration (HlD) increased from 10 to about 150 ms. 

MODELS OF VISIBLE PEFWSTENCE 

A variety of models have emerged to account for the various facets of 
visible persistence (e.g., Erwin, 1976; Rumelhart, 1969; Sperling, 1967). It 
is beyond the scope of this article to provide a complete review of these 
models. Several models, however, are quite relevant to the one that we 
will later describe and we briefly sketch them here. 

The Recruitingllnterpreting Model 

Di Lo110 (1980) outlined a model to account for performance in the 
missing-dot task. An observer in this task has a clear intuition about the 
deleterious effects of both IS1 and HlD in temporal-integration tasks: 
they have to do with perceptual grouping of the halves. At long ISIS, the 
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two halves appear to be two separate stimuli, and thus the visual integra- 
tion necessary to identify the missing-dot location is not possible. Simi- 
larly, with long HlDs, half-l processing seems complete at the time of 
half-2 onset; thus the half-2 display seems like an entirely new visual 
event. It is only with both a short HlD and a short ISI that the two halves 
appear to constitute a unified stimulus, and thereby permit an accurate 
response. 

Di Lollo’s model assumes that encoding of a visual stimulus consists of 
a recruiting phase, followed by an interpreting phase. The recruiting 
phase is assumed to begin at stimulus onset, and involves encoding of the 
stimulus in terms of “features, such as dots, bars, edges, and discon- 
tinuities” (p. 93). The subsequent interpreting phase involves identifica- 
tion and categorization, i.e., the creation of a more permanent memory 
representation (see also Intraub, 1985; Loftus, Hanna, & Lester, 1988; 
Potter, 1976). Of primary importance in explaining missing-dot perfor- 
mance is the nature of the recruiting phase, which involves maintenance 
of original stimulus geometry, and constitutes visible persistence. Di 
Lo110 explicitly links missing-dot performance to recruitment activity; he 
asserts that “visual persistence is regarded . . . as the product of the 
activity of sensory coding mechanisms engaged in the formation of ‘fea- 
ture-encoded’ stimuli.” Thus, as soon as the recruitment activity is com- 
pleted, persistence ends. Because recruitment activity begins at stimulus 
onset, the end of recruitment depends on time since stimulus onset, i.e., 
on stimulus onset asynchrony (SOA). The longer the SOA, the more 
likely it is that recruitment activity will have ended and, in accord with the 
data, the poorer will be missing-dot performance. SOA is, of course, the 
sum of HlD and ISI; thus it increases with increases in either of these 
variables. 

The PersistencelAnalog Representation Model 

The simplest version of Di Lollo’s model was disconfirmed by partial- 
report data which demonstrated visible persistence that seemed to depend 
on stimulus offset rather than on stimulus onset (Irwin & Brown, in press; 
Irwin & Yeomans, 1986; Loftus, 1985; Loftus & Hogden, 1988). To ex- 
plain this finding, Irwin and his colleagues described a new model in 
which spatial performance is determined by two things: visible persis- 
tence and a nonvisible, but spatial-information preserving analog repre- 
sentation. In this model, visible persistence is time-locked to stimulus 
onset, whereas the visual analog representation is time-locked to stimulus 
offset. ’ 

’ This model also accounts for the finding that asymptotic performance in the missing-dot 
paradigm is substantially above chance. 
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Di Lo110 and Dixon (in press) formalized Irwin’s model as a set of 
equations describing the time courses of the two processes. We will de- 
scribe this formalization, along with the application of the model to data 
in a later section of this article. 

The Information-Extraction Rate Model 

Loftus and Hogden (1988) describe a model that borrows from Di Lo110 
(1980) and is similar in important respects to the Irwin/Di Lo110 and Dixon 
model. In the second section of this article, we present this model and its 
application to data in detail; hence we defer a formal, mathematical de- 
scription of it, In this section, we present a brief description of the mod- 
el’s central assumptions, and we sketch how the model makes a predic- 
tion about the effect of visual complexity on temporal-integration perfor- 
mance. 

The model: A brief description. The model assumes that information 
from a visual stimulus is extracted at some rate. The information- 
extraction process, which occurs both during stimulus presence and for a 
short time following stimulus offset, corresponds roughly to the recruiting 
phase in Di Lollo’s (1980) model. The magnitude of the information- 
extraction rate depends on two factors: rate increases as a function of the 
amount of available, extractable information and decreases as a function 
of the amount of information already extracted from the stimulus. The 
magnitude of visible persistence-which determines missing-dot perfor- 
mance-is determined by the information-extraction rate. The model ac- 
counts for both the HlD and the IS1 effects on missing-dot performance 
as follows. The information-extraction rate decreases with HlD because 
the amount of extracted half-l information increases with HID. The in- 
formation-extraction rate decreases with IS1 because the amount of avail- 
able information decreases with IS1 and, in addition, because the amount 
of extracted half-l information increases with ISI. Therefore, according 
to the model, missing-dot performance must decline with both HlD and 
with ISI. 

Stimulus complexity. In the preceding section, we asserted that the 
information-extraction rate is influenced by amount of information al- 
ready extracted from the stimulus. This characterization was for ease of 
exposition. More precisely, the information-extraction rate is assumed by 
the model to depend on amount of as-yet-unextracted stimulus informa- 
tion. This facet of the model allows a prediction about stimulus complex- 
ity which is derived more formally later in this article. Informally it is as 
follows. At any given time since stimulus onset, more as-yet-unextracted 
information remains in complex, relative to simple stimuli. Therefore, the 
decline in information-extraction rate with time since stimulus onset is 
less for complex, relative to simple stimuli. This in turn means that the 
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decline in temporal-integration ability with time since stimulus onset is 
less with complex, relative to simple stimuli.2 This prediction was tested 
in the present experiments. 

EXPERIMENTS 

We report two experiments using a task that is similar to the missing- 
dot task. We call this task the subjective-completeness task. Whereas the 
missing-dot task measures objective spatial-integration ability, the sub- 
jective-completeness task measures a fundamentally phenomenological 
event: how complete a visual stimulus appears to be. In this task, a visual 
stimulus is randomly divided into two halves, which are presented suc- 
cessively, and the observer’s task is to rate how much the successively 
presented halves resemble the complete picture. 

The major purpose of our experiments was to test the proposition that 
the phenomenological experience of stimulus completeness and spatial- 
integration ability are two manifestations of the same fundamental per- 
ceptual events. Accordingly, we examined rated completeness as func- 
tions of both HID and ISI. If this proposition is true, then we should find 
the same data pattern with completeness rating as has been found with 
spatial integration: rated completeness should decrease with both HID 
and ISI. 

An additional purpose of the experiments was to test the prediction that 
the effect of HlD and IS1 on persistence is greater for simple, relative to 
complex stimuli. To accomplish this, we included two types of stimuli in 
the experiment. Complex stimuli consisted of naturalistic, color scenes. 
Simple stimuli consisted of an array of dots. 

Experiment 1 

Experiment 1 consisted of a 6 (HID) x 6 (ISI) x 2 (stimulus type: 
scenes or dots) factorial design. HlD ranged from 20 to 200 ms, and IS1 
ranged from 0 to 160 ms. 

Method 

Experiments 1 and 2 were quite similar. We described the Expriment 1 methodology here 
in detail, and subsequently describe only the Experiment 2 methodology that is different. 

Observers. Ten members of the University of Washington Psychology Department par- 
ticipated. All except two (the authors) were paid $5 per session for one practice session and 
two experimental sessions. Each session lasted approximately 1 h. 

Stimuli. Five colored scenes, four landscapes and one portrait of an old man, were 
selected from a travel brochure. A sixth picture consisted of a 4 x 4 array of dots. Each 
picture was divided into 4 x 4-in. grid, and can thus be conceptualized as consisting of 

’ It should be noted that this effect is predicted by Di Lollo’s (1980) model, as well. 
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16-in-square ccl/s. The entire picture subtended 16” x 16” of visual angle; thus, each cell 
subtended 4” x 4”. Each dot subtended 2” x 2” visual angle, and was centered in its cell. 

Six halvings were created, where a halving is a random division of a 16-cell picture into 
two &cell halves. These six halvings were applied to all six pictures; that is, each of the six 
pictures was halved in six different ways. We refer to each picture/halving combination as 
a stimulus; thus, there were 6 scenes x 6 halvings or 36 stimuli in all. Note that each 
stimulus consists of two g-cell, spatially complementary halves, which we refer to as half-A 
and half-B. Each of the 72 halves was prepared as a 35mm slide with the eight nonvisible 
cells blacked out. Each stimulus, therefore, was constructed such that displaying its two 
halves simultaneously (each half from a separate projector) resulted in the complete pic- 
ture’s appearance. 

Apparatus. Stimulus halves were displayed via Kodak carousel projectors, and subtended 
horizontal and vertical visual angles of 15”. Timing was controlled by Gerbrands tachisto- 
scopic shutters with rise and fall times of approximately 1 ms. A third projector was used to 
present a dim fixation point that initiated each trial.3 All display equipment was enclosed in 
a soundproof box. Responses were collected on a ldkey response box. All display and 
response-collection equipment was controlled by an Apple II computer system described by 
Loftus, Gillispie, Tigre, and Nelson (1984). 

Design and procedure. An experimental session consisted of a series of trials. Each trial 
consisted of a display followed by an immediate response. 

The display consisted of two halves of a stimulus pair, usually presented successively. 
The first half s duration was 20,40, 80, 120, 160, or 200 ms. The second half s duration was 
always 20 ms. The IS1 between the two halves was 0,40, 80, 120, or 160 ms. In a sixth IS1 
level, the two halves were presented simultaneously rather than successively. In this IS1 
level, both halves-i.e., the complete stimulus-was presented for one of the six HlDs. 
Thus, all six IS1 levels were factorially combined with the six HID levels for a total of 36 
within-subjects display conditions. 

Following each display, the observer provided a raring ranging from 1 to 4 of how com- 
plete, or integrated, the picture seemed. Observers were instructed that the simultaneous 
control conditions represented an anchor point; i.e., that pictures in these conditions looked 
as complete as they ever would, and should therefore be assigned the maximum complete- 
ness rating of “4.” They were further instructed to assign a completeness rating of “1” to 
a picture whose two halves seemed entirely separate in time. Finally, they were instructed 
to appropriately assign the “2” and “3” intermediate ratings to intermediate perceptions. 

Each of the 36 total stimuli was presented twice in each of the 36 display conditions: once 
with half-A shown first in the display sequence, and again with half-B shown first. Thus, 
each observer saw a total of 36 (stimuli) x 36 (display conditions) x 2 (half-A temporally 
first/second) = 2592 trials. 

These trials were grouped into 36-trial blocks. Each block incorporated a single stimulus 
(i.e., a single picture, halved in a particular way) shown once in each of the 36 display 
conditions. At the beginning of each block, the complete (i.e., both halves) picture for that 
block was displayed for several seconds. The observer inspected it while, if necessary, the 
experimenter fine-adjusted the projector alignments. The stimulus then appeared in 36 suc- 
cessive trials, one in each of the 36 display conditions. Six blocks, or a superblock, consti- 
tuted all six original pictures (the five scenes plus the dots). Six superblocks, or a session, 
constituted all 36 stimuli (the six pictures rotated through the six halvings) in all experimen- 
tal conditions. The second session was a replication of the first session, but with the 
half-A/half-B presentation orders reversed. 

3 Stimulus luminances (in millilamberts) were as follows: adapting field, 0.07; projector 
on, no slide, 38.43; and fixation spot, 0.38. The dot stimuli were black (2.57 millilamberts) 
on a white background (25.19 millilamberts). 
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The condition order was randomized for each block, and the order of the six pictures was 
randomized for each superblock. The half-A/half-B presentation order was randomly deter- 
mined on each trial during the first session; these orderings then determined the correspond- 
ing orderings (which were reversed) during the second session. 

Each observer participated in a complete session (1298 trials) as practice, prior to begin- 
ning the two experimental sessions. 

Results and Discussion 

Figure 1 shows mean completeness rating as a function of HID; a 
separate curve is drawn for each of the six IS1 levels. The left panel shows 
performance averaged over the five scenes, and the right panel shows 
performance for the dots. The standard errors were 0.053 and 0.070 for 
scenes and dots, respectively. We do not show these standard errors on 
the figures, because they are approximately the size of the curve symbols. 

Normal (temporally disjoint) conditions. It is evident that rated com- 
pleteness for both scenes and dots declines as a function of both IS1 and 
HID. 

Simultaneous-presentation conditions. As expected from the instruc- 
tions, the ratings from the simultaneous control conditions (top curves) do 
not depend on HID, and are virtually at ceiling. 

Scenes vs dots. Ratings range from ceiling to floor over the 36 condi- 
tions for both types of pictures. But does scene and dot performance 
differ with respect to dependence on IS1 and HlD? Figure 2 compares the 
scene and dot performance decreases over HID (left) and ISI (right). In 
both panels, three pairs of curves are shown: scene and dot performance 
for the smallest value of the factor not shown on the abscissa (0-ms IS1 or 

EXPERIMENT 1: SCENES 
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FIG. 1. Experiment 1: Mean rating as functions of half-l duration. The curve parameter 
is interstimulus interval. The left panel shows data for scenes; the right panel shows data for 
dots. Each scene data point is based on 2160 observations, and each dot data point is based 
on 432 observations. 
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FIG. 2. Experiment 1: The scene/dot x half-l duration interaction for different levels of 
interstimulus interval (left) and the scene/dot x interstimulus interval interaction for differ- 
ent levels of half-l duration (right). 

20-ms HlD), for the largest value of the nonabscissa factor (160-ms IS1 or 
200-ms HID), and collapsed over the nonabscissa factor (ISI and HlD for 
the left and right panels respectively). It is evident that when the value of 
either factor is small, dot performance decreases faster than scene per- 
formance as a function of the other factor. However, the scene/dot inter- 
action with either factor disappears when the value of the other factor is 
large. 

To assess the interactions of stimulus type with HlD and IS1 in more 
detail, we performed six 2 (scene/dot) x 5 (ISI) ANOVAs: one ANOVA 
for each value of HID. Similarly, we performed five 2 (scene/dot) x 6 
(HID) ANOVAs: one ANOVA for each value of IS1 (we excluded the 
simultaneous-presentation IS1 level). The results of these ANOVAs, in 
the form of interaction F values are shown in Table 1. The scene/dot x IS1 

TABLE 1 
Experiment 1: F Ratios for Dot/Scene (D/S) Interactions with Half-l Durations and ISIS 

D/S x IS1 interaction as a D/S x half-l duration interaction 
function of half-l duration as a function of ISI 

Half-l duration (ms) F(4, 36) ISI (ms) F(5, 45) 

20 12.10 0 13.75 
40 4.94 40 3.66 
80 1.55 80 1.52 

120 0.88 120 1.09 
160 1.09 160 2.03 
200 0.87 

Note. D/S x ISI interaction is based on 5 ISIS: O-160 ms. Criterion F(a = 0.05) = 2.82 
and 2.43 for (4, 36) and (5, 45) degrees of freedom, respectively. 
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interaction is significant only for the 20- and 40-ms HlD levels. Similarly, 
the scene/dot x HlD interaction is significant only for the 0- and 40-ms 
IS1 levels. 

Experiment 2 

Experiment 2 was designed principally to replicate the major findings of 
Experiment 1 under slightly different experimental conditions. Because 
much of the rating variation occurred at fairly short HlDs and ISIS, we 
used generally shorter values of these variables in Experiment 2. A sec- 
ond purpose of Experiment 2 was prompted by indirect evidence reported 
by Di Lo110 (1980, Experiment 5) that the deleterious effect of increasing 
HID obtains even when the two stimuli temporally overlap. To investi- 
gate this finding, we included two temporal-overlap IS1 levels: one in 
which the onsets of the two halves always coincided, and another in 
which the offsets of the two halves coincided. Half-2 duration was always 
20 ms. 

Method 

The Experiment 2 method was similar, in most respects, to the Experiment 1 method. 
Observers, stimuli, and apparatus. The 10 observers from Experiment 1 participated in 

Experiment 2. Again, all observers except the authors were paid $5 per session for partic- 
ipating in three, l-h sessions. The stimuli and apparatus were the same as in Experiment 1. 

Design and procedure. The Experiment 2 procedures were similar to the Experiment 1 
procedures. In Experiment 2, there were 35 display conditions, defined by five HID levels 
factorially combined with seven IS1 levels. The HlDs were 20, 40, 60, 80, or 100 ms. The 
half-2 duration was always 20 ms. In live of the seven IS1 levels the two stimulus halves 
were, as usual, temporally disjoint, with ISIS of 0, 20, 40, 60, and 80 ms. In the remaining 
two IS1 levels, the first and second halves temporally overlapped. In the synchronized-onset 
conditions, the onsets of the first and second halves coincided, and in the synchronized- 
offset conditions, the offsets of the first and second halves coincided. Note that the syn- 
chronized-offset condition corresponds to IS1 = -20 ms. Thus, the synchronized-offset 
condition can be considered as being on the same IS1 scale as the temporally disjoint 
conditions; the only difference is that IS1 is negative rather than nonnegative. Note also that 
2 of the 35 conditions-20-ms half-l/synchronized onset, and 20-ms half-l/synchronized 
offset-were identical (although they were distinct from a design perspective). In these two 
conditions, the complete picture was shown for 20 ms. 

As in Experiment 1, each of the 36 stimuli was shown twice in each of the 35 conditions: 
once with half-A shown first in the display sequence, and again with half-B shown first. 
Thus, each observer saw a total of 36 (stimuli) x 35 (display conditions) X 2 (half-A tem- 
porally first/second) = 2520 trials. As in Experiment 1, these trials were grouped into 
35-trial blocks which, in turn, were grouped into six-block superblocks. Randomization and 
counterbalancing were the same as in Experiment 1. As in Experiment 1, each observer 
participated in a practice session (1260 trials) prior to beginning the two experimental ses- 
sions. 

Results and Discussion 

Figure 3, which is organized like Fig. 1, shows mean completeness 



PHENOMENOLOGY OF SPATIAL INTEGRATION 373 

I.07 c 7 f c ’ 
0 20 40 60 60 100 

Half-l Duration (ms) 

1 EXPERlMENT2: DOTS wrn,j j 

4.0 

i 

1.04 7 I I I 1 
0 20 40 60 60 100 

Half-l Duration (ms) 

FIG. 3. Experiment 2: Mean rating as functions of half-l duration. The curve parameter 
is interstimulus interval. The left panel shows data for scenes; the right panel shows data for 
dots. Each scene data point is based on 2100 observations, and each dot data point is based 
on 420 observations. 

rating as a function of HlD; a separate curve is drawn for each of the five 
temporally disjoint IS1 levels, plus the synchronized-offset (IS1 = -20) 
condition. The left panel shows performance averaged over the five 
scenes, and the right panel shows performance for the dots. Statistical 
power was again rather high; the standard errors were 0.057 and 0.076 for 
scenes and dots, respectively. 

Temporally disjoint conditions. The Experiment 1 results are replicated 
quite well; performance for both types of stimuli decreases monotonically 
with both HlD and ISI. 

Scenes vs dots. Figure 4, which is organized like Fig. 2, compares the 
scene and dot performance decreases over HlD (left) and IS1 (right). In 
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FIG. 4. Experiment 2: The scene/dot x half-l duration interaction for different levels of 
interstimulus interval (left) and the scene/dot x interstimulus interval interaction for differ- 
ent levels of half-l duration (right). 
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both panels, three pairs of curves are shown: scene and dot performance 
for the smallest value of the nonabscissa factor (0-ms ISI or 20-ms HlD), 
for the largest value of the nonabscissa factor (80-ms IS1 or 100-ms half- 
l-duration), and collapsed over the nonabscissa factor (IS1 and HlD for 
the left and right panels respectively). The Experiment 1 pattern is rep- 
licated; when the value of either factor is small, dot performance de- 
creases faster than scene performance as a function of the other factor. 
Again, the scene/dot interaction with either factor disappears when the 
value of the other factor is large. 

As in Experiment 1, we performed a 2 (scene/dot) X 5 (ISI) ANOVA for 
each of the six HlD levels. Similarly, we performed a 2 (scene/dot) x 6 
(HID) for each of the seven IS1 levels. The results of these ANOVAs are 
shown in Table 2, which is organized like Table 1. As in Experiment 1, the 
scene/dot x IS1 interaction is significant only for the 20- and 40-ms HlD 
levels. The scene/dot x HID interaction is significant only for the - 20-, 
0-, 20-, 40-, and 60-ms IS1 levels. 

Temporal-overlap conditions. Figure 5 shows scene and dot perfor- 
mance as functions of HlD for the synchronized-onset conditions (left) 
and for the synchronized-offset conditions (right). In both conditions, 
performance falls as a function of HID. In the synchronized-offset con- 
ditions, the relation between scene and dot performance behaves as it 
does in the temporally disjoint conditions; dot performance falls faster 
than scene performance. In the synchronized-onset conditions, however, 
the interaction is reversed; scene performance falls faster than dot per- 
formance. Both of these interactions are statistically significant, as indi- 
cated in Table 2. 

The observers all reported that the synchronized-onset conditions 
seemed different from the other conditions, and claimed to be making 
their judgements differently in this condition. Their reports did not sug- 
gest an obvious basis for the difference. 

Inclusion of the temporal-overlap conditions was motivated by data 
reported by Di Lo110 (1980, Experiment 5). Di Lo110 used a forward- 
masking paradigm in which a pattern mask was presented for durations 
ranging from 20 to 660 ms. During the last 20 ms of mask presentation, a 
spatially contiguous, to-be-reported target letter appeared. Di Lo110 rea- 
soned that, as mask duration increased, encoding activity devoted to it 
would decrease, thereby rendering the mask less effective in interfering 
with the target. The results confirmed this reasoning; as mask duration 
increased from 20 to approximately 160 ms, the probability of correctly 
reporting the target rose from 20 to over 90%. 

4 Technically, the - 20 ms ISI level is smallest. We used 0 to provide a figure comparable 
to the corresponding figure in Experiment 1 (Fig. 2). 
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TABLE 2 
Experiment 2: F Ratios for Dot/Scene (D/S) Interactions with Half-l Durations and ISIS 

D/S x IS1 interaction as a D/S x half-l duration interaction 
function of half-l duration as a function of IS1 

Half- 1 duration (ms) F(4, 36) IS1 (ms) F(4, 36) 
- 

SON 33.83 
SOF: -20 10.44 

20 10.56 0 20.03 
40 6.93 20 22.21 
60 0.74 40 11.85 
80 1.64 60 3.63 

100 1.00 80 0.49 

Note. The D/S x half-l duration interaction for synchronized-onset (SON) and synchro- 
nized-offset (SOF) conditions are also shown. Criterion F(a = 0.05) = 2.82 for (4, 36) 
degrees of freedom. 

This fascinating result suggests that temporal separation of two stimuli 
is not necessary for failure of the two stimuli to integrate. Di Lo110 chose 
to demonstrate this phenomenon using the detrimental effect of masking. 
Our synchronized-offset data confirm Di Lollo’s result using a close an- 
alog of the missing-dot task. As indicated in Fig. 5, the synchronized- 
offset data are similar to the temporally disjoint data, in that the decline 
for the dots is greater than the decline for the scenes. There is no evidence 
in our data for a qualitative difference between a standard, nonnegative 
ISI condition (say, IS1 = 0) and an IS1 of -20, which constitutes the 
synchronized-offset conditions. 

EXPERIMENT 2 
SYNCnRONlZEO ONSET CONDmONS 

0 20 40 60 80 100 

Half-l Duration (ms) 

4.0 

p 3.0. 
F 
s 

f 
g 2.0- 

EXPERIMENT 2 

SYNCHRON~ED OFFSET couDmor4s 

I.04 7 
0 20 40 80 80 100 

Half-l Duration (ms) 

FIG. 5. Experiment 2: Temporal-overlap conditions. Mean rating as a function of half-l 
duration for the synchronized-onset conditions (left) and for the synchronized-offset con- 
ditions (right). 
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In contrast, however, the synchronized-onset conditions behave quite 
differently from the temporally disjoint conditions. In the dot conditions 
mean ratings remain at ceiling up to a HID of 60 ms, and then drop only 
slightly, while in the scene conditions mean ratings drop continuously as 
HlD increases from 20 to 100 ms. Thus, the synchronized-onset pattern 
of results is quite different from the data patterns in all other IS1 condi- 
tions. As noted above, observers claimed that the synchronized-onset 
conditions seemed different from the others. 

Experiments 1 and 2: Differences in Results 

To assess the relation between the data pattern in Experiment 1 vs 
Experiment 2, we considered only those conditions that were common to 
the two experiments: the 3 x 3 design consisting of 20, 40, and 80 HlD 
levels, combined with 0, 40, and 80 IS1 levels. We then computed mean 
rating as a function of ISI, collapsed over HlD, and vice versa. We did 
this for both scenes and dots, and for both experiments. 

The results of this analysis are shown in Fig. 6. In each of the four 
panels, mean rating is compared under identical circumstances for Ex- 
periment 1 and for Experiment 2. The left panels of Fig. 6 show mean 
ratings as functions of ISI, whereas the right panels show mean ratings as 
functions of HlD. The top panels show data for scenes, whereas the 
bottom panels show data for dots. 

The data patterns are the same for dots and scenes. First, ratings are 
generally higher in Experiment 1 than in Experiment 2. This finding could 
reflect a bias effect; i.e., observers could be using the rating scales some- 
what differently in Experiment 1 relative to Experiment 2. Of somewhat 
greater interest is the Experiment x IS1 interaction indicated in the left 
panels. This means that the IS1 effect on rating is different in the two 
experiments: it is greater in Experiment 2 than in Experiment 1. We defer 
additional discussion of these findings until later in this article when we 
apply a mathematical model to our data. 

GENERAL DISCUSSION 

The data obtained in Experiments 1 and 2 allow conclusions about two 
issues: the relation between temporal-integration and rating performance, 
and the effects of stimulus complexity on visible persistence. 

Completeness Ratings and Temporal-Integration Performance 

A major purpose of the present experiments was to compare the data 
pattern obtained from the subjective-completeness task with the data pat- 
tern obtained from the temporal-integration task. The data patterns are 
quite similar: a comparison of the present results with those reported by 
Di Lo110 and his colleagues indicates that the effects of both IS1 and HlD 
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FIG. 6. Experiment l/Experiment 2 comparisons for conditions that are common to the 
two experiments. The left panels show rating as functions of interstimulus interval collapsed 
over half-l duration; the right panels show rating as functions of half-l duration, collapsed 
over interstimulus interval. The top panels show data for scenes; the bottom panels show 
data for dots. In all panels, curve parameter is Experiment l/Experiment 2. 

are qualitatively the same on subjective completeness as they are on 
temporal-integration ability. This similarity supports the general notion 
that phenomenological appearance and temporal-integration ability are 
two manifestations of the same perceptual events. The model that we 
describe below formalizes this proposition. 

Scenes vs Dots 

The effects of both HlD and ISI are somewhat different for complex vs 
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simple stimuli-at least insofar as complex and simple stimuli are embod- 
ied in the scenes and dots that we used in the present experiments. The 
results shown in Figs. 2 and 4, along with Tables 1 and 2, show that the 
effect of both factors is more dramatic for simple relative to complex 
stimuli. This effect has several possible causes. 

One such cause is embodied in the model that we shall describe below. 
More generally, the scene/dot difference supports any theory in which 
visible persistence is assumed to be determined by degree to which pro- 
cessing of the persisting stimulus is ongoing. By such theories, processing 
of simple stimuli is completed earlier than processing of more complex 
stimuli. Thus, processing of simple stimuli is completed both at shorter 
HlDs and at shorter ISIS relative to processing of complex stimuli, and 
persistence declines faster with both of these variables. 

AN INFORMATION-EXTRACTION RATE MODEL 

Loftus and Hogden (1988) proposed a model whose major function is to 
unify information extraction from a visual stimulus on the one hand, and 
phenomenological awareness of the stimulus on the other hand. Loftus 
and Hogden (1988), along with Loftus et al. (1988), have successfully 
applied the model to picture-memory data and to synchrony-judgement 
data. We will describe the model here and then show how it can be 
applied to the present data as well as to Di Lo110 and Dixon’s (in press) 
partial-report data. 

The Model 

Loftus and Hogden were concerned with a situation in which an ob- 
server views a briefly presented stimulus with the intention of being able 
to subsequently remember it. They conceptualize a stimulus as a bundle 
of information, and the observer’s task as extracting as much of the 
information as possible for transfer to some more permanent memory 
store. Information is extracted as some rate, r(t), where t refers to time 
since stimulus onset. Information extraction can occur both during stim- 
ulus presence and for a short period following stimulus offset. 

A crucial assumption of the model is that information-extraction rate 
determines visible persistence. This assumption is similar to that made by 
Di Lo110 (1980) who posited visible persistence to be a product of “re- 
cruitment activity.” In the present model, a stimulus is assumed to re- 
main phenomenologically present until the information-extraction rate 
falls below some criterion. Generally, the rate does not fall below this 
criterion until some time following stimulus offset. This is why the stim- 
ulus continues to persist phenomenologically following stimulus offset. 
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Assumptions 

Loftus and Hogden described their model in terms of four fundamental 
assumptions, plus a fifth assumption specific to the picture-memory par- 
adigm with which they were concerned. We describe the four fundamen- 
tal assumptions here.5 A fifth assumption is designed to apply the model 
to the present paradigm. 

Assumption 1: Available information. A stimulus consists of informa- 
tion that is potentially available to a subsequent information-extraction 
process. While the stimulus is physically present, all information is avail- 
able; when the stimulus physically disappears, available information de- 
cays over time. 

The proportion of total stimulus information available at time t follow- 
ing stimulus onset is designated a(t), the equation for which is 

a(t) = 1.0 for t 5 d 

e-(r-d)lW for t > d, 

where d is the duration of the stimulus and w is a free parameter, in units 
of time, estimated by Loftus, Johnson, and Shimamura (1985) to be 100 
ms.6 Note that the term (t-d) is time since stimulus offset, and corre- 
sponds to IS1 in the present experimental paradigm. Equation (1) is illus- 
trated in Fig. 7 (top). 

Assumption 2: Unidimensionulity. Information is unidimensional; that 
is, both amount of information available in the stimulus and amount of 
information extracted by the observer can be represented by a single 
value on some ordinal scale. 

Assumption 3: Information-extraction rate. The proportion of total 
stimulus information extracted by time t is designated Z(t). New informa- 
tion is extracted at a rate r(t), where r(t) is the derivative of extracted 
information with respect to time, i.e., r(t) = dZ/dt. 

The information-extraction rate is assumed to be a product of two 
factors. The first factor is a(t), the available information (which implies 
the reasonable property that r(t) = 0 when u(t) = 0). The second factor 
is a monotonically decreasing function, h, of Z(t), the proportion of infor- 

5 Loftus and Hogden presented two parallel models: one using relatively weak assump- 
tions, and the other using corresponding stronger (quantitative) assumptions. We present 
only the quantitative version of the model here. 

6 The parameter w, termed the icon’s worth, is described in detail by Loftus et al. (1985). 
Briefly, it can be viewed as follows. Loftus et al. found that memory performance for a d-ms 
picture followed by an icon was equal to memory performance for a (d+ lOO)-ms picture not 
followed by an icon. Thus, with respect to memory performance, having an icon is worth 
having approximately w = 100 ms of additional physical exposure duration. 
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FIG. 7. Major components of the Loftus and Hogden model as functions of time since 
stimulus onset. The top panel shows available information and the bottom panel shows 
information-extraction rate. 

mation already extracted. That I@(f)) is monotonically decreasing cap- 
tures the notion that easier (i.e., faster)-to-extract information is ex- 
tracted earlier than harder (i.e., slower)-to-extract information (just as, 
for example, the earlier words in a crossword puzzle are filled in faster 
than the later words). This general characterization of r(t) (in conjunction 
with unidimensionality) has been incorporated, in one form or another, 
into a variety of information-acquisition models (e.g., Kowler & Sperling, 
1980; Krumhansl, 1982; Loftus & Kallman, 1979; Massaro, 1970; Rumel- 
hart, 1969; Sperling, 1967). 
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We have chosen the function h to be 

h(Z(?)) = c[l.O - Z(t)], 

where c is a free parameter, in units of set-i, whose value determines 
how fast r(t) declines with increases in extracted stimulus information. 
Thus, the equation for r(t) is 

r(t) = a(t)c[l.O - Z(f)] (2) 

Equation (2) is illustrated in Fig. 7 (bottom) with c = 3.70, a value that 
was estimated by Loftus and Hogden (1988). 

Assumption 4: Phenomenological appearance. An observer remains 
phenomenologically aware of a stimulus until r(t), the rate of extracting 
information from the stimulus falls below some criterion, r,,,. 

An important consequence of this assumption is illustrated in Fig. 8 
where r(t) is shown as a function of time since stimulus onset for 50- and 
250-ms stimuli. The horizontal line near the abscissa of each graph rep- 
resents rcrit. Duration of visible persistence is represented by the double- 
headed arrows between the time of stimulus offset and the time at which 
r(t) crosses r,,+ It can be seen that, in accordance with the extant syn- 
chrony-judgement data, the model predicts shorter persistence with 
longer stimuli. 

Assumption 4 is essentially that conscious experience of a stimulus 
results from extracting information from the stimulus. This notion is sim- 
ilar to one in the selective attention literature that conscious experience 
results from attending to the stimulus (cf. James, 1890/1950; Norman, 
1976). 

Assumption 5: Rating performance. The completeness rating obtained 
in the present experiments is a monotonic function of the half-l informa- 
tion-extraction rate at the time that the second half of the picture is 
presented. 

Assumption 5 is somewhat arbitrary, but it captures the model’s es- 
sence, which is that, the lower half-l r(t) is, the less likely half-l is to be 
visible; thus the lower half-l r(t) is at the time of half-2 onset, the less 
likely it is that the entire configuration resembles the complete picture. 
Figure 9 illustrates the model’s account of the present data. Each panel 
shows r(t) for both half-l and half-2 as functions of time since half-l onset. 
The four panels contrast short vs long HlDs (top vs bottom panels) and 
short vs long ISIS (left vs right panels). Because half-l r(t) decreases with 
both HID and ISI, the value of half-l r(t) at the time of half-2 presentation 
decreases with both these variables. 

Relation to Di Lo110 and Dixon’s Model 

Earlier, we sketched a visible persistence model described by Di Lo110 
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FIG. 8. Prediction of the model about the effect of stimulus duration in a synchrony- 
judgment task. Each panel shows information-extraction rate as a function of time since 
stimulus onset. The top panel if for a 50-ms stimulus; the bottom panel is for a 250-ms 
stimulus. The time for information-extraction rate to fall to a criterion level is greater for the 
shorter stimulus. 

and Dixon (in press). Loftus and Hogden’s model is formally quite similar 
to Di Lo110 and Dixon’s. Each model involves two major constructs that 
play corresponding roles. First, Loftus and Hogden posit available infor- 
mation, while Di Lo110 and Dixon posit an analog representation. Both 
constructs are assumed to be (a) time-locked to stimulus offset and (b) not 
responsible for phenomenological awareness. Second, Loftus and Hog- 
den posit an information-extraction rate, while Di Lo110 and Dixon posit 
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FIG. 9. Illustration of the model’s account of the rating task used in Experiments 1 and 2. 

visible persistence. Both constructs are assumed to be (a) time-locked to 
stimulus onset and (b) responsible for phenomenological awareness. 

The major difference between the models is in the link between these 
two constructs and performance in tasks that depend on spatial informa- 
tion. In Di Lo110 and Dixon’s model, both the analog representation and 
visible persistence contribute independently to performance. In Loftus 
and Hogden’s model, available information affects performance only in- 
directly, via its effect on information-extraction rate. 
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In the next two sections, we will apply the information-extraction 
model both to the present data and to Di Lo110 and Dixon’s (1988) partial- 
report data. 

APPLICATION OF THE INFORMATION-EXTRACTION MODEL TO 
THE PRESENTDATA 

Equations (1) and (2) allow calculation of the half-l information- 
extraction rate at the instant of half-2 presentation for all conditions in 
both experiments (cf. Fig. 9). We refer to these rates as r(HlD, ISI). 

Interpreting the Model’s Parameter, c 

In the equation for r(t) (Eq. (2)), there is a free parameter, c. Because 
c is important in interpreting the model, we make several remarks about 
it here. 

Rapidity of relevant information extraction. The parameter c deter- 
mines how fast relevant information is extracted from the stimulus: higher 
values of c imply quicker extraction of relevant information. Recall that, 
in our usage, the term “information’‘-either available or extracted in- 
formation-refers to proportion of total information in the stimulus. Thus 
our mathematical expression of information is normalized for stimuli of 
different informational content. To gain an intuition of c’s meaning, it is 
useful to calculate how fast some proportion of relevant information is 
extracted for different c values. Consider, for example, a 20-ms stimulus. 
With c = 10, it would require 87 ms to extract 50% of relevant stimulus 
information; with c = 20, it would require only 36 ms to extract 50% of 
relevant stimulus information. 

Stimulus complexity and c. The predicted difference between complex 
and simple stimuli (scenes and dots) is captured in the model by predicted 
variation in c; that is, faster information extraction for dots relative to 
scenes implies, and is implied by, a higher value of c for dots relative to 
scenes. In fitting our model, we allowed two free parameters, c, and cd, 
in computing the information-extraction rates for scenes and dots, respec- 
tively . 

Fitting the Model with Rank-Order Correlation 

Because the model assumes performance (rating) to be only monotonic 
with half-l r(t), the model cannot precisely predict performance. The 
monotonicity assumption does, however, predict a perfect over-condi- 
tions, rank-order correlation between r(HlD, ISI) and rating perfor- 
mance, which we refer to as p(HlD, ISI). Accordingly, to fit the model, 
we used a gridsearch procedure to find those values of c, and cd that 
maximized the rank-order correlation between r(HlD, ISI) and 
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p(HlD, ISI) over experimental conditions. We carried out this procedure 
separately for Experiments 1 and 2. 

Model Fit: Results 

To fit the Experiment 1 data, we used 60 conditions: the six HlD levels 
crossed with the five temporally disjoint IS1 levels for both scenes and 
dots. The best-fitting c, and cd values were 38.5 and 47.5, respectively, 
which produced a rank-order correlation, p of 0.981. To fit the Experi- 
ment 2 data, we used 50 conditions: the five HID levels crossed with the 
five temporally disjoint IS1 levels, for both scenes and dots. The best- 
fitting c, and cd levels were 8.5 and 14.5, respectively, which produced a 
rank-order correlation, p, of 0.982. The results of these fits- 
over-condition scatterplots relating obtained ratings to predicted r(t)-are 
shown in Fig. 10.’ Note that there are separate scatter-plots for Experi- 
ments 1 and 2. 

It is evident that the fits are reasonably good for both experiments. 
Could these scatterplots have come from underlying monotonic distribu- 
tions, as the model predicts? Consider the many reversals in the scatter- 
plots, i.e., pairs of points whose ratings are reversed relative to the model 
predictions (an example of a reversal is indicated by the two arrows in 
Fig. 10). If the model is correct, then these reversals must occur by 
chance. Recall, however, that standard errors are very small-approx- 
imately the size of the curve symbols. Accordingly, many of the reversals 
are several standard deviations apart. In short, the power of the data is 
such that the observed rank-order correlations, despite being high, are 
inconsistent with an underlying monotonic fit. This constitutes a deficit of 
the model about which we will say more shortly. 

Model Fit: Discussion 

The model provides a convenient tool within which several facets of the 
data may be interpreted. We will use the model in particular to interpret 
the observed differences between the two experiments and the observed 
differences between scenes and dots. 

Differences between Experiments 1 and 2. We know empirically (see 
Fig. 6) that the same stimulus display leads to a different rating in Exper- 
iment 2 relative to Experiment 1. Why does this happen? There are at 
least two (not mutually exclusive) possibilities. The first is that the same 
stimulus display leads to a different perceptual event in Experiment 2 

’ The r(t) values are shown in In scales for visual clarity. Note that the ordinal relations 
under consideration are unaffected by logarithmic (or any other monotonic) transforma- 
tions. 
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FIG. 10. Fit of the Loftus and Hogden model to Experiment 1 and 2 data. The scatterplots 
show obtained mean rating as functions of predicted information-extraction rate. Each point 
on each of the scatterplots represents a single experimental condition. Information- 
extraction rate is plotted on a natural-log scale for visual clarity. The model’s prediction is 
that all points within each scatterplot form a monotonic function. 

than in Experiment 1. The second possibility is that observers are using 
the rating scale differently in Experiment 2 than in Experiment 1; that is, 
the same perceptual event may lead to a different completeness rating 
depending on whether that event occurred as part of Experiment 1 or as 
part of Experiment 2. 

Given the model’s validity, both possibilities are correct. Consider first 
the different best-fitting parameter values in the two experiments. Differ- 
ent parameter values mean that, with the same stimulus display (i.e., with 
the same HlD and same ISI), r(t) is different in Experiment 2 than in 
Experiment 1 and, according to the model, different r(t) values imply 
different perceptual events. But now consider the curves in Fig. 10 that 
relate observed rating to r(t). The curves are different for the two exper- 
iments; e.g., ln[r(t)] = 0.0 leads to a rating of about 2.0 for Experiment 1, 
but about 1.2 for Experiment 2. Given that the r(t) value specifies the 
perceptual event, this means that the same perceptual event leads to 
different ratings in Experiment 2 than in Experiment 1. 

That the same perceptual event could lead to different ratings in two 
experiments seems reasonable; the observers are at liberty to use the 
rating scale in any way they wish. That the same stimulus display could 
lead to different perceptual events in the two experiments, while less 
intuitively plausible, is not out of the question. Suppose that, as asserted 
by both Di Lollo’s (1980) model and Loftus and Hogden’s (1988) model, 
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the duration of visible persistence depends on the magnitude of percep- 
tual processing. To the degree that magnitude of perceptual processing is 
influenced by nonstimulus factors, visible persistence would not be 
strictly determined by stimulus characteristics. In the present Experiment 
2, observers were adapted to a different range of HlDs and ISIS than in 
Experiment 1. This difference, along with other unknown nonstimulus 
factors may have influenced perception. 

Stimulus complexity. In both experiments, the estimated c value was 
greater for dots than for scenes. This outcome of the model fit was en- 
tirely expected given the data (see Fig. 2 and 4; Tables 1 and 2); it reflects 
the greater effects of both HID and IS1 on completeness rating for the 
dots relative to the scenes. 

Visual stimuli differ substantially in terms of the amount of relevant 
information that an observer can extract. Differences in complexity are 
determined both by the stimulus itself (e.g., a picture containing many 
different shapes is more complex than a picture containing a single, mono- 
chromatic circle) and by what the observer plans to do with the stimulus 
information (e.g., a picture whose minute details need be remembered is 
more complex than a picture whose gist only need be remembered). 

By the first definition of complexity our naturalistic scenes were more 
complex than our dot arrays. It is not clear whether the two stimulus 
types differ by the second definition, because we could not control ex- 
actly how the observers were processing the stimuli. In any event, we 
found scene/dot differences that were quite systematic and robust: dots 
were more affected by both stimulus duration and by poststimulus dura- 
tion (ISI) than scenes. 

We have provided one explanation for the scene/dot difference that is 
embodied in our model and is illustrated by the higher c values for dots 
relative to scenes in both of our experiments. However, as pointed out to 
us by V. Di Lo110 and D. Irwin (personal communication) there are other 
low-level factors (e.g., contrast, luminance, and spatial-frequency com- 
position) that could also account for the scene/dot difference. We will 
discuss one such factor that seems particularly plausible, that of contour 
proximity. We cannot rule out this factor (or any other factor) as being 
entirely responsible for our observed scene/dot differences. However, as 
we shall see, if we consider this factor within the context of our model, 
rather than as an alternative to our model, a tidy and parsimonious picture 
emerges. 

Di Lo110 and Hogben (1985; 1987) have shown that missing-dot perfor- 
mance is influenced by spatial proximity between the elements of the two 
successively presented stimulus halves: closer proximity leads to de- 
creased performance at short SOAs. In our experiments, scenes and dots 
differed with respect to element proximity; the borders of two scene 
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halves were spatially contiguous, whereas the half-l dots were spatially 
separated from the half-2 dots. It is therefore possible that any half-l 
visible suppression resulting from half-2 lateral masking is greater at short 
HlDs and ISIS for scenes relative to dots. This would result in the shal- 
lower slopes for scenes relative to dots that are shown in Figs. 1-4 and 
Table 1. 

To assess this possibility within the context of our model, we plotted 
mean rating as a function of predicted r(t) separately for scenes and dots. 
These functions are shown in Figs. 11 (Experiment 1) and 12 (Experiment 
2). These figures essentially consist of splittings by scene/dot and IS1 of 
the Fig. 10 scatterplots. Figures 11 and 12 both include six panels. The 
first five correspond to the five temporally disjoint IS1 levels; the data 
points within each of these five panels correspond to the HlD levels for 
scenes and dots. The bottom-right panels (labeled “overall”) include the 
same (complete) data as in Fig. 10 (60 conditions for Experiment 1 and 50 
conditions for Experiment 2). The model’s prediction is that r(t) and 
rating performance are related by a monotonic function, i.e., that all 
curves in Figs. 11 and 12 should lie more or less on top of one another. It 
is evident that this prediction is met reasonably well, although by no 
means perfectly. 

When the scatterplots are arranged this way, systematic departures 
from monotonicity become apparent. In particular, for all conditions in- 
volving short SOAs (shorter than about 60 ms), the rating that corre- 
sponds to a given r(t) is lower for scenes than for dots. This means that, 
even after removing the model’s account of the scene/dot difference (by 
generating r(t) predictions based on different c values for scenes and 
dots), there is still unaccounted scene-dot variation. The nature of this 
difference-lower ratings for scenes at short SOAs-is exactly what 
would be predicted by the differential-masking explanation. 

We have noted that our two principal variables, HID and ISI, affect 
subjective appearance and temporal-integration ability in similar ways. 
The analysis that we have just reported suggests that a third variable- 
spatial contiguity-also affects subjective appearance and temporal- 
integration ability in similar ways. This provides additional evidence that 
subjective appearance and temporal-integration ability are two manifes- 
tations of the same perceptual processes. 

APPLICATION OF THE INFORMATION-EXTRACTION MODEL TO 
THE DI LOLL0 AND DIXON DATA 

Di Lo110 and Dixon (in press) describe a partial-report experiment in 
which the stimulus display consisted of an array of 15 letters arranged 
evenly around the circumference of an imaginary circle. The stimulus was 
presented for one of eight durations, ranging from 10 to 500 ms. Following 
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FIG. 11. Fit of the Loftus and Hogden model to data from Experiment 1. Each panel 
shows observed rating as a function of predicted information-extraction rate; a single point 
represents a single experimental condition. The bottom right panel shows all 60 conditions. 
Each of the other panels shows data for one IS1 condition only, and includes 12 conditions: 
six values of HID for both scenes and dots. Information-extraction rate is plotted on a 
natural-log scale for visual clarity. The model’s prediction is that all points in a given panel 
form a monotonic function. 



390 LOFTUS AND HANNA 

EXPERIMENT 2 
* D: ISI= 
- 

:1.0 
I 

InformatitZ-ExtrZtion R%(ln.s3dLel 

4.0m 

1.0+ I 
-1.0 0.0 

Information-ExtrZtion R’aflln .s~~lel 

..Y 
I 

EXPERIMENT 2 
I 

* n 181:80 
+ s: 181-80 

r.o+ I 
-1.0 0.0 1.0 2.0 3.0 

Information-Extraction Rateh scale) 

4.0 

P 3.0 .- 

;;r 
a 
s 

r" 2.0 

11 IC 

EXPERIMENT 2 

-1.0 0.0 1.0 

Information-Extraction Rakb SC, 

..” 

EXPERIMENT 2 
* D: IsI= 
- s: 181-60 

0 

e) 

.l.O 0.0 1.0 2.0 3.0 

information-Extraction Rateh scale 

0 

Information-Extraction RatetIn sea 

FIG. 12. Fit of the Loftus and Hogden model to data from Experiment 2. Each panel 
shows observed rating as a function of predicted information-extraction rate; a single point 
represents a single experimental condition. The bottom right panel shows all 50 conditions. 
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one of five ISIS, ranging from 0 to 200 ms, a probe appeared in the form 
of a bar marker indicating one of the letters. The observer’s task was to 
report the indicated letter. Di Lo110 and Dixon found that performance 
varied inversely with both array duration and ISI. 

As noted earlier, Di Lo110 and Dixon presented a mathematical model 
to describe their data. This model posits two representations-visible 
persistence and analog-that contribute independently to performance. 
The model, which included live free parameters, tit the data impressively, 
accounting for 99.6% of the variance across the 40 conditions. 

To tit our information-extraction rate model to the Di Lo110 and Dixon 
data, we assumed that information is extracted randomly from the stim- 
ulus array up to the point at which the probe is presented. At that point, 
information extraction continues in the same manner, but is focused on 
the appropriate array location. Therefore, it is postprobe extracted infor- 
mation that is relevant to subsequent performance. Accordingly, we as- 
sume that performance is a monotonic function of the amount of this 
postprobe extracted information. 

Figure 13 illustrates the model’s account of Di Lo110 and Dixon’s data. 
Each panel shows r(t) as a function of stimulus duration. The four panels 
contrast short vs long stimulus durations (top vs bottom panels) and short 
vs long ISIS (left vs right panels). In each panel, the hatched area repre- 
sents postprobe extracted information (the integral of r(t) from probe- 
presentation position onward). Because r(t) decreases with both HlD and 
ISI, the magnitude of postprobe extracted information decreases as well. 

In fitting our model, we allowed only a single free parameter, c. We 
used a gridsearch procedure to determine the c value that maximized the 
across-condition rank-order correlation between predicted postprobe ex- 
tracted information and performance. 

Model Fit: Results 

The best-fitting c value was 3.70, which produced a rank-order corre- 
lation, p, of 0.978. The tit of the model is shown in Fig. 14, in which mean 
performance is plotted against predicted postprobe extracted informa- 
tion.8 We have plotted separate curves for the separate IS1 conditions. 
There appear to be no systematic deviations from monotonicity. 

Model Fit: Discussion 

The information-extraction rate model is capable of accounting for the 
qualitative pattern of the Di Lo110 and Dixon data. We have not predicted 
exact performance; this would require a theory of the relation between 

s Again, postprobe extracted information is shown on a In scale for visual clarity. 
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FIG. 13. Illustration of the model’s account of the partial- report task used by Di Lo110 and 

Dixon. 

postprobe extracted information and actual performance. Development of 
such a theory is beyond the scope of this article. 

Comparison of the models. It is somewhat diffkult to compare the 
accounts of the data provided by the two models. Di Lo110 and Dixon 
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FIG. 14. Fit of the Loftus and Hogden model to Di Lo110 and Dixon’s data. Each curve 
shows observed performance as a function of predicted postprobe extracted information for 
a given IS1 level. Extracted information is plotted on a natural-log scale for visual clarity. 
The model’s prediction is that all points form a monotonic function. 

predict the quantitative performance pattern very well, whereas we pre- 
dict the qualitative performance pattern slightly less well. However, 
Dixon and Di Lollo’s model incorporates more free parameters than does 
ours. 

Parameter values. Although we fit our data to the Di Lo110 and Dixon 
data with only one free parameter, c, there is another parameter in the 
model, which is w (see Eq. (1)). Loftus et al. (1985) estimated this pa- 
rameter to be about 100 ms and found this value to be remarkably invari- 
ant across a variety of conditions. Accordingly Loftus and his colleagues 
have consistently set w to 100 ms when applying the Loftus and Hogden 
model to data (cf. Loftus & Hogden, 1988; Loftus et al., 1988). 

As noted earlier there is a close correspondence between Di Lo110 and 
Dixon’s “visual analog representation” and Loftus and Hogden’s “avail- 
able information.” Indeed the equations for these two constructs are 
essentially identical; they are 

&) = ,-ww (Loftus & Hogden) 

and 

P(Cva) = .,-<isi) (Di Lo110 & Dixon).’ 

Thus there are corresponding parameters in the two models: 

9 Di Lo110 and Dixon include the extra parameter, a, in their equation to account for 
contributions to performance from a relatively long-term memory. The decay of the analog 
representation is entirely captured in the parameter r. 
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w = l/r. 

Di Lo110 and Dixon, using a gridsearch procedure, estimated r to be 
0.0105. Thus w = l/O.0105 = 95, which is remarkably close to the 100 ms 
estimated by Loftus et al. (1985) and subsequently assumed by Loftus and 
his colleagues. It is unlikely that Di Lo110 and Dixon’s lit would have 
substantially changed had they fixed r at 0.0100 (corresponding to w = 
100). Accordingly, in comparing the two models, if one free parameter is 
to be attributed to the Loftus and Hogden model, only four free param- 
eters should be attributed to the Di Lo110 and Dixon model. 

CONCLUSIONS 

We conclude with remarks about implications of our data and about 
illumination of our data that are provided by application of our model. 

Remarks about Our Data 

At the outset of this article, we noted that the cognitive activity that 
briefly follows a visual stimulus has two major characteristics: subjec- 
tively, the stimulus itself seems to persist, and objectively, the observer 
is able to perform tasks that require knowledge of spatial relations within 
the stimulus. Our first empirical goal was to measure subjective experi- 
ence in a particular task-the missing-dot task-that was originally de- 
signed to measure objective ability. 

We found that the result pattern obtained using a subjective measure 
(completeness ratings) closely resembled previous result patterns ob- 
tained using an objective measure (missing-dot performance). This simi- 
larity is consistent with the notion that a unitary cognitive phenomenon 
(information-extraction rate) is responsible for both the subjective and the 
objective results. 

This view differs from that of others (e.g., Di Lo110 & Dixon, in press; 
Erwin, 1976; Irwin & Yeomans, 1986) who maintain that spatial- 
integration ability, while related to visible persistence, is not entirely 
determined by it, This latter view is expressed most explicitly by Di Lo110 
and Dixon (in press) who claim performance, at least in a spatially based, 
partial-report task, to be determined both by visible and by nonvisible 
stimulus representations. 

Remarks about Our Model 

In the second section of this article, we described a model-the Loftus 
and Hogden model-that has proven capable of accounting for data from 
a variety of different experimental paradigms (see Loftus & Hogden, 
1988; Loftus et al., 1988, for a complete description of data accounted for 
by the model). We have applied the model to data from two new tasks: 
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our subjective-completeness task and Di Lo110 and Dixon’s partial-report 
task. In both cases, the qualitative fit of the model was quite good; the 
across-condition, rank-order correlations between the model predictions 
and observed data exceeded 0.97 in all cases. 

Of some interest is the nature of the parameter values that emerged 
from our model fits. In past work, Loftus and his colleagues have ob- 
tained best-filling c values of 3.70 from synchrony-judgement data (Loftus 
& Hogden, 1988) and 3.40 from picture-recognition data (Loftus et al., 
1988). As noted earlier, we found a best-fitting c value of 3.70 in applying 
our model to Di Lo110 and Dixon’s partial-report data. In contrast, appli- 
cation of the model to the present data-particularly to the Experiment 1 
data-produced much higher c values. Why is this? 

As we have described, high c values are generally associated with rapid 
extraction of relevant information. Rapid information extraction can oc- 
cur either because the stimuli are intrinsically simple, or because the 
observer is treating the stimuli in a simple manner.” 

In the experiments that have produced low c values, the observers were 
relatively unfamiliar with the stimuli. In contrast, in the present experi- 
ments, observers had seen each picture 216 times during the practice 
session before Experiment 1 even began; thus, during the experiments 
themselves, observers were probably learning very little about the pic- 
tures that they did not already know. They were quite familiar with the 
stimuli and might have begun treating them more as random patterns than 
as coherent stimuli. Thus the relevant information in the stimuli extracted 
by the observers may have been minimal. 

Given this analysis, there is still a mystery: why were the best-fitting 
parameter values lower in Experiment 2 than in Experiment l? While we 
have no compelling answer to this question, we can offer the following 
speculative analysis. First, given that observers had seen each stimulus 
216 times by the beginning of Experiment 1, it is unlikely that there would 
have been any additional increase in stimulus familiarity as a result of 
actually participating in the Experiment 1 and Experiment 2 experimental 
trials. However, there was an important difference between the two ex- 
periments: both HlD and IS1 were long in Experiment 1 relative to Ex- 

” Loftus et al. (1988) also lit data from several picture-recognition experiments reported 
by Intraub and her colleagues. They estimated c to be 13.10 for data reported by Intraub 
(1980) and 10.30 and 5.70 for simple and complex pictures reported by Intraub and Nicklos 
(1981). In the Intraub (1980) experiment, a picture-recognition paradigm was used in which 
simple targets and distracters were made to be very different from one another; thus, the 
task-relevant information that needed to be extracted was minimal. In the Intraub and 
Nicklos (1981) experiment, the simple pictures were much like those of Intraub (1980) 
whereas the complex pictures were much like those used by Loftus and Hogden. 
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periment 2, which led to relatively incomplete perceptions of the pictures 
in Experiment 1 relative to Experiment 2. Accordingly, observers in Ex- 
periment 1 may have been more inclined to treat the pictures as mean- 
ingless patterns relative to Experiment 2; on most Experiment 2 trials, the 
display in fact looked like a fairly normal picture. In short, the different 
general environment in the two experiments may have produced different 
ways of processing the pictures on a trial-to-trial basis. 

In applying the model to data, we have resisted formulating a complete 
response model designed to explicitly link the model to observed perfor- 
mance. This approach has advantages and disadvantages. The major dis- 
advantages are (1) we are left with an incomplete account of experimental 
data and (2) we are restricted to rank-order correlation methods in fitting 
and evaluating the model. The major advantage is that we do not tie 
ourselves to restrictive, and probably untenable assumptions about re- 
sponse processes: accordingly we can examine what is of most interest to 
us-perceptual processes-in relative isolation. 
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