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We test 3 theories of global and local scene information acquisition, defining global and local in terms
of spatial frequencies. By independence theories, high- and low-spatial-frequency information are
acquired over the same time course and combine additively. By global-precedence theories, global
information acquisition precedes local information acquisition, but they combine additively. By inter-
active theories, global information also affects local-information acquisition rate. We report 2 digit-recall
experiments. In the 1st, we confirmed independence theories. In the 2nd, we disconfirmed both
independence theories and interactive theories, leaving global-precedence theories as the remaining
alternative. We show that a specific global-precedence theory quantitatively accounted for Experiments
1–2 data as well as for past data. We discuss how their spatial-frequency definition of spatial scale
comports with definitions used by others, and we consider the suggestion by P. G. Schyns and colleagues
(e.g., D. J. Morrison & Schyns, 2001) that the visual system may act flexibly rather than rigidly in its use
of spatial scales.

Since the time of Neisser’s (1967) classic Cognitive Psychology,
visual scenes have been conceptualized as being decomposable
into global and local information: Global information corresponds
to overall scene structure, whereas local information corresponds
to fine details (see Morrison & Schyns, 2001, pp. 454–456, for a
summary). This article is about the relations between global infor-
mation and local information—the relative time courses over
which they are acquired and the means by which they combine into
an overall perception of the scene.

Spatial-Frequency Information

Global and local information can be operationalized in many
ways. One of them is in terms of spatial frequencies. From the
visual system’s perspective, the world is made up of different
spatial frequencies. An example is provided in Figure 1, the top of
which shows a typical real-world scene. The two bottom panels
show the same picture filtered to pass only the low spatial fre-
quencies (LSFs; bottom left) or high spatial frequencies (HSFs;
bottom right). It is evident that the two spatial-frequency compo-
nents carry different kinds of information that accord well with the
general conceptualization of global information and local informa-
tion: The bottom left Figure-1 picture carries a global representa-
tion of the scene, whereas the bottom right picture conveys infor-

mation about edges and details, such as the writing on the dollar
bill. There is indeed ample evidence that the visual system decom-
poses the visual scene into separate spatial-frequency components
(Blakemore & Campbell, 1969; Campbell & Robson, 1968; De
Valois & De Valois, 1980, 1988; Graham, 1989; Olzak & Thomas,
1986). Accordingly, a correspondence between global–local on the
one hand and LSF–HSF on the other has been hypothesized by
numerous investigators (e.g., Hughes, Nozawa, & Ketterle, 1996;
Schyns & Oliva, 1994), and we shall use it in the remainder of this
article.

Theories of the Relations Between Global and
Local Information

We begin by defining and characterizing three classes of theo-
ries of the relations between LSF and HSF information. We first
divide theories into two mutually exclusive classes: independence
theories and global-to-local (GtL) theories. We then further sub-
divide GtL theories into global-precedence GtL theories and stron-
ger, interactive GtL theories. For the moment, we characterize the
distinctions informally and verbally. In later sections, we provide
formal, quantitative instantiations of them.

Independence Theories

According to independence theories, both global information
and local information are acquired in a manner that does not
depend on when the information is acquired after stimulus onset
(e.g., Soloman & Pelli’s, 1994, single-filter model; see also Majaj,
Pelli, Jurshan, & Palomares, 2002). To illustrate, suppose that one
could manipulate when, after stimulus onset, the two types of
information are acquired by presenting global information before
local information or vice versa. By an independence theory, the
order that the two types of information were presented would not
matter (as found by, e.g., Parker, Lishman, & Hughes, 1996): The
resulting total information would be the same. Independence the-
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ories, moreover, assume additivity: LSF and HSF information are
summed to arrive at the total information. An analogy is this.
Suppose that you plan to buy vegetables from the vegetable stand
and to buy candy from the candy store. It does not matter in which
order you do these errands; when you arrive home you will have
the same food in the same state.

Global-to-Local Theories

According to GtL theories, global information is acquired ini-
tially, followed by local information. Sanocki (2001) explicitly
distinguishes between these two types of GtL theories. He has
characterized acquisition-rate-difference theories by noting that,
within their context, the time course of information acquisition
differs for large-scale features (global information) versus small-
scale features (local information): The former is acquired rela-
tively quickly at first and then more slowly, but vice versa for the
latter. In contrast, Sanocki (2001) has characterized interactive
theories, which his data favor, by noting that within their context,
“early large-scale information provides a large framework that can
subsequently integrate small-scale information across the entire
object” (p. 296). The distinction that we make here is much the
same as that of Sanocki. For expositional convenience, we endow

these two kinds of GtL theories with formal names: global-
precedence GtL theories and interactive GtL theories.

In global-precedence GtL theories (e.g., Loftus, Nelson, & Kall-
man, 1983; Navon, 1977; Parker & Costen, 1999; Schyns & Oliva,
1994; Watt, 1987), acquisition of global information precedes
acquisition of local information. Thus, the order in which the two
types of information were presented would matter: Global infor-
mation provided before local information would be better than the
other way around. Like independence theories, global-precedence
theories assume additivity of the LSF and HSF signals. To con-
tinue with our whimsical shopping analogy, suppose you go out
planning to buy frozen vegetables at the supermarket and ice
cream at the ice cream parlor, both of which you plan to eat on
your arrival back home. Here, the order in which you buy your
groceries matters: It is better to buy the frozen vegetables first and
the ice cream last, because when you arrive home you want your
vegetables to be thawed and your ice cream to be still frozen.

In interactive GtL theories (e.g., Navon, 1977; Sanocki, 1991,
1993, 2001), not only does global information precede local in-
formation but acquisition of local information also depends on the
amount of already acquired global information. That is, acquired
global information provides a spatial framework, within which
local information can be interpreted and integrated—and the more

Figure 1. Decomposition of a naturalistic scene (top) into low-spatial-frequency components (bottom left) and
high-spatial-frequency components (bottom right).
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complete the global information, the more efficient is such local
processing. Thus, by interactive theories, LSF and HSF signals do
not combine additively. Note that the interactive version of a GtL
theory is a special case of the global-precedence version: The
interactive version can be correct only if the global-precedence
version is correct, but not vice versa.

Present Work

The research reported here was motivated largely by the results
of two recent elegant experiments bearing on the time course over
which HSF information and LSF information are acquired by the
visual system and on the rules by which the two kinds of infor-
mation combine to create an overall, coherent perception of a
visual scene. We describe these experiments in some detail.

Schyns and Oliva (1994) created pictures that were composites
of two entirely different scenes: one including only the LSF
components and the other including only the HSF components.
Observers viewed the composites either at a short duration (30 ms)
or at a long duration (150 ms). At the short duration, observers had
a strong tendency to perceive the LSF scene, whereas at the longer
duration, they had a strong tendency to perceive the HSF scene.
Schyns and Oliva concluded that LSF and HSF information oper-
ate over different time courses: LSF information is acquired first,
followed by HSF information. Their data, by this conclusion,
disconfirm independence theories and are consistent with either
version of GtL theories. We note that, despite this finding, Schyns
and his colleagues (Morrison & Schyns, 2001) have more recently
retreated in several ways from the strong claim of a universal
global–local processing order. We return to this topic and describe
the rationale for this repositioning in our General Discussion.

Olds and Engel (1998) investigated acquisition of HSF and LSF
information in several experiments involving identification of pic-
tures of common objects. The pictures were of three types. Intact
pictures were unaltered (except for being of quite low contrast).
LSF pictures were created by low-pass filtering the intact pictures,
thereby producing blurred versions akin to that shown in Figure 1,
lower left. HSF pictures, like the one in Figure 1, lower right, were
created by subtracting, on a pixel-luminance basis, the LSF picture
from the intact picture and then adding the mean luminance of the
intact picture. The intact picture was therefore the pixel-luminance
mean of the LSF and HSF pictures. All three picture types were
shown at exposure durations ranging from 17 to 100 ms, followed
by a noise mask, and observers attempted to identify the objects
depicted by them.

Olds and Engel (1998) tested whether performance (percentage
of correct identification) for intact pictures could be accounted for
by an independence theory. To do so, they fit to their data a theory
called the sensory response–information acquisition (SRIA) the-
ory, which is an instance of what we have defined to be an
independence theory: The order of spatial-frequency components
does not matter, and the spatial-frequency components combine
additively. The SRIA theory has been described in detail elsewhere
as it applies to perception and memory of digit strings (Busey &
Loftus, 1994, 1998; Loftus, Busey, & Senders, 1993; Loftus &
Ruthruff, 1994); line drawings (Loftus & McLean, 1999); and
random forms (Harley, Dillon, & Loftus, 2003). To understand the
meaning of Olds and Engel’s results, it is necessary to understand
this theory, so we describe it here briefly.

The theory begins with the physical stimulus, which is repre-
sented by a function, f(t), relating stimulus contrast, C, to time, t,
since stimulus onset. For stimuli presented on a CRT, as in Olds
and Engel’s (1998) (and the present) experiments, f(t) consists of
a series of pulses, each pulse corresponding to a single screen
refresh. However, as shown by Busey and Loftus (1994, Appendix
D), given the temporal parameters of the human visual system and
the timing of CRT refresh rates, almost perfect predictions can be
generated with the simplifying assumption that f(t) is rectangular
with a width equal to d, the stimulus duration, and a height equal
to C, the stimulus contrast.

The stimulus is assumed to trigger a sensory response function,
a(t), which is the convolution of f(t) and the system’s impulse-
response function, g(t); thus,

a�t� � f�t� * g�t�, (1)

where * signifies convolution. The impulse-response function is a
gamma function that is a convolution of n exponential decay
functions, each with decay parameter �; thus, n and � are free
parameters. At any post-sensory response stage, the system re-
sponds only to the magnitude by which a(t) exceeds some sensory
threshold, �, a free parameter. Above-threshold sensory-response
magnitude at time t is termed a�(t); more specifically,

a��t� �
a�t� � � for a�t� � �
0 for a�t� � � . (2)

At time t since stimulus onset, some proportion of information,
I(t), is assumed to have been acquired from the stimulus. New
information is acquired at a rate proportional to the product of a�(t)
and [1 � I(t)]. The proportionality constant is 1/c, where c is a free
parameter. Total acquired information from the stimulus, I(�), can
be shown to equal 1 � eA����/c, where A�(�) is the total area under
a�(t). Performance, p, generally measured as some form of pro-
portion correct (corrected for any guessing rate), is assumed equal
to I(�), the total information acquired from the stimulus over the
course of stimulus presentation. The theory thus begins with the
observable stimulus, f(t) and, via parameters n, �, �, and c, gener-
ates observable performance, p.

To apply the SRIA theory to their experiment, Olds and Engel
(1998) assumed that sensory response functions corresponding to
the LSF and HSF components were weighted: The weight ac-
corded the LSF component, wL, was a free parameter, whereas the
weight accorded the HSF component was (1 � wL).1 They then
assumed the LSF and HSF components simply added to produce
the intact sensory response function. The SRIA theory fit Olds and
Engel’s data essentially perfectly, thereby confirming that an in-
dependence theory is sufficient to account for data issuing from
spatial-frequency mixtures in this task.

Olds and Engel (1998) appeared to view this result as inharmo-
nious with Schyns and Oliva’s (1994) data, citing the latter as an
example of data that “support the idea that responses to compo-
nents at different scales combine non-linearly over the time-course

1 Olds and Engel (1998) allowed two separate parameters, wH and wL,

corresponding to HSF and LSF information. As we show in the Appendix,
however, two weight parameters overdetermine the theory, and Olds and
Engel’s treatment is equivalent to that provided here with weights wL and
wH � (1 � wL).
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of object recognition” (p. 2109) and going on to characterize this
result, along with those of Sanocki (1993), as implying “that the
value of high spatial-frequency component depends on the amount
of low spatial-frequency information that has already been pro-
cessed” (p. 2010). Below, we take issue with this conclusion and
argue that Schyns and Oliva’s data, although inconsistent with
independence theories, do not imply an interactive theory. We also
demonstrate that although Olds and Engel’s results are consistent
with independence theories, they do not provide a sufficiently
exacting test of independence theories; as we see, their data are
also consistent with a global-precedence theory.

We have three goals in this article. The first is to replicate and
extend Olds and Engel’s (1998) findings. The second is to modify
Olds and Engel’s theory to account for new data that are incon-
sistent with it. The third is to demonstrate that a global-precedence
theory accounts for all data under consideration.

Experiments

We report two experiments. In the first, we replicate and extend
Olds and Engel’s (1998) Experiment-1 findings. In the second, we
provide a more stringent test of an independence theory by inves-
tigating temporal rather than spatial relations between HSF and
LSF components.

Experiment 1: Replication of Olds and Engel (1998)

Experiment 1 was designed to replicate and extend Olds and
Engel’s (1998) Experiment-1 findings. Our experiment differs
from theirs in three ways. The first two were implemented in quest
of generalization: We used alphanumeric stimuli (digit strings)
rather than pictures of objects as stimuli, and we used two different
degrees of low-pass spatial filtering. The third difference was that
we used unmasked in addition to masked stimuli. The reason for
this, in addition to simply generalizing, was that interpretation of
data using masked stimuli is often clouded because an auxiliary
theory of masking must be appended to whatever main theory is
being tested.

Method

Observers. Observers were 3 paid University of Washington under-
graduates with normal or corrected-to-normal vision.

Apparatus. Stimuli were displayed on a 17-in. Macintosh ColorSync
monitor with a refresh rate of 13.5 ms, driven by a Macintosh G3 computer.
The experiment was executed in MATLAB using the Psychophysics Tool-
box (Brainard, 1997; Pelli, 1997). The laboratory was dimly illuminated
during the experiment. All stimuli were shown against a uniform gray
background whose luminance was 8.3 cd/m2. Observers’ eyes were ap-
proximately 18 in. (45.72 cm) from the screen.

Stimuli. Stimuli were randomly-generated four-digit strings, in Geneva
font, displayed at a 20-pixel font height and subtending a vertical visual
angle of approximately 0.9°.

As exemplified in Figure 2, stimuli appeared in three versions: intact,
LSF, and HSF. An LSF stimulus was generated by Fourier-transforming an
intact stimulus from pixel space to frequency space, multiplying the
resulting amplitude spectrum by a half-Gaussian filter with a standard
deviation of x cycles/digit (c/d) and inverse-Fourier-transforming the result
back to pixel space. There were two values of x: 1.38 c/d (strong low-pass
filtering, which cut off relatively more HSFs) and 1.95 c/d (mild low-pass
filtering, which cut off relatively fewer HSFs). The HSF stimulus was

generated by subtracting the LSF stimulus from the intact stimulus and
then adding the intact stimulus’s mean luminance. Therefore for each
degree of low-pass filtering, the luminance of the intact stimulus was the
mean of the LSF stimulus and its HSF counterpart.

Stimulus contrast was defined as (S � B)/(S � B), where S is stimulus
luminance and B � 8.3 cd/m2, is background luminance. Contrast for the
intact stimuli varied across observers to compensate for their varying
abilities and is shown in Table 1, Row 1, for each observer.

Design. Each observer participated in 96 data collection sessions,
divided into four subexperiments of 24 sessions/subexperiment. The four
subexperiments consisted of the four combinations of mild or strong
low-pass filtering and stimulus masked or not masked. Each subexperiment
consisted of a 6 (stimulus exposure durations) � 3 (intact, LSF, or HSF)
design. Each observer had at least 4 practice sessions in each subexperi-
ment before beginning it. Each observer participated in the subexperiments
in the same order: unmasked–mild low-pass filtering, unmasked–strong
low-pass filtering, masked–mild low-pass filtering, and masked–strong
low-pass filtering.

Each session consisted of 36 trials, comprising two instances of each of
the 18 conditions. At the beginning of each session, trial ordering was ran-
domized, the 36 digit strings were randomly generated, and the appropriate
version of the stimulus for each trial—intact, HSF, or LSF—was created.

Procedure. Each trial consisted of a single stimulus presentation and
test. A trial began with a 250-ms fixation cross accompanied by a 1,000-Hz

Figure 2. Examples of HSF (top), LSF (middle), and normal (bottom)
stimuli. For ease of viewing, contrasts of all stimuli are considerably higher
than they were in the experiments.
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warning tone. Then, 500 ms after cross and tone cessation, the appropriate
version of the stimulus appeared for its appropriate duration. In the mask
subexperiments, a noise mask consisting of a random jumble of black lines
on a white background then appeared for 500 ms, whereas in the unmask
subexperiments, the blank field returned for 500 ms. The observer then
attempted to type in the four just-seen digits in correct order. The observer was
required to type in exactly four digits and was able to backspace and correct if
desired. Following the observer’s response was feedback in the form of a
string of four Xs and Os; an O indicated that the digit in the corresponding
position was correct, and an X indicated that it was incorrect.

Results and Discussion

We computed proportion digits recalled in their correct posi-
tions, corrected for the .1 guessing rate. For each subexperiment,
we generated three performance curves (performance as a function
of stimulus duration), one for each of the three stimulus types, for
each observer. There were no systematic differences among ob-
servers, so the data were averaged over them. Each panel of Figure
3 shows the resulting data for one of the four subexperiments.
Standard errors, averaged over the 18 conditions of each subex-
periment, are shown in Table 1, Row 2, for each observer and for
the mean data.

SRIA theory fit. As described, the SRIA theory incorporates
four free parameters: �, one of the impulse-response function
parameters (the other, n, was set at 9); �, the sensory threshold; c,
the proportionality constant relating {A�(t) � [1 � I(t)]} to r(t);
and wL, the LSF weight. In addition, we needed one additional
parameter, an asymptote, which we designate Y. Our four-digit
strings could, with sufficient effort, be reported perfectly at long
durations. However, because of attention lapses, motor errors, and
the like, asymptotic performance was below perfect.

The best fitting parameters, along with three theory-fit mea-
sures, are shown in Table 1 for the 3 observers. The theory-fit
measures are the following: Root-mean-square error (RMSE) is
the square root of the mean theory–data squared deviations. F is
the F value corresponding to the deviation of the data from the null
hypothesis corresponding to the theory and is the squared ratio of
the RMSE to the standard error. The theory–data r2 is the across-
conditions Pearson r2 between the data points and the theoretical
predictions. To arrive at the theory shown in Figure 3, we averaged
the theoretical predictions across observers, thereby corresponding
to the similarly averaged data. The mean theory-fit measures in
Table 1 are based on comparisons between the mean theory and
mean data.

To evaluate the theory fit, we focus on the mean data. The F
values for the two unmasked conditions are both significant, which
allows us to statistically reject the SRIA theory as not being
sufficient to describe these data points. However, a glance at the
Figure-3 data fits along with the barely visible standard errors
makes it evident that we can reject the theory only because the data
have enormous statistical power. An alternative fit measure that we
consider more illuminating, the Pearson r2s between the data and
the theoretical predictions, ranges from .988 to .999. Thus, the
theory captures a very large proportion of between-conditions
variance.

Implications for spatial-frequency additivity. Experiment 1 in-
dicates that the SRIA theory accounts satisfactorily for the rela-
tions among intact, HSF, and LSF performance. Of most impor-
tance is that the SRIA theory is an independence theory: It assumes
(a) time-independent acquisition of HSF and LSF information and
(b) HSF and LSF additivity, in that the sensory response function
for the HSF � LSF sum (i.e., the intact stimuli) is the sum of the
individual HSF and LSF sensory response functions. We have thus
replicated empirical and theoretical findings reported by Olds and
Engel (1998), and we have generalized them in three ways: first, to
digit strings as well as pictures of objects; second, to unmasked as
well as masked stimuli; and third, to differing degrees of low-pass
filtering. This version of the SRIA theory is inconsistent with
global-precedence GtL theories which assume that HSF informa-

Table 1
Experiment 1: Various Experimental Parameters, Data, and
Theory Fits

Variable

Unmasked Masked

Mild Strong Mild Strong

Observer EU

Stimulus contrast .058 .058 .058 .058
MSE 0.032 0.030 0.030 0.029
� 6.2 8.7 7.9 9.2
� 0.018 0.021 0.023 0.024
wL .563 .433 .537 .451
c 1.432 0.795 1.128 0.667
Y 1.000 .934 .969 .879
RMSE 0.0475 0.0348 0.0273 0.0336
F 2.25 1.31 0.81 1.39
Theory–data r2 .985 .994 .994 .993

Observer JM

Stimulus contrast .073 .073 .073 .088
MSE 0.030 0.032 0.030 0.030
� 3.4 3.3 7.1 6.0
� 0.025 0.029 0.024 0.038
wL .610 .504 .647 .509
c 1.502 1.849 2.327 1.543
Y .947 .961 .883 .949
RMSE 0.0605 0.0643 0.0389 0.0334
F 4.17 4.09 1.63 1.27
Theory–data r2 .978 .967 .986 .992

Observer JF

Stimulus contrast .088 .104 .088 .088
MSE 0.031 0.031 0.031 0.027
� 5.5 3.7 8.2 8.7
� 0.029 0.041 0.050 0.050
wL .657 .564 .837 .657
c 2.478 2.491 2.853 2.211
Y .739 .868 .838 .700
RMSE 0.0346 0.0401 0.0357 0.0226
F 1.28 1.68 1.36 0.69
Theory–data r2 .988 .986 .979 .986

Mean data

MSE 0.0177 0.0179 0.0176 0.0164
� 5.0 5.2 7.7 8.0
� 0.024 0.030 0.032 0.037
wL .610 .500 .673 .539
c 1.804 1.712 2.103 1.474
Y .895 .921 .897 .843
RMSE 0.0356 0.0391 0.0143 0.0127
F 4.06 4.75 0.66 0.59
Theory–data r2 .990 .988 .998 .999

Note. RMSE � root-mean-square error.
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tion and LSF information are acquired over different time courses
and, ipso facto, with stronger, interactive GtL theories which
assume that initial acquisition of LSF information influences sub-
sequently acquired HSF information. This version of the theory
could not account for Schyns and Oliva’s (1994) data described
above, although it is sufficient to describe Olds and Engel’s and
the present data.

Experiment 2: Priming

Despite Olds and Engel’s (1998) and our Experiment-1 data
supporting an independence theory of spatial-frequency informa-
tion acquisition, there is still reason to question such an account on
several grounds. First, as described earlier, there is ample evidence
in the literature for some form of GtL processing. In particular
Sanocki (2001) provided strong evidence for interactive GtL the-
ories using a paradigm in which a target picture (a simple line
drawing of a house or a vehicle) was presented to an observer who
was then required to distinguish the target from two same-shape
distractors. Either just before or just after target presentation, there
briefly appeared one of two kinds of prime. Large-scale primes
depicted the global outline of the target, whereas small-scale
primes depicted small interior details of the target. In the most

compelling of Sanocki’s (2001) three experiments, the large-scale
prime provided no information that would allow the observer to
distinguish the target from the distractor. Nevertheless, the large-
scale prime, when presented before the target, improved perfor-
mance. Sanocki concluded that the large-scale prime, when pre-
sented before the target, provided a perceptual framework within
which the remainder of the target information could be interpreted.

One might argue that this finding is not directly relevant to the
present work because Sanocki (2001) defined local and global
somewhat differently than did Olds and Engel (1998), Schyns and
Oliva (1994), and the present work—Sanocki used feature size
rather than spatial frequency. However, the empirical work of
Sanocki and others is not the only basis for reserving judgment
about the implications of the Olds and Engel (1998) and of the
present Experiment-1 results. Conclusions in both these instances
were based primarily on the adequate fit of a quantitative theory;
but an adequate fit of a quantitative theory constitutes only weak
support for the theory’s assumptions (see Roberts & Pashler,
2000). Perhaps in both Olds and Engel’s experiments and in our
Experiment 1, the flexibility of the SRIA theory’s five free pa-
rameters allowed the theory to fit data issuing from what is still
fundamentally some form of GtL processing.

Figure 3. Experiment-1 data: Each panel shows performance, averaged over 3 observers, as a function of
stimulus duration for three spatial-frequency conditions. Solid lines show best average fit of the sensory
response–information acquisition (SRIA) theory. Left panels show data from mild low-pass filtering; right panels
show data from greater low-pass filtering. HSF � high spatial frequency; LSF � low spatial frequency. Error
bars are standard errors.
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As we describe, Experiment 2 was designed explicitly to test a
prediction of interactive GtL theories. Given the relations among
theories that we have described, confirmation of an interactive GtL
theory would constitute confirmation of a global-precedence the-
ory; however, disconfirmation of an interactive GtL theory would
not rule out a global-precedence theory. It had been our intention,
had we disconfirmed an interactive theory, to carry out further
experiments to distinguish between independence theories and
global-precedence theories. However, a serendipitous finding in
Experiment 2 rendered this step unnecessary: To anticipate our
conclusion, the Experiment-2 data allow us to disconfirm both
independence theories and interactive theories, thereby leaving
global-precedence theories, of which we provide an explicit, quan-
titative example, as the only viable explanation of both our
Experiment-1 and Experiment-2 data, along with the Schyns and
Oliva (1994) and the Olds and Engel (1998) data described earlier.

In Experiment 2, we investigated temporal instead of spatial
interactions between HSF and LSF information using a priming
paradigm related to one introduced by Parker et al. (1996). To do
so, we incorporated four conditions. In two no-prime conditions,
either HSF-only or LSF-only stimuli were, exactly as in Experi-
ment 1, displayed for varying durations. In addition there were two
priming conditions. In the first, a 40-ms LSF prime was followed
immediately by a variable-duration HSF target. In the second
priming condition, a 40-ms HSF prime was followed immediately
by a variable-duration LSF target. The target was always exactly
the same digit string as the prime, that is, the target and prime on
a given primed trial differed only in spatial-frequency composi-
tion. No masks were used in Experiment 2.

These conditions allow testing of a strong and unambiguous
interactive GtL theory prediction that uses methodology and asso-
ciated logic introduced by Loftus, Johnson, and Shimamura (1985;
see also Loftus, Duncan, & Gehrig, 1992) for investigating the
contribution to memory of an iconic image. Loftus et al. (1985)
presented stimuli at varying durations that were followed either by
an immediate mask (which did not allow an icon) or by a 300-ms
delayed mask (which did allow an icon). They then observed that
performance curves for the immediate-mask and delayed-mask
conditions were horizontally parallel, with the immediate-mask
curve shifted to the right by 100 ms. That is, performance for a
d-ms stimulus followed by an icon was identical to performance to
a (d � 100)-ms stimulus not followed by an icon. Loftus et al.
(1985) concluded that irrespective of the duration of the physical
stimulus that it follows, “an icon is worth 100 ms of additional
physical exposure duration” (p. 1).

Reinitz, Wright, and Loftus (1989) used similar logic to inves-
tigate priming effects. They presented pictures (e.g., of a guitar), at
varying exposure durations, preceded by a prime (in this example,
the word “GUITAR”) or not preceded by a prime. Reinitz et al.’s
goal was to test two possible accounts of the prime’s effect on
stimulus processing. The first was that the prime acted like a brief
preview of the stimulus itself, whereas the second was that the
prime acted to speed up stimulus processing. The test again in-
volved a horizontal comparison of the primed and the unprimed
performance curves. The rationale was that if the prime acted like
a brief preview of the stimulus (akin to an icon’s acting as a brief
postview), then the primed and unprimed performance curves
would be horizontally parallel, separated by the amount of preview
that the prime was worth. If the prime sped up processing, how-

ever, the curves would be horizontally diverging, with the (hori-
zontally compared) slope of the primed curve being greater than
the slope of the unprimed curve. Reinitz et al. found that the prime
acted to speed up processing, thereby confirming an interactive
theory.

Our present Experiment 2 used similar logic. To understand it,
it is useful to begin with a thought experiment. Consider one of the
two types of primed target stimuli, say, the HSF targets. Suppose
that the prime that preceded the d-ms HSF target were simply a
40-ms HSF stimulus rather than the 40-ms LSF stimulus that we
actually used. Now suppose we plot two performance curves: one
corresponding to the primed targets and the other corresponding to
the unprimed targets. Because the prime and the stimulus are
identical and because the stimulus immediately follows the prime,
it is obvious that the primed stimulus is identical to the unprimed
stimulus, except for being 40 ms longer. Therefore, within the
limits of statistical error, the two curves would be identical but
separated horizontally by 40 ms.

Now consider our actual priming condition in which the HSF
stimulus is preceded by a LSF prime. Suppose that the LSF prime
did not influence HSF stimulus processing. In that case, the primed
and unprimed curves would still be separated by some constant
corresponding to how much HSF information a 40-ms LSF prime
was worth, that is, the LSF prime would simply add to the HSF
stimulus. If, on the other hand, the LSF prime influenced the
processing speed of the HSF stimulus, then the curves would not
be horizontally parallel. For example, if the LSF prime increased
the processing rate of the HSF stimulus, the primed and unprimed
curves would diverge horizontally.

Method

Observers. Observers were 6 paid University of Washington under-
graduates and graduates with normal or corrected-to-normal vision.

Stimuli and apparatus. HSF and LSF stimuli were created as in Ex-
periment 1. The low-pass filter size was 1.59 c/d. For each observer except
JRS, the prime and stimulus had the same contrast, which is shown for
individual observers in Table 2, Row 1. JRS’s prime contrast was acci-
dentally set at .073 rather than to his target contrast of .088, but because of
the theory-based way in which we analyzed our data, this error did not
present any interpretational difficulties. The apparatus was the same as in
Experiment 1.

Procedure. Each observer participated in 50 data-collection sessions.
Each session included 48 trials: 2 in each of the 24 conditions defined by
4 priming conditions � 6 durations. The order of the 24 conditions was
randomized for each session.

Each trial consisted of a presentation and test of a single letter string. A
trial began with a 250-ms fixation cross accompanied by a 1,000-Hz
warning tone. Then, 500 ms after cross and tone cessation, the letter string
was presented in one of its various Prime Target � Duration
configurations.

On an unprimed trial, the target letter string only—either a LSF or a HSF
version—was presented at one of six durations. On a primed trial, a prime
was presented first, always for 40 ms, followed immediately by the target,
presented at one of six durations. The target was always the same letter
string as the prime, but in the opposite spatial-frequency condition; that is,
LSF primes were always followed by HSF targets and vice versa.

Because we wanted to map out approximately equal performance ranges
in the primed and unprimed conditions, target exposure durations were
somewhat longer in the unprimed compared with the primed conditions:
There were six target durations that ranged from 27 to 160 ms in the
unprimed conditions and from 0 to 133 ms in the primed conditions.
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To forestall confusion, we emphasize a slightly odd implication of this
timing arrangement that involves the two zero-target-duration primed
conditions. In these two conditions, zero duration means that the target
does not appear at all but rather the prime alone is presented. The potential
source of confusion is that the zero-duration-primed HSF condition in-
volves only a 40-ms LSF stimulus and, likewise, the zero-duration-primed
LSF condition involves only a 40-ms HSF stimulus.

Results and Discussion

Figure 4 shows Experiment-2 performance curves for the four
priming conditions averaged over the 6 observers, along with
theory fits that we describe shortly. Standard errors, averaged over
the 24 conditions, are shown in Table 2, Row 2, for each observer
and for the mean data. Primed conditions are shown in Figure 4 by
solid-triangle curve symbols (upward-pointing for HSF conditions
and downward pointing for LSF conditions), whereas unprimed
conditions are shown by analogous open-triangle curve symbols.
Note that, as described above, the two zero-duration primed con-
ditions (represented by the two solid triangles at the far left of
Figure 4) consist of the prime only: The 0-ms HSF primed con-
dition (filled, upward-facing triangle) is actually a single, 40-ms
presentation of a LSF stimulus, and the 0-ms LSF primed condi-
tion (filled, downward-facing triangle) is a single, 40-ms presen-
tation of a HSF stimulus.

Parallel primed and unprimed curves. Recall that the predic-
tion of a noninteractive theory—that is, an independence or a

global-precedence theory—is that the primed and unprimed curves
be horizontally parallel for both HSF and LSF stimuli. Are they?
A casual inspection of Figure 4 suggests that they are. In quest of
a quantitative answer, we did the following for each observer.

Table 2
Experiment 2: Various Experimental Parameters, Data, and Theory Fits

Variable

Observer

Mean dataJRS CAW SKC HYC JEP TMB

Stimulus contrast .088 .088 .088 .088 .119 .104
MSE 0.0270 0.0259 0.0243 0.0236 0.0245 0.0245 0.0102
Curve shifting

HSF: Best �t (LSF prime’s worth) 95 24 49 34 49 59 49
LSF: Best �t (HSF prime’s worth) 33 48 32 48 40 26 42
HSF: r2 .990 .980 .991 .993 .939 .993 .993
LSF: r2 .978 .970 .980 .922 .987 .977 .979

Interaction magnitude
Observed interaction contrast magnitude 0.035 0.486 0.142 0.325 0.175 0.187 0.225

Crossover interaction? No Yes Yes Yes Yes Yes Yes
SRIA theory interaction magnitude �0.086 0.252 �0.005 0.033 0.072 0.038 0.051

Crossover interaction? No No No No No No Yesa

Modified theory interaction magnitude 0.057 0.335 0.082 0.184 0.149 0.134 0.157
Crossover interaction? No Yes Yes Yes Yes Yes Yes

Original SRIA theory fit
RMSE (data–theory) 0.0719 0.0470 0.0413 0.0620 0.0645 0.0494 0.0365
F (theory) 49.69 21.19 16.37 36.99 39.94 23.49 76.89
r2 (data–theory) .904 .971 .977 .954 .920 .972 .979

Modified SRIA theory fit
RMSE (data–theory) 0.0468 0.0452 0.0287 0.0386 0.0447 0.0408 0.0229
F (theory) 3.01 3.04 1.39 2.67 3.32 2.77 5.07
r2 (data–theory) .959 .973 .989 .982 .962 .981 .992

Modified theory parameter values
� 11.5 20.1 22.4 12.4 11.9 18.5 16.1
� 0.0055 0.0084 0.0064 0.0104 0.0183 0.0084 0.0096
wL(100) .724 .653 .750 .540 .611 .753 .667
c 2.78 3.84 1.87 1.49 3.22 1.55 2.46
Y .794 .999 .812 .902 .743 .877 .854

Note. HSF � high spatial frequency; LSF � low spatial frequency; SRIA � sensory response–information acquisition; RMSE � root-mean-square error.
a The crossover interaction for the mean data was due to an averaging artifact.

Figure 4. Experiment-2 data: Performance, averaged over 6 observers, as
a function of stimulus duration for four priming conditions. Solid, dashed,
and dotted lines show best average fit of the modified sensory response–
information acquisition theory. HSF � high spatial frequency; LSF � low
spatial frequency. Error bars are standard errors.
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1. Consider, to illustrate, the HSF performance curves. There
were six stimulus-presentation durations for the unprimed stimuli,
which can be thought of as a six-element vector dUP, whose entries
range from 27 to 160 ms. Similarly, the six durations for the
primed stimuli form a six-element vector, dP, whose entries vary
from 0 to 133 ms. If the primed and unprimed HSF curves are
horizontally parallel, then there should be some value, �t, so that
if the primed curve is shifted by �t to the right, it will overlap
perfectly with the unprimed curve; that is, the 12 data points—the
6 unprimed data points plotted as a function of dUP and the primed
data points plotted as a function of (dP � �t)—will form a single
monotonic function. The identical logic, of course, holds for LSF
stimuli.

2. Past experience (see, e.g., Busey & Loftus, 1994) indicates
that these performance curves can be fit well by the linear function,
�ln(1 � p/Y) � kd, where p is performance, k is a constant, d is
stimulus duration, and Y is asymptotic performance. Thus, for any
shift, �t, we can fit this linear function to the 12 data points—the
6 unprimed and 6 primed �ln(1 � p/Y) data points plotted simul-
taneously as functions of dUP and (dP � �t), respectively.

3. Accordingly, for each observer, the best fitting values of k, Y,
and �t—those that maximized the Pearson r2 between the com-
bined durations and the combined data points—were found for
both the HSF and LSF curves. The resulting �t and r2 values are
shown in Table 2 in the section labeled “Curve shifting.”

4. Finally, for each spatial frequency, we plotted mean unprimed
curves against the original unprimed duration values, along with
the mean primed curves against the original primed durations
shifted rightward by the mean �d. These curves are shown in
Figure 5 (to avoid visual clutter, the HSF curves are shifted upward
by 0.5).

It is evident both from visual inspection of the Figure-5 curves
and the Table-2 curve-shifting r2 values (both for individual ob-
servers and for the mean data) that for both spatial frequencies, the
alignment is good. For all intents and purposes, the primed and
unprimed curves are horizontally parallel for both spatial frequen-
cies. This finding appears to disconfirm the interactive GtL pre-
diction described above.

Before unequivocally accepting this conclusion however, we
consider one possible challenge to it, involving the notion of
prime-target masking: Perhaps the HSF primes forward-masked
the LSF targets and/or vice versa, and the resulting degradation of
primed compared with unprimed target information somehow re-
sulted in the parallel curves.

Our response to such a challenge would be as follows. We have
formulated a very strong prediction of a noninteractive theory, that
of horizontally parallel curves. As Figure 5 shows, this prediction
was resoundingly confirmed. In general, confirmation of strong
predictions affords strong support to the theoretical logic underly-
ing the prediction. In contrast, no masking account that makes this
prediction readily presents itself. If one were to advocate an
alternative, say, masking account of our results, it would be the
advocate’s responsibility to formulate the alternative account in
such a way that it made the same specific prediction. Moreover,
any masking account would be relatively complex, in that it would
have to posit two opposing influences—the positive effect of
prime qua prime along with the negative effect of the prime as
mask—that would somehow combine to imply parallel curves. In
view of these considerations, the present theoretical logic—that the
parallel curves issue simply and naturally from a noninteractive
process—seems most parsimonious and most viable.

Spatial-Frequency � Duration interactions. As indicated, our
finding of horizontally parallel primed and unprimed curves, while
ruling out an interactive GtL theory, cannot be used to distinguish
between independence theories and global-precedence GtL theo-
ries. However, a serendipitous result issuing from the two
unprimed conditions allows us to make this distinction. In partic-
ular, as can be seen in Figure 4, there is a crossover interaction
between spatial frequency and duration: At short durations, LSF
performance exceeds HSF performance and vice versa at longer
durations. Such an interaction is inconsistent with independence
theories and, accordingly, warrants careful scrutiny, particularly
because a crossover interaction can emerge as an averaging
artifact.

The first row of the Table-2 “Interaction magnitude” section
indicates this crossover interaction to have occurred for 5 of the 6
observers. To quantify it, we applied the 1-degree-of-freedom
interaction contrast (�1, 1, 1, �1) to the conditions: HSF–lowest
duration, LSF–lowest duration, HSF–highest duration, and LSF–
highest duration. The contrast magnitude is shown for the 6 ob-
servers in Table 2: It is positive even for JRS, the one observer
who did not show the interaction in crossover form. The mean
interaction magnitude is 0.225 with a 95% confidence interval of
	0.127. Thus, the interaction is generally crossover and consistent
across observers. An intuitive interpretation of this result is that it
is more efficient to acquire information from LSFs at short dura-
tions but more efficient to acquire information from HSFs at
longer durations. This finding dovetails with that described above,
reported by Schyns and Oliva (1994): The message is that HSFs
and LSFs are differentially effective at different times after stim-
ulus onset.

SRIA theory fit. Like any independence theory, the SRIA
theory used by Olds and Engel (1998) cannot fit the just-described
interaction: If the weighting used for the LSF and HSF compo-
nents remains constant, then whichever component has the higher
weight must produce higher performance for all durations. To
demonstrate this, we fit the theory to the data for each of the 6

Figure 5. Experiment-2 data: curve-shifting results. For each spatial
frequency, the primed curves have been shifted rightward to provide the
best fit with the unprimed curves. Error bars are standard errors. For visual
clarity, the high-spatial-frequency (HSF) curves were raised above the
low-spatial-frequency (LSF) curves by 0.5.

112 LOFTUS AND HARLEY



Experiment-2 observers. We assumed that (a) the prime and the
stimulus triggered sensory response functions in the usual manner,
(b) in the primed conditions, the overall sensory-response function
was the appropriately weighted sum of the prime and stimulus
sensory response functions, and (c) performance was determined
by above-threshold area under the overall sensory response
function.

The SRIA theory fit measures shown in the Table-2 “Original
SRIA theory fit” section are not as good as those of Experiment 1,
as indicated by all fit measures. This is not surprising in light of the
just-described crossover interaction that the SRIA theory, an in-
dependence theory, is incapable of predicting. The SRIA theory’s
failure to predict the crossover interaction is shown in Table 2,
second part of the “Interaction magnitude” section. Note that the
failure occurs for all observers individually, although an averaging
artifact allows a (very small) crossover interaction for the mean
predictions.

A Modified SRIA Theory

The poor fit of the SRIA theory to Experiment 2 in general and
its failure to allow the observed crossover interaction in particular
indicate that the process generating the Experiment-2 data is one in
which information based on different spatial frequencies have
different time courses—i.e., that a global-precedence GtL theory is
appropriate to describe the data. To illustrate this conclusion’s
validity, we modified the SRIA theory to incorporate such a
property. Instead of assuming simple weightings, wL and (1 � wL)
for the LSFs and HSFs, we allowed the weight to vary over time
t since stimulus onset. In particular, we assumed that the weight for
the LSF sensory-response function at time t was wL(t) � e�kt,
whereas the HSF weight was wH(t) � [1 � wL(t)]. For ease of
exposition, we reparameterized the exponential defining wL: In-
stead of using a decay rate, k, we used what we term wL(100),
which is defined to be the LSF weight 100 ms after stimulus onset.

Note that this modification does not increase the number of free
parameters; it merely substitutes wL(100) for wL. Note also that the
original and modified theories are mutually exclusive. The modi-
fied theory cannot produce the same state of the system as the
original theory, except for the degenerate cases of wL(100) � 0
and wL(100) � 1. This is as it should be: Because the original
theory is an independence theory and the modified theory is a GtL
theory, the two must be mutually exclusive.

Application of the Modified SRIA Theory to Experiment 2

Application of the modified SRIA theory to the Experiment-2
data is straightforward: It is as described above; the only difference
is the weighting scheme. The predictions are shown as the solid,
dashed, and dotted lines in Figure 4, and various fit measures are
provided in Table 2. The third part of the Table-2 “Interaction
magnitude” section demonstrates that the observed crossover in-
teraction is tracked perfectly by the modified theory across the 6
observers. The “Modified SRIA theory fit” and “Modified theory
parameter values” sections provide fit measures and parameter
values. All in all, the modified theory fit is better than the original
SRIA theory fit for all observers and is quite acceptable in general
by all fit measures.

Application of the Modified SRIA Theory to Other Data

A modified theory designed to fit the Experiment-2 data is not
satisfactory if it fits the Experiment-2 data but no other data.
Accordingly, we fit the modified theory to four other data sets: the
present Experiment 1 and Olds and Engel’s (1998) Experiments
1–3. The magnitudes of the fits, expressed as r2s, are provided in
Table 3, and we describe them in turn.

Present Experiment 1

We fit the modified theory to the three Experiment-1 observers
and the mean modified theory to the mean data. The r2s are
averaged over the four Mask � LSF Strength conditions. As
indicated in Table 3, Rows 1–4, the fits of the two theories are
very similar. The mean fit of the modified theory is slightly better
than the mean fit of the original theory. The estimates of the four
parameters common to the two theories—�, �, c, and Y—were
quite similar when estimated in the context of the modified theory
to their estimates using the original theory. The estimates of
wL(100) were .636, .526, .725, and .603 for the unmasked (mild
low-pass filtering), unmasked (strong low-pass filtering), masked
mild, and masked strong subexperiments. These are comparable in
magnitude to the corresponding estimates of wL(100) obtained in
Experiment 2 (see Table 1).

Olds and Engel’s (1998) Experiment 1

Earlier, we described Olds and Engel’s (1998) Experiment 1:
Essentially, it was the same as our Experiment 1 with masked line
drawings as stimuli and with a single degree of LSF filtering
strength. As indicated in Table 3, Rows 5–9, the fits of the original
and modified theories are very similar, and the mean fit of the
modified theory is virtually identical to the mean fit of the original
theory.

Olds and Engel’s (1998) Experiment 2

Olds and Engel’s (1998) Experiment 2 was similar to their
Experiment 1 except that they used 48 naive observers instead of

Table 3
Comparisons of Original and Modified Theories for Various
Data Sets (r2 Values)

Experiment Original theory Modified theory

Experiment 1
Obs EU .992 .986
Obs JF .985 .986
Obs JM .981 .986
Mean .979 .992

O&E Experiment 1
Obs EO .997 .997
Obs SE .992 .988
Obs KS .964 .960
Obs PB .997 .993
Mean .996 .995

O&E Experiment 2 .970 .965
O&E Experiment 3

Obs SE .950 .931
Obs CF .923 .910
Mean .950 .932

Note. Obs � observer; O&E � Olds & Engel (1998).
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4 practiced observers. As indicated in Table 3, Row 10, the fit of
the original theory is slightly better than the fit of the modified
theory.

Olds and Engel’s (1998) Experiment 3

In their Experiment 3, Olds and Engel (1998) used 2 practiced
observers and varied the relative amounts of HSF and LSF con-
trast. In particular, they created HSF and LSF components of their
intact stimuli and then created eight versions in which they added
the HSF components scaled by 0, 0.07, or 0.14 to the LSF com-
ponent also scaled by 0, 0.07, or 0.14 (the eight versions resulted
from the 3 � 3 [HSF Contrast � LSF Contrast] combinations
absent the no-stimulus-at-all version in which both components are
scaled by 0). Each of these eight versions was shown at eight
exposure durations ranging from 13 to 426 ms, yielding 64 con-
ditions in all. As indicated in Table 3, Rows 11–13, the fits of the
original theory are slightly better than those of the modified theory.
Figure 6 shows the fit of the data for the 2 observers. It is generally
satisfactory—approximately as good as that reported by Olds and
Engel for the original theory—although with some notable sys-
tematic exceptions at low-contrast levels.

These exceptions, however, are intriguing. Consider first the
lower two Figure-6 panels wherein the HSF component is 0, that
is, there is only an LSF component. Across the 2 observers, three
out of the four curves asymptote at considerably less-than-perfect
performance levels. This cannot happen within the context of the
original SRIA theory (unless an asymptote is explicitly built in, as
it was in the fit to the present experiments, in which case, all
conditions will asymptote at this same level). In the present dis-
cussion, we, for ease of exposition, assume there to be no built-in
asymptote. As long as stimulus contrast is above the threshold
value, �, longer durations lead to longer above-threshold areas, and
performance must approach 1.0. With the modified SRIA theory,
however, the weight accorded the LSF component declines over
time since stimulus onset; therefore, as duration becomes longer,
the corresponding sensory response functions begin to decline. As
they decline below threshold, above-threshold area, and therefore
performance, no longer increases. The result is a below-perfect
asymptote, as shown by the theoretical predictions in Figure 6,
lower panels.

Alas, though, the story is not this simple: There also appears to
be a below-perfect asymptote for two out of the four curves
involving a zero-LSF component: As indicated in Figure 6, middle
panels, for both observers, the zero-LSF, 7% HSF condition also
appears to asymptote below 1.0. This is not permitted by the
modified SRIA theory, as indicated by the rising-to-1.0 theoretical
predictions. We return to this issue shortly.

Modified Theory Fits: Discussion

The modified theory fits our Experiment-2 data well. It also fits
Olds and Engel’s (1998) Experiments 1 and 2 quite well. These
good fits are somewhat surprising. In devising our modified the-
ory, we set out to find a general class of theories that would at least
qualitatively explain both the crossover interaction and the parallel
primed–unprimed curves that we observed in our Experiment
2—in other words, a theory that would constitute a global-
precedence GtL theory rather than an independence theory. Within

the context of the SRIA theory, this required only that the relative
weightings of HSF and LSF components of the sensory response
function change over time. There is an infinite number of quanti-
tative incarnations that would satisfy this property, and we chose
the particular one that we did—exponential decay of the LSF
weights—because it is a convenient one-parameter function. That
the quantitative fit to Experiment 2 was so good should not,
therefore, be attributed to particularly insightful theory construc-
tion on our part but rather to a stroke of good luck.

Despite our original conclusions about the Olds and Engel
(1998) data and our Experiment-1 data—that they are describable
with an independence theory—we wish to emphasize that we do
not consider our Experiment-2 results to be in any way at odds
with our Experiment-1 results or with Olds and Engel’s results.
Our modified theory accounted well for all data, and in general, it
is not difficult to devise a data set that, while generated by one
theory, is describable by another. Because the modified theory is
sufficient to describe all data, while the original theory cannot
describe the Experiment-2 data, we conclude that the modified
theory is most viable.

The modified theory’s major failing—both qualitatively and
quantitatively—is in its fit to Olds and Engel’s (1998) Experiment
3. As sketched above, although the modified theory qualitatively,
although not quantitatively, accounts for the below-perfect asymp-
tote of the LSF-only data, it cannot account for the similar below-
perfect asymptote of the HSF-only data. As we have indicated, the
modified SRIA theory accounts, at least qualitatively, for the
LSF-only data (Figure 6, bottom panels) because the modified
theory predicts a less-than-zero asymptote. The theory still fails
though in that it cannot predict a less-than zero asymptote for
HSF-only data, and such an asymptote clearly materializes in the
two 7% HSF, zero-LSF curves in the middle panels.

Why is this? The only explanation that occurs to us is that
despite being created to be homogeneous, the stimuli used by Olds
and Engel (1998) vary slightly in their contrast levels so that some
of them remain below threshold throughout a presentation,
whereas others rise above threshold. The result would be average
data with a below-perfect asymptote. This explanation, of course,
applies to the LSF-only data as well as to the HSF-only data,
thereby rendering unnecessary, at least as a qualitative explanation
of these specific data, the HSF–LSF asymmetry inherent in the
modified SRIA theory. Nevertheless, the modified SRIA theory
fits the remainder of the data sufficiently well that extensions of
Olds and Engel’s Experiment 3 may show it to be necessary.

General Discussion

We began by dividing theories of how spatial-frequency com-
ponents combine and contribute to visual information acquisition
into two mutually exclusive categories: independence theories and
GtL theories. We further divided GtL theories into global-
precedence theories and interactive theories. We have concluded,
in concert with others (e.g., Hughes et al., 1996; Schyns & Oliva,
1994), that a global-precedence theory coherently describes a wide
range of visual perception data. In particular, in our Experiment 1,
we replicated and extended parametric data reported by Olds and
Engel (1998). Although Olds and Engel’s and our Experiment-1
data are describable by an independence theory, our Experiment-2
data allowed us to disconfirm both an independence theory and an
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interactive theory. It is possible that our data, involving digits, and
Olds and Engel’s data, involving pictures, operate according to
different rules. However, we demonstrated that we could account
for Olds and Engel’s data as well as our own using a specific
global-precedence theory; hence, as we indicated earlier, the most
parsimonious account is that a global-precedence theory governs
both data sets. As we indicated in our introduction, a global-

precedence theory is also appropriate to describe the Schyns and
Oliva (1994) data. But because Schyns and Oliva’s experiment
involves so few data points, we cannot apply our quantitative
theory to it.

This may not be the end of the story. It is entirely conceivable
that another, more complex experiment using this general para-
digm would require an interactive GtL theory to describe it (as an

Figure 6. Data for 2 observers in Olds and Engel’s (1998) Experiment 3. For each observer, each panel shows
one level of high-spatial-frequency (HSF) contrast; within each panel, each curve represents one level of
low-spatial-frequency (LSF) contrast. Smooth lines through the data points represent best fits of the modified
sensory response–information acquisition theory.
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interactive theory was necessary to describe the Sanocki, 2001,
data) and that such a theory could be devised that would ade-
quately account for all data sets. One could make the case that in
response to Sanocki’s data and his arguments (which we consider
in more detail in the next section), one should develop such an
interactive theory now. However in view of the quite substantial
differences between our and Sanocki’s paradigm, stimuli, task, and
definition of global and local, we feel that such development is not
yet obligatory.

The Case for Global–Local Interactions

In our introduction, we described interactive models of infor-
mation acquisition. Sanocki (1993) has provided a compelling
rationale for global–local interactions particularly for objects and
scenes. Sanocki (1993) has reiterated the oft-noted fact that objects
in the world can appear in an infinitude of orientations, sizes,
shapes, colors, and so on and has underscored the obvious impli-
cation: “If during object identification, the perceptual system con-
sidered such factors for an unconstrained set of alternatives, the
enormous number of combinations of stimulus features and
feature-object mappings would create a combinatorial explosion”
(p. 878). Sanocki has noted that an obvious means of reducing
what would be an otherwise impossible information-processing
task is to use early information to constrain the interpretation of
later information. Sanocki has referred to this idea as the contin-
gency hypothesis and has indicated that local-information acquisi-
tion being contingent on global-information acquisition seems to
be the most reasonable interpretation of the hypothesis. In support
of the contingency hypothesis, Sanocki (1993, 2001) has provided
results from a priming paradigm in which a global prime (e.g., a
sketchy outline of a house) preceded or did not precede a target
that conformed to the global aspects of the prime but that con-
tained additional, local details. The task was then to distinguish
between two detailed alternatives—the target plus a distractor—
whose global characteristics conformed equally well to the prime.
He found that the prime facilitated such discrimination even
though the prime in and of itself provided no information that
would allow target–distractor discrimination. This occurred for
both simple shapes (Sanocki, 1991) and for relatively complex
objects such as vehicles and buildings (Sanocki, 1993, 2001).
Sanocki concluded that his results provided evidence for an inter-
active theory: The presence of the prime could only have facili-
tated acquisition of local information from the target.

Others have come to the same general conclusion: For instance,
Reinitz et al. (1989) found, as indicated earlier, that a verbal
category prime (“GUITAR”) facilitated later discrimination be-
tween two pictures of a guitar—the target plus a distractor guitar.
And yet, data issuing both from objects (Olds & Engel, 1998) and
from digits (present experiments) can be accounted for quite
precisely without assuming that HSF information acquisition is
affected by the presence of LSF information.

The most harmonious resolution of this apparent conflict is to
assume that global information can facilitate acquisition of subse-
quent local information but either that the kind of global informa-
tion which does the facilitating is not necessarily LSF information
or that the kind of local information which benefits from such
facilitation is not necessarily HSF information. As we indicated
earlier, Sanocki (1993) hinted that spatial frequency was a candi-

date means of separating global from local information, noting in
a discussion of informational “grain size” that “precise [percep-
tual] analyses would have a small grain size, whereas imprecise
analyses would blur high-frequency details and have a relatively
large grain size” (p. 882); however in Sanocki’s actual experi-
ments, global and local information were defined by outlines and
detailed representations of target stimuli, not specifically high and
low spatial frequencies.

Flexible Processing Orders

Up to this point, we have proceeded under the implicit (and
common) assumption that visual information processing proceeds
along a fixed route with respect to spatial scale. This assumption
makes sense based on logic and a great deal of past data.

However, Schyns and his colleagues have recently argued and
presented data favoring the proposition that the visual system does
not necessarily operate so rigidly; instead, people may use spatial
scales (e.g., as instantiated in different spatial-frequency bands) in
different orders depending on the task they are trying to carry out
(Gosselin & Schyns, 2001; Oliva & Schyns, 1997; Schyns &
Oliva, 1999; see Morrison & Schyns, 2001, for a review).

Schyns and his colleagues have provided numerous demonstra-
tions of such flexibility using faces as stimuli. For example,
Schyns and Oliva (1999) showed observers hybrid faces: a double
exposure of two superimposed faces, one composed of only LSFs
and the other composed only of HSFs. The two faces differed on
three dimensions: male–female, expressive–nonexpressive, and
angry–happy. On each of a series of trials, observers categorized
the faces along one of these dimensions, and the investigators
noted whether the face corresponding to the chosen category was
the LSF member or the HSF member of the hybrid. Their main
finding was that the categorization task that was used influenced
which member of the pair was chosen. For instance, in one of their
experiments, observers chose the LSF face 38% of the time when
performing an expression–no expression categorization but chose
the very same LSF face 66% of the time when performing the
happy–angry categorization. The investigators concluded that
which image spatial-frequency band dominated observers’ percep-
tion was strongly influenced by the task that they were carrying
out.

Global-to-Local Versus Coarse-to-Fine

Morrison and Schyns (2001) have also considered the relation
between two temporal processing shifts that have appeared in the
literature: GtL processing and what they have characterized as
coarse-to-fine (CtF) processing. They have pointed out that al-
though GtL and CtF shifts may appear at first glance to simply be
two names for the same thing, they may be quite different and
possibly orthogonal to one another (p. 459). GtL processing, in
their view, is a processing change that occurs over two-
dimensional space: Whole parts of a scene are initially processed,
followed by processing that is focused on increasingly smaller
areas. CtF processing, in contrast, can occur in any region of space
and may be appropriately realized in terms of a transition from
processing LSFs to processing HSFs. By this view, the phenomena
described and studied by Sanocki (e.g., 1993) would involve a GtL
processing shift and would be describable by interactive theories.
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In contrast, the phenomena described and studied by Schyns and
Oliva (1994), Olds and Engel (1998), and the present work would
involve a CtF processing shift and would be describable by global-
precedence theories.

Theoretical Cacophony

The points made in the preceding two sections do not reflect a
great deal of theoretical harmony with respect to the investigation
of object perception insofar as it is affected by spatial scale. To
summarize, there are (at least) three areas of current theoretical
confusion that may be responsible for some of the seeming em-
pirical incompatibilities and failures to replicate in the literature.
The first is the GtL versus CtF distinction just discussed. The other
two are as follows.

Definition of Spatial Scale

To study the kind of GtL (or CtF, or any other kind of process-
ing that in some way incorporates the notion that the visual world
is made up of different spatial scales), it is necessary to operation-
alize how different spatial scales are to be implemented. Numerous
investigators have used spatial frequency as a means specifying
different scales. Presumably, they have done so because spatial
frequency is well defined, mathematically realizable, and likely
directly related to the functioning of the visual system.

Nevertheless, there are other ways of operationalizing spatial
scale. A common one is as implemented by Sanocki (1993)
wherein, as described earlier, large-scale is defined by large,
overall shapes of target stimuli, whereas small-scale is defined by
small target details. Although such an approach has been useful, as
demonstrated by Sanocki’s contributions, it is not yet clear (a) how
such an implementation can be quantified in a manner akin to the
quantification of spatial-frequency analysis or (b) how results ob-
tained with this representation of spatial scale relate to results obtained
with other, for example, spatial-frequency representations.

Processing Flexibility

Even maintaining a consistent definition of spatial scale, viz.,
spatial frequency, the role of spatial scale in object perception is
far from well defined, and may be not at all simple. The claims and
associated demonstrations of Schyns and his colleagues that scale
usage order may depend on the exact task being carried out
mitigate against a theoretical strategy of looking for the way in
which the visual system progresses through different spatial scales
in performing any arbitrary task. Rather, they suggest that a more
fruitful approach would be to determine exactly what information
in the stimuli—defined in terms of spatial frequency or some other
characterization of spatial scale—is most efficient for task perfor-
mance and then, given such a determination, whether the observed
order of scale usage is optimal.
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Appendix

Olds and Engel’s Theory: Number of Free Parameters

Olds and Engel (1998) fixed n and � to 9 and 3, respectively, and then
fit the sensory response–information acquisition (SRIA) theory to their
data with four parameters: wH and wL, the weights for high-spatial-
frequency (HSF) and low-spatial-frequency (LSF) components; �, the
sensory threshold; and c, the scaling factor. Here we demonstrate two
things: First that wH � wL corresponds to intact stimulus contrast and,
second, that Olds and Engel’s version of the SRIA theory was a three-
parameter, not a four-parameter, version.

Intact Stimulus Contrast Is wL � wH

In Olds and Engel’s (1998) study, an intact stimulus was the sum of the
HSF and LSF components. In their application of theory, the sensory
response function for the intact component was

a�t��intact� � wH
f�t� * g�t�� � wL
f�t� * g�t�� � �wH � wL� 
f�t� * g�t��,

which is exactly our equation for an intact stimulus (see Equation 1 above),
where C � wH � wL.

Number of Free Parameters

Suppose that a best fitting set of parameters is found; call them wL, wH,
�, and c. In this case, response probability for a stimulus shown at duration
d will be,

p � 1 � eA� ���/c,

where

A���� � �
t1

t2

a� �t�dt � �
t1

t2

�C
f�t� * g�t�� � � dt.

Here, C � wH � wL, t1 is the time at which a(t) � � as a(t) rises, and t2
is the time at which a(t) � � as a(t) decays; thus, for all ts such that t1 �

t � t2, a(t) � �.

Now consider a new set of parameters, scaled by some positive constant,
k: kwL, kwH, k�, and kc. Note first that a�(t) � ka(t), where a�(t) is the
sensory-response function generated by the new parameter set. Note sec-
ond that t1 and t2 will remain the same, because a(t1) � �, a�(t1) � ka(t1) �
k�, and likewise for t2. Therefore,

A�� ��� � �
t1

t2

�kC
f�t� * g�t�� � k�dt

� k�
t1

t2

�C
f�t� * g�t�� � �dt � kA����,

and response probability is

p� � 1 � ekA����/�kc� � 1 � eA����/�c� � p.

Thus, scaling the parameters leaves response probability unchanged, which
means that the best fitting free parameters are unique only up to a positive
scaling factor.

If contrast, C, is known, then because (wH � wL) � C, wL and wH may
be expressed as percentages of contrast, in which case wH � 1 � wL. If
contrast is unknown, as it apparently was in Olds and Engel’s (1998)
experiment, it can simply be stipulated to be some constant, and the same
argument holds. In either case, wH and wL, are no longer separate free
parameters; rather, they are entirely dependent. The advantage of a known
contrast is that the estimate of � is in standardized units, viz., stimulus
contrast.
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